Knowledge (XXG)

Reaction norm

Source đź“ť

54: 77:. With these controlled genetic groups, we might cultivate each variety (genotype) in a range of environments. This range might be either natural or controlled variations in environment. For example, an individual plant might receive either more or less water during its growth cycle, or the average temperature the plants are exposed to might vary across a range. 106:
Popular non-scientific or lay-scientific audiences frequently misunderstand or simply fail to recognize the existence of norms of reaction. A widespread conception is that each genotype gives a certain range of possible phenotypic expressions. In popular conception, something which is "more genetic"
97:
One advantage of plants is that the same genotype, such as a recombinant inbred line (RIL), can be repeatedly evaluated in multiple environments, or a multi-environmental trial (MET). The reaction norm can then be explored based on the geographic location, mean trait value summarized from the whole
80:
A simplification of the norm of reaction might state that seed line A is good for "high water conditions" while a seed line B is good for "low water conditions". But the full complexity of the norm of reaction is a function, for each genotype, relating environmental factor to phenotypic trait. By
61:
Scientifically analyzing norms of reaction in natural populations can be very difficult, simply because natural populations of sexually reproductive organisms usually do not have cleanly separated or superficially identifiable genetic distinctions. However, seed crops produced by humans are often
143:
norm of reaction. Rather, by reducing the picture from two dimensions to just one, it focuses only on discrete, non-overlapping phenotypic expressions, and hides the more common pattern of local minima and maxima in phenotypic expression, with overlapping ranges of phenotypic expression between
135:
TRAIT SCALE <--6----------5----------4----------3----------2----------1----------0--> ^ (Genotype A) ^ ^ (Genotype B) ^ | | | | Environ <------> Other Environ
35:
across a range of environments. One use of reaction norms is in describing how different species—especially related species—respond to varying environments. But differing genotypes within a single species may also show differing reaction norms relative to a particular phenotypic trait and
40:
genotype, phenotypic trait, and environmental variable, a different reaction norm can exist; in other words, an enormous complexity can exist in the interrelationships between genetic and environmental factors in determining traits. The concept was introduced by
107:
gives a narrower range, while something which is "less genetic (more environmental)" gives a wider range of phenotypic possibilities. This limited conceptual framework is especially prevalent in discussions of human traits such as
66:. Accordingly, distinct seed lines present ideal examples of differentiated norms of reaction. In fact, agricultural companies market seeds for use in particular environments based on exactly this. 871: 158: 836: 409: 681: 381: 277: 252: 227: 202: 424: 419: 638: 815: 666: 633: 825: 691: 523: 518: 98:
population at each environment, or an explicit performance-free index capturing relevant environment inputs.
759: 696: 671: 554: 474: 153: 744: 643: 628: 597: 498: 855: 749: 676: 575: 513: 508: 439: 374: 173: 168: 124: 764: 607: 602: 484: 479: 466: 860: 163: 86: 136:<------> Other extreme extreme extreme extreme 549: 112: 810: 794: 590: 585: 494: 345: 273: 248: 223: 198: 42: 314:"Genomic and environmental determinants and their interplay underlying phenotypic plasticity" 890: 820: 789: 784: 739: 367: 335: 325: 830: 734: 544: 16:
Pattern of phenotypic expression caused by a given genotype across a range of environments
340: 313: 82: 884: 798: 712: 580: 391: 120: 623: 444: 434: 139:
The problem with this common simplified image is not that it does not represent a
53: 89:, for example, are common. Of course, the distributions need not be bell-curves. 73:
a, and a seed line B of the same crop species contains an allele b, for the same
559: 539: 359: 318:
Proceedings of the National Academy of Sciences of the United States of America
294: 62:
engineered to contain specific genes, and in some cases seed stocks consist of
803: 503: 456: 754: 722: 489: 395: 330: 28: 349: 717: 686: 116: 32: 449: 63: 429: 85:
seeds are cultivated, one can concretely observe norms of reaction.
70: 293:
Griffiths AJ, Miller JH, Suzuki DT, Lewontin RC, Gelbart WM (2000).
52: 727: 74: 363: 81:
controlling for or measuring actual environments across which
108: 195:
Not in Our Genes: Biology, Ideology and Human Nature
131:
Popular conception of genotype/phenotype interaction
848: 777: 705: 659: 652: 616: 568: 532: 465: 402: 102:
Misunderstanding genetic/environmental interactions
270:The Triple Helix: Gene, Organism, and Environment 295:"Norm of reaction and phenotypic distribution" 375: 57:Approximately linear norms at opposite slopes 8: 312:Li X, Guo T, Mu Q, Li X, Yu J (June 2018). 656: 382: 368: 360: 339: 329: 245:Biology as Ideology: The Doctrine of DNA 185: 93:Reaction norm from an inbred population 872:Index of evolutionary biology articles 193:Lewontin R, Rose S, Kamin LJ (1984). 7: 69:Suppose the seed line A contains an 299:An Introduction to Genetic Analysis 682:Evolutionary developmental biology 14: 639:Evolution of sexual reproduction 410:Genotype–phenotype distinction 1: 667:Regulation of gene expression 218:Lewontin R, Levins R (1985). 837:Endless Forms Most Beautiful 617:Evolution of genetic systems 425:Gene–environment correlation 420:Gene–environment interaction 272:. Harvard University Press. 222:. Harvard University Press. 816:Christiane NĂĽsslein-Volhard 159:Differential susceptibility 36:environment variable. For 27:, describes the pattern of 19:In ecology and genetics, a 907: 692:Hedgehog signaling pathway 569:Developmental architecture 869: 519:Transgressive segregation 297:. In Griffiths AJ (ed.). 220:The Dialectical Biologist 697:Notch signaling pathway 672:Gene regulatory network 555:Dual inheritance theory 331:10.1073/pnas.1718326115 154:Canalisation (genetics) 31:expression of a single 745:cis-regulatory element 653:Control of development 533:Non-genetic influences 499:evolutionary landscape 58: 856:Nature versus nurture 760:Cell surface receptor 677:Evo-devo gene toolkit 576:Developmental biology 514:Polygenic inheritance 440:Quantitative genetics 174:Phenotypic plasticity 169:Nature versus nurture 125:Nature versus nurture 56: 765:Transcription factor 480:Genetic assimilation 467:Genetic architecture 87:Normal distributions 49:A monoclonal example 861:Morphogenetic field 778:Influential figures 268:Lewontin R (2000). 243:Lewontin R (1991). 164:Genetic determinism 550:Genomic imprinting 113:sexual orientation 59: 878: 877: 811:Eric F. Wieschaus 773: 772: 591:Pattern formation 495:Fitness landscape 324:(26): 6679–6684. 43:Richard Woltereck 898: 821:William McGinnis 790:Richard Lewontin 785:C. H. Waddington 657: 634:Neutral networks 384: 377: 370: 361: 354: 353: 343: 333: 309: 303: 302: 290: 284: 283: 265: 259: 258: 240: 234: 233: 215: 209: 208: 190: 25:norm of reaction 23:, also called a 906: 905: 901: 900: 899: 897: 896: 895: 881: 880: 879: 874: 865: 844: 831:Sean B. Carroll 769: 701: 648: 612: 564: 545:Maternal effect 528: 461: 398: 388: 358: 357: 311: 310: 306: 301:(7th ed.). 292: 291: 287: 280: 267: 266: 262: 255: 242: 241: 237: 230: 217: 216: 212: 205: 192: 191: 187: 182: 150: 137: 104: 95: 51: 17: 12: 11: 5: 904: 902: 894: 893: 883: 882: 876: 875: 870: 867: 866: 864: 863: 858: 852: 850: 846: 845: 843: 842: 841: 840: 828: 823: 818: 813: 808: 807: 806: 795:François Jacob 792: 787: 781: 779: 775: 774: 771: 770: 768: 767: 762: 757: 752: 747: 742: 737: 732: 731: 730: 720: 715: 709: 707: 703: 702: 700: 699: 694: 689: 684: 679: 674: 669: 663: 661: 654: 650: 649: 647: 646: 641: 636: 631: 626: 620: 618: 614: 613: 611: 610: 605: 600: 595: 594: 593: 588: 578: 572: 570: 566: 565: 563: 562: 557: 552: 547: 542: 536: 534: 530: 529: 527: 526: 524:Sequence space 521: 516: 511: 506: 501: 492: 487: 482: 477: 471: 469: 463: 462: 460: 459: 454: 453: 452: 442: 437: 432: 427: 422: 417: 412: 406: 404: 400: 399: 389: 387: 386: 379: 372: 364: 356: 355: 304: 285: 278: 260: 253: 235: 228: 210: 203: 184: 183: 181: 178: 177: 176: 171: 166: 161: 156: 149: 146: 134: 103: 100: 94: 91: 50: 47: 15: 13: 10: 9: 6: 4: 3: 2: 903: 892: 889: 888: 886: 873: 868: 862: 859: 857: 854: 853: 851: 847: 839: 838: 834: 833: 832: 829: 827: 824: 822: 819: 817: 814: 812: 809: 805: 802: 801: 800: 799:Jacques Monod 796: 793: 791: 788: 786: 783: 782: 780: 776: 766: 763: 761: 758: 756: 753: 751: 748: 746: 743: 741: 738: 736: 733: 729: 726: 725: 724: 721: 719: 716: 714: 713:Homeotic gene 711: 710: 708: 704: 698: 695: 693: 690: 688: 685: 683: 680: 678: 675: 673: 670: 668: 665: 664: 662: 658: 655: 651: 645: 642: 640: 637: 635: 632: 630: 627: 625: 622: 621: 619: 615: 609: 606: 604: 601: 599: 596: 592: 589: 587: 584: 583: 582: 581:Morphogenesis 579: 577: 574: 573: 571: 567: 561: 558: 556: 553: 551: 548: 546: 543: 541: 538: 537: 535: 531: 525: 522: 520: 517: 515: 512: 510: 507: 505: 502: 500: 496: 493: 491: 488: 486: 483: 481: 478: 476: 473: 472: 470: 468: 464: 458: 455: 451: 448: 447: 446: 443: 441: 438: 436: 433: 431: 428: 426: 423: 421: 418: 416: 415:Reaction norm 413: 411: 408: 407: 405: 401: 397: 393: 385: 380: 378: 373: 371: 366: 365: 362: 351: 347: 342: 337: 332: 327: 323: 319: 315: 308: 305: 300: 296: 289: 286: 281: 279:0-674-00159-1 275: 271: 264: 261: 256: 254:0-06-097519-9 250: 246: 239: 236: 231: 229:0-674-20283-X 225: 221: 214: 211: 206: 204:0-394-72888-2 200: 196: 189: 186: 179: 175: 172: 170: 167: 165: 162: 160: 157: 155: 152: 151: 147: 145: 142: 133: 132: 128: 126: 122: 121:schizophrenia 118: 114: 110: 101: 99: 92: 90: 88: 84: 78: 76: 72: 67: 65: 55: 48: 46: 44: 39: 34: 30: 26: 22: 21:reaction norm 835: 728:eyeless gene 624:Evolvability 598:Segmentation 475:Canalisation 445:Heterochrony 435:Heritability 414: 403:Key concepts 321: 317: 307: 298: 288: 269: 263: 244: 238: 219: 213: 194: 188: 140: 138: 130: 129: 105: 96: 79: 68: 60: 37: 24: 20: 18: 826:Mike Levine 735:Distal-less 560:Polyphenism 540:Epigenetics 392:development 144:genotypes. 804:Lac operon 629:Robustness 608:Modularity 603:Metamerism 509:Plasticity 504:Pleiotropy 457:Heterotopy 180:References 83:monoclonal 29:phenotypic 755:Morphogen 740:Engrailed 723:Pax genes 644:Tinkering 490:Epistasis 485:Dominance 396:phenotype 45:in 1909. 885:Category 718:Hox gene 706:Elements 687:Homeobox 350:29891664 148:See also 141:possible 117:altruism 33:genotype 891:Ecology 849:Debates 660:Systems 586:Eyespot 450:Neoteny 341:6042117 750:Ligand 430:Operon 348:  338:  276:  251:  226:  201:  71:allele 64:clones 123:(see 119:, or 38:every 390:The 346:PMID 274:ISBN 249:ISBN 224:ISBN 199:ISBN 75:gene 394:of 336:PMC 326:doi 322:115 127:). 887:: 797:+ 344:. 334:. 320:. 316:. 247:. 197:. 115:, 111:, 109:IQ 497:/ 383:e 376:t 369:v 352:. 328:: 282:. 257:. 232:. 207:.

Index

phenotypic
genotype
Richard Woltereck

clones
allele
gene
monoclonal
Normal distributions
IQ
sexual orientation
altruism
schizophrenia
Nature versus nurture
Canalisation (genetics)
Differential susceptibility
Genetic determinism
Nature versus nurture
Phenotypic plasticity
ISBN
0-394-72888-2
ISBN
0-674-20283-X
ISBN
0-06-097519-9
ISBN
0-674-00159-1
"Norm of reaction and phenotypic distribution"
"Genomic and environmental determinants and their interplay underlying phenotypic plasticity"
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑