Knowledge (XXG)

Research in lithium-ion batteries

Source 📝

1725:. The 1 mm diameter fibers were claimed to be lightweight enough to create weavable and wearable textile batteries. The yarn was capable of storing nearly 71 mAh/g. Lithium manganate (LMO) particles were deposited on a carbon nanotube (CNT) sheet to create a CNT-LMO composite yarn for the cathode. The anode composite yarns sandwiched a CNT sheet between two silicon-coated CNT sheets. When separately rolled up and then wound together separated by a gel electrolyte the two fibers form a battery. They can also be wound onto a polymer fiber, for adding to an existing textile. When silicon fibers charge and discharge, the silicon expands in volume up to 300 percent, damaging the fiber. The CNT layer between the silicon-coated sheet buffered the silicon's volume change and held it in place. 514:. Experiments and multiscale calculations revealed that low-temperature hydrogen treatment of defect-rich graphene can improve rate capacity. The hydrogen interacts with the graphene defects to open gaps to facilitate lithium penetration, improving transport. Additional reversible capacity is provided by enhanced lithium binding near edges, where hydrogen is most likely to bind. Rate capacities increased by 17–43% at 200 mA/g. In 2015, researchers in China used porous graphene as the material for a lithium-ion battery anode in order to increase the specific capacity and binding energy between lithium atoms at the anode. The properties of the battery can be tuned by applying strain. The binding energy increases as biaxial strain is applied. 1828:
battery cells, packs, and modules, but could not detail the steps and specifics. For applications in the real world, the design, form factor, and materials of the existing battery cells, packs, and modules often vary greatly from one another. It is difficult to develop a unified technical procedure. Furthermore, information on the detailed technical procedures applied is usually not available in the open literature, except for Schneider et al. who demonstrated the procedure to refurbish small cylindrical NiMH batteries used in mobile phones, Zhao who published the successful experiences of some grid-oriented applications of electric vehicle lithium-ion batteries in China, and Chung who reported the procedure described in UL 1974 on a LiFePO
1178:
makes morphological control an important variable in its electrochemical cell rate performance. Although the iron analogue is the most commercial owing to its stability, the same composition exists for nickel, manganese, and cobalt although the observed high cell charging voltages and synthetic challenges for these materials make them viable but more difficult to commercialize. While the material has good ionic conductivity it possesses poor intrinsic electronic conductivity. This combination makes nanophase compositions and composites or coatings (to increase electronic conductivity of the whole matrix) with materials such as carbon advantageous. Alternatives to nanoparticles include mesoscale structure such as
1467:"redox center", carbon, and electrolyte. During discharge, the lithium ions plate the cathode with lithium metal and the sulfur is not reduced unless irreversible deep discharge occurs. The thickened cathode is a compact way to store the used lithium. During recharge, this lithium moves back into the glassy electrolyte and eventually plates the anode, which thickens. No dendrites form. The cell has 3 times the energy density of conventional lithium-ion batteries. An extended life of more than 1,200 cycles was demonstrated. The design also allows the substitution of sodium for lithium minimizing lithium environmental issues. 563:
contributes to fast anode degradation is the solid-electrolyte interface (SEI). During the first lithium insertion phase, the SEI forms on the electrode's surface and acts as a massive impediment between the electrode and the electrolyte. Because of this blockage, Lithium-ion conduction is permitted while functioning as an insulator, restricting additional electrolyte breakdown and keeping the lithium-ion battery's cycle performance from gradually declining. Everything from the most fundamental battery performance to the overall efficacy and cyclability of the LIB is influenced by the kind of SEI.
551:. One of silicon's inherent traits, unlike carbon, is the expansion of the lattice structure by as much as 400% upon full lithiation (charging). For bulk electrodes, this causes great structural stress gradients within the expanding material, inevitably leading to fractures and mechanical failure, which significantly limits the lifetime of the silicon anodes. In 2011, a group of researchers assembled data tables that summarized the morphology, composition, and method of preparation of those nanoscale and nanostructured silicon anodes, along with their electrochemical performance. 1824:
suggested. Some retired power batteries still have ~80% of their initial capacity. So they can be repurposed and reused as second-life applications, for instance, to serve the batteries in the energy storage systems. Governments in different countries have acknowledged this emergent problem and prepared to launch their policies to deal with repurposed batteries, such as coding principles, traceability management system, manufacturing factory guidelines, dismantling process guidelines, residual energy measurement, tax credits, rebates, and financial support.
3371: 810:
diffusion distances while increasing the surface area of the current collector. In 2015, researchers announced a solid-state 3-D battery anode using the electroplated copper antimonide (copper foam). The anode is then layered with a solid polymer electrolyte that provides a physical barrier across which ions (but not electrons) can travel. The cathode is an inky slurry. The volumetric energy density was up to twice as much energy conventional batteries. The solid electrolyte prevents dendrite formation.
239:
materials for the negative electrode. However, along with the desired characteristics from some of the materials, a number of weaknesses have also been shown. For example, although silicon has a theoretical specific capacity that is 10 times higher than graphite, it has low intrinsic electrical conductivity. Current research focuses on engineering materials so that their characteristics are retained and their weaknesses are accommodated.
6807: 128: 66: 25: 1744:. The device can also be used as a supercapacitor. Rapid charging allows supercapacitor-like rapid discharge, while charging with a lower current rate provides slower discharge. It retained 76 percent of its original capacity after 10,000 charge-discharge cycles and 1,000 bending cycles. Energy density was measured at 384 Wh/kg, and power density at 112 kW/kg. 840:. The device achieved a power density of 7.4 W/cm/mm. In 2019, the team develop a high areal and volumetric capacity 3D-structured tin-carbon anode by using a two steps electroplating process, which exhibits a high volumetric/areal capacity of ~879 mAh/cm and 6.59 mAh/cm after 100 cycles at 0.5 °C and 750 mAh/cm and 5.5 mAh/cm (delithiation) at 10 °C with a 20% 819:
analogue. Later work by Vaughey et al., highlighted the utility of electrodeposition of electroactive metals on copper foams to create thin film intermetallic anodes. These porous anodes have high power in addition to higher stability as the porous open nature of the electrode allows for space to absorb some of the volume expansion. In 2011, researchers at
371:. This material inserted approximately 3.5Li per formula unit (about 125 mAh/g) at a voltage near 1.3 V (vs Li). This lower voltage (compared to titantes) is useful in systems where higher energy density is desirable without significant SEI formation as it operates above the typical electrolyte breakdown voltage. A high rate titanium niobate (TiNb 768:
process to fill the two crystallographic vacancies in the lattice, at the same time as the 0.2 extra coppers are displaced to the grain boundaries. Efforts to charge compensate the main group metal lattice to remove the excess copper have had limited success. Although significant retention of structure is noted down to the ternary lithium compound Li
1157:. The mechanism for the high capacity and the gradual voltage fade has been extensively examined. It is generally believed the high-voltage activation step induces various cation defects that on cycling equilibrate through the lithium-layer sites to a lower energy state that exhibits a lower cell voltage but with a similar capacity,. 1343:) have garnered recent interest as conversion-type cathode materials due to their high theoretical gravimetric energy densities and specific capacities, 571 mAh g and 712 mAh g respectively. This high energy density and capacity derives from iron fluorides’ ability to transfer 2-3 electrons per Fe atom per reaction. 250:. Graphite anodes are limited to a theoretical capacity of 372 mAh/g for their fully lithiated state. At this time, significant other types of lithium-ion battery anode materials have been proposed and evaluated as alternatives to graphite, especially in cases where niche applications require novel approaches. 781:
as copper, has been shown to reduce stress. As for low dimensional applications, thin films have been produced with discharge capacities of 1127 mAhg with excess capacity assigned to lithium ion storage at grain boundaries and associated with defect sites. Other approaches include making nanocomposites with Cu
3023:
Chadha, Utkarsh; Hafiz, Mohammed; Bhardwaj, Preetam; Padmanaban, Sanjeevikumar; Sinha, Sanyukta; Hariharan, Sai; Kabra, Dikshita; Venkatarangan, Vishal; Khanna, Mayank; Selvaraj, Senthil Kumaran; Banavoth, Murali; Sonar, Prashant; Badoni, Badrish; R, Vimala (November 2022). "Theoretical progresses in
1728:
A third approach produced rechargeable batteries that can be printed cheaply on commonly used industrial screen printers. The batteries used a zinc charge carrier with a solid polymer electrolyte that prevents dendrite formation and provides greater stability. The device survived 1,000 bending cycles
1144:
cathodes., These high-capacity high-voltage materials consist of nanodomains of the two structurally similar but different materials. On first charge, noted by its long plateau around 4.5 V (vs Li), the activation step creates a structure that gradually equilibrates to a more stable materials by
644:
Conventional lithium-ion cells use binders to hold together the active material and keep it in contact with the current collectors. These inactive materials make the battery bigger and heavier. Experimental binderless batteries do not scale because their active materials can be produced only in small
640:
vapors. The nanofibers contain 10 nm diameter nanopores on their surface. Along with additional gaps in the fiber network, these allow for silicon to expand without damaging the cell. Three other factors reduce expansion: a 1 nm shell of silicon dioxide; a second carbon coating that creates
270:
The Si@void@C(N) electrode was tested to be capable of ultrafast charging and durability over 1000 cycles, the specific capacity maintained high levels (~800 mAh g) even at very high current densities (up to 8 A g). No lithium plating was observed for the Si@void@C(N) electrode even after 1000 cycles
4309:
Tang, Yuxin; Rui, Xianhong; Zhang, Yanyan; Lim, Tuti Mariana; Dong, Zhili; Hng, Huey Hoon; Chen, Xiaodong; Yan, Qingyu; Chen, Zhong (2013). "Vanadium pentoxide cathode materials for high-performance lithium-ion batteries enabled by a hierarchical nanoflower structure via an electrochemical process".
1641:
to learn that in conventional devices each increment of charge is absorbed by a single or a small number of particles until they are charged, then moves on. By distributing charge/discharge circuitry throughout the electrode, heating and degradation could be reduced while allowing much greater power
1466:
electrolyte of lithium, oxygen, and chlorine ions doped with barium, a lithium metal anode, and a composite cathode in contact with a copper substrate. A spring behind the copper cathode substrate holds the layers together as the electrodes change thickness. The cathode comprises particles of sulfur
1061:
with borate compounds at 900 C and quickly cooled the melt to form glass. The resulting paper-thin sheets were then crushed into a powder to increase their surface area. The powder was coated with reduced graphite oxide (RGO) to increase conductivity while protecting the electrode. The coated powder
1774:
Researchers have taken various approaches to improving performance and other characteristics by using nanostructured materials. One strategy is to increase electrode surface area. Another strategy is to reduce the distance between electrodes to reduce transport distances. Yet another strategy is to
1177:
and consists of a three dimensional lattice of an framework surrounding a lithium cation. The lithium cation sits in a one dimensional channel along the axis of the crystal structure. This alignment yields anisotropic ionic conductivity that has implications for its usage as a battery cathode and
976:
introduced a battery with double the energy density while only taking 15 minutes for an 80% charge. They used a nanostructured vanadium oxide, which is able to load two to three times more lithium ions onto the cathode than the layered lithium cobalt oxide. In 2013 researchers announced a synthesis
780:
and elemental copper. This complete lithiation is accompanied by volume expansion of approximately 250%. Current research focuses on investigating alloying and low dimensional geometries to mitigate mechanical stress during lithiation. Alloying tin with elements that do not react with lithium, such
707:
As for oxide intercalation (or insertion) anode materials, similar classes of materials where the lithium cation is inserted into crystallographic vacancies within a metal host lattice have been discovered and studied since 1997. In general because of the metallic lattice, these types of materials,
599:
developed a large-scale and low-cost approach for synthesizing Si/Cu nanowires. Firstly, Si/Cu/Zn ternary microspheres are prepared by a pulsed electrical discharging method in a scalable manner, and then Zn and partial Si in the microspheres was partially removed by chemical etching to form Si/Cu
554:
Porous silicon nanoparticles are more reactive than bulk silicon materials and tend to have a higher weight percentage of silica as a result of the smaller size. Porous materials allow for internal volume expansion to help control overall materials expansion. Methods include a silicon anode with an
238:
Materials that are taken into consideration for the next generation lithium-ion battery (LIBs) negative electrode share common characteristics such as low cost, high theoretical specific capacity, and good electrical conductivity, etc. Carbon- and silicon- based materials have shown to be promising
1441:
While no solid-state batteries have reached the market, multiple groups are researching this alternative. The notion is that solid-state designs are safer because they prevent dendrites from causing short circuits. They also have the potential to substantially increase energy density because their
1090:
cathode to create a battery with 800 mAh/g for 1,000 cycles of charge/discharge, over 5 times the energy density of commercial cathodes. Sulfur is abundant, low cost and has low toxicity. Sulfur has been a promising cathode candidate owing to its high theoretical energy density, over 10 times
809:
CuSb product. First reported in 2001. In 2011, researchers reported a method to create porous three dimensional electrodes materials based on electrodeposited antimony onto copper foams followed by a low temperature annealing step. It was noted to increase the rate capacity by lowering the lithium
391:
In 2000, researchers from the Université de Picardie Jules Verne examined the use of nano-sized transition-metal oxides as conversion anode materials. The metals used were cobalt, nickel, copper, and iron, which proved to have capacities of 700 mAh/g and maintain full capacity for 100 cycles.
1778:
Finally, adjusting the geometries of the electrodes, e.g., by interdigitating anode and cathode units variously as rows of anodes and cathodes, alternating anodes and cathodes, hexagonally packed 1:2 anodes:cathodes and alternating anodic and cathodic triangular poles. One electrode can be nested
1673:
found that it is possible to recharge the (conventional) lithium-ion batteries of EV's in under 10 minutes. He did so by heating the battery to 60 °C, recharging it and then cooling if quickly afterwards. This causes only very little damage to the batteries. Professor Wang used a thin nickel
1354:
Another challenge with metal fluoride conversion cathodes includes volume expansion upon cycling. Volume expansion decreases the reversibility of reactions and cycle stability. In addition, volume expansion results in the mechanical fatigue and fracture of the metal/LiF matrix, and can ultimately
1306:
fluorides (TMFs) form a metallic phase within a LiF matrix upon reacting with lithium. TMFs typically display poor electrochemical reversibility, and poor ionic and electronic conductivity. Although researchers are still working to understand the exact electrochemical reaction mechanisms of TMFs,
818:
Nanoengineered porous electrodes have the advantage of short diffusion distances, room for expansion and contraction, and high activity. In 2006 an example of a three dimensional engineered ceramic oxide based on lithium titanate was reported that had dramatic rate enhancement over the non-porous
266:
Tests from the Si@void@C microreactors demonstrated high Coulombic Efficiency of 91% during the first lithiation process, which is significantly higher than other reported silicon anodes. The design also enabled high Coulombic Efficiency of 100% after 5 cycles, indicating no discernible SEI layer
258:
Dr. Leon Shaw’s research group from Illinois Institute of Technology has developed the Si@void@C microreactors which show exceptional test results to be LIBs anode. The process of creating Si@void@C microreactors begins with the production of nanostructured silicon particles through a high-energy
1488:
with no compromise in performance. In superhalogens the vertical electron detachment energies of the moieties that make up the negative ions are larger than those of any halogen atom. The researchers also found that the procedure outlined for Li-ion batteries is equally valid for other metal-ion
1453:
In 2015, researchers worked with a lithium carbon fluoride battery. They incorporated a solid lithium thiophosphate electrolyte wherein the electrolyte and the cathode worked in cooperation, resulting in capacity 26 percent. Under discharge, the electrolyte generates a lithium fluoride salt that
698:
anode. This scaffold can accommodate the volume change of a high-specific-capacity during operation. And nickel–tin anode is supported by an electrochemically inactive conductive scaffold with an engineered free volume and controlled characteristic dimensions, so the electrode with significantly
562:
The major obstacle in the commercialization of silicon as anode material for Li-ion battery is higher volumetric changes and formation of SEI. Recent research works have highlighted the strategies for the optimization and maintaining the structural stability of the electrode. Another aspect that
767:
has become an attractive potential anode material due to its high theoretical specific capacity, resistance against Li metal plating especially when compared to carbon-based anodes, and ambient stability. In this and related NiAs-type materials, lithium intercalation occurs through an insertion
1827:
Standards for second-life applications of retired electric vehicle batteries are still emerging technology. One of the few standards, UL 1974, was published by Underwriters Laboratories (UL). The document gives a general procedure of the safety operations and performance tests on retired power
1823:
The elimination of power batteries made by lithium-ion batteries has largely increased, causing environmental protection threats and waste of resources. About 100-120 GWh of electric vehicle batteries will be retired by 2030. Hence, recycling and reuse of such retired power batteries have been
1702:
In 2016, researchers announced a reversible shutdown system for preventing thermal runaway. The system employed a thermoresponsive polymer switching material. This material consists of electrochemically stable, graphene-coated, spiky nickel nanoparticles in a polymer matrix with a high thermal
1091:
that of metal oxide or phosphate cathodes. However, sulfur's low cycle durability has prevented its commercialization. Graphene oxide coating over sulfur is claimed to solve the cycle durability problem. Graphene oxide high surface area, chemical stability, mechanical strength and flexibility.
618:
Si intermetallic. Copper nanoparticles were deposited on silicon particles articles, dried, and laminated onto a copper foil. After annealing, the copper nanoparticles annealed to each other and to the copper current collector to produce a porous electrode with a copper binder once the initial
1865:
Lombardo, Teo; Duquesnoy, Marc; El-Bouysidy, Hassna; Årén, Fabian; Gallo-Bueno, Alfonso; Jørgensen, Peter Bjørn; Bhowmik, Arghya; Demortière, Arnaud; Ayerbe, Elixabete; Alcaide, Francisco; Reynaud, Marine; Carrasco, Javier; Grimaud, Alexis; Zhang, Chao; Vegge, Tejs; Johansson, Patrik; Franco,
681:
anode systems, issues associated with volume expansion (associated with gradual filling of p-orbitals and essential cation insertion), unstable SEI formation, and electronic isolation have been studied in an attempt to commercialize these materials. In 2013, work on morphological variation by
923:
metal anode as they need a source of lithium to function. While not as common in secondary cell designs, this class is commonly seen in primary batteries that do not require recharging, such as implantable medical device batteries. The second variety are discharged cathodes where the cathode
283:
metal with little difference between the charge and discharge steps. Specifically the mechanism of insertion involves lithium cations filling crystallographic vacancies in the host lattice with minimal changes to the bonding within the host lattice. This differentiates intercalation negative
1703:
expansion coefficient. Film electrical conductivity at ambient temperature was up to 50 S cm−1. Conductivity decreases within one second by 10-10 at the transition temperature and spontaneously recovers at room temperature. The system offers 10–10x greater sensitivity than previous devices.
1756:), which provides a good metric to compare and contrast all electrode materials. Recently, some of the more promising materials are showing some large volume expansions which need to be considered when engineering devices. Lesser known to this realm of data is the volumetric capacity (mAh/ 877:
reported lithium-ion batteries, where the electroactive solids are stored as pure (i.e. without binders, conductive additives, current collectors) powders in tanks, and washed by liquids with dissolved redox couples, capable of electron exchange with the electroactive solids, with a
645:
quantities. The prototype has no need for current collectors, polymer binders or conductive powder additives. Silicon comprises over 80 percent of the electrode by weight. The electrode delivered 802 mAh/g after more than 600 cycles, with a Coulombic efficiency of 99.9 percent.
392:
The materials operate by reduction of the metal cation to either metal nanoparticles or to a lower oxidation state oxide. These promising results show that transition-metal oxides may be useful in ensuring the integrity of the lithium-ion battery over many discharge-recharge cycles.
5801:
economies of scale have already been reached, and future cost reductions from increased production volumes are minimal. Prismatic cells, which are able to further capitalize on the cost reduction from larger formats, can offer further reductions than those possible for cylindrical
1350:
utilizes shear-forces to form fine particles which can improve conductivity by increasing particle surface area and reducing carrier pathlength to reaction sites. While there has been some success with ball milling, this method can lead to a non-uniform particle size distribution.
1062:
was used for the battery cathodes. Trials indicated that capacity was quite stable at high discharge rates and remained consistently over 100 charge/discharge cycles. Energy density reached around 1,000 watt-hours per kilogram and a discharge capacity that exceeded 300 mAh/g.
1636:
discovered that uniform charging could be used with increased charge speed to speed up battery charging. This discovery could also increase cycle durability to ten years. Traditionally slower charging prevented overheating, which shortens cycle durability. The researchers used a
856:
In 2016, researchers announced an anode composed of a slurry of Lithium-iron phosphate and graphite with a liquid electrolyte. They claimed that the technique increased safety (the anode could be deformed without damage) and energy density. A flow battery without carbon, called
1355:
lead to the failure of the cell. Recent success with solid polymer electrolytes (SPE) has increased the electrochemical stability and elasticity of the cathode electrolyte interface (CEI). Unlike traditional liquid electrolytes that form a thick, brittle CEI layer, these FeF
1194:
developed a battery that operates in extreme temperatures without the need for thermal management material. It went through 2,000 full charge-discharge cycles at 45 °C while maintaining over 90% energy density. It does this using a nanophosphate positive electrode.
924:
typically in a discharged state (cation in a stable reduced oxidation state), has electrochemically active lithium, and when charged, crystallographic vacancies are created. Due to their increased manufacturing safety and without the need for a lithium source at the
1427:(PFPE). PFPE is usually used as an industrial lubricant, e.g., to prevent marine life from sticking to the ship bottoms. The material exhibited unprecedented high transference numbers and low electrochemical polarization, indicative of a higher cycle durability. 225:(ML) is becoming popular in many fields including using it for lithium-ion battery research. These methods have been used in all aspects of battery research including materials, manufacturing, characterization, and prognosis/diagnosis of batteries. 4483:
C. S. Johnson, J. T. Vaughey, M. M. Thackeray, T. E. Bofinger, and S. A. Hackney "Layered Lithium-Manganese Oxide Electrodes Derived from Rock-Salt LixMnyOz (x+y=z) Precursors" 194th Meeting of the Electrochemical Society, Boston, MA, Nov.1-6,
1186:
that can have rate capabilities two orders of magnitude higher than randomly ordered materials. The rapid charging is related to the nanoballs high surface area where electrons are transmitted to the surface of the cathode at a higher rate.
1529:
due to the formation of SEI on the anode electrode, which has previously only been accomplished with non-aqueous electrolytes. Using aqueous rather than organic electrolyte could significantly improve the safety of Li-ion batteries.
898:
Several varieties of cathode exist, but typically they can easily divided into two categories, namely charged and discharged. Charged cathodes are materials with pre-existing crystallographic vacancies. These materials, for instance
4521:
Dogan, F.; Croy, J.; Balasubramanian, M.; Slater, M.D.; Iddir, H.; Johnson, C.S.; Vaughey, J.; Key, B. (2015). "Solid State NMR Studies of Li2MnO3 and Li-Rich Cathode Materials: Proton Insertion, Local Structure, and Voltage Fade".
3980: 5313:
Suo, Liumin; Borodin, Oleg; Sun, Wei; Fan, Xiulin; Yang, Chongyin; Wang, Fei; Gao, Tao; Ma, Zhaohui; Schroeder, Marshall (13 June 2016). "Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte".
6401:
Zhu, Juner; Mathews, Ian; Ren, Dongsheng; Li, Wei; Cogswell, Daniel; Xing, Bobin; Sedlatschek, Tobias; Kantareddy, Sai Nithin R.; Yi, Mengchao; Gao, Tao; Xia, Yong; Zhou, Qing; Wierzbicki, Tomasz; Bazant, Martin Z. (August 2021).
6093:
Kamath, Dipti; Shukla, Siddharth; Arsenault, Renata; Kim, Hyung Chul; Anctil, Annick (July 2020). "Evaluating the cost and carbon footprint of second-life electric vehicle batteries in residential and utility-level applications".
5611:
Chen, Zheng; Hsu, Po-Chun; Lopez, Jeffrey; Li, Yuzhang; To, John W. F.; Liu, Nan; Wang, Chao; Andrews, Sean C.; Liu, Jia (11 January 2016). "Fast and reversible thermoresponsive polymer switching materials for safer batteries".
5408:
Wang, Fei; Lin, Yuxiao; Suo, Liumin; Fan, Xiulin; Gao, Tao; Yang, Chongyin; Han, Fudong; Qi, Yue; Xu, Kang (29 November 2016). "Stabilizing high voltage LiCoO2 cathode in aqueous electrolyte with interphase-forming additive".
5911:
Martinez-Laserna, E.; Gandiaga, I.; Sarasketa-Zabala, E.; Badeda, J.; Stroe, D.-I.; Swierczynski, M.; Goikoetxea, A. (October 2018). "Battery second life: Hype, hope or reality? A critical review of the state of the art".
1282:
that uses air as its cathode. When fully developed, the energy density could exceed 1,000 Wh/kg. In 2014, researchers at the School of Engineering at the University of Tokyo and Nippon Shokubai discovered that adding
1145:
cation re-positioning from high-energy points to lower-energy points in the lattice. The intellectual property surrounding these materials has been licensed to several manufacturers, including BASF, General Motors for the
1802:
is now being integrated in to each cell of the battery. This will help to monitor the state of charge in real time which will be helpful not only for security reason but also be useful to maximize the use of the battery.
1661:
capable of speeding up re-charge time by a factor of 3-6, while also increasing cycle durability. The technology is able to understand how the battery needs to be charged most effectively, while avoiding the formation of
1311:
contributes to poor kinetics within battery cells. Among TMFs, iron fluoride is of particular interest because iron is Earth abundant and environmentally friendly compared to popular intercalation-type cathode materials,
586:
inside carbon shells, and then encapsulated clusters of the shells with more carbon. The shells provide enough room inside to allow the nanoparticles to swell and shrink without damaging the shells, improving durability.
579:. Graphene layers then coated the metal. Acid dissolved the nickel, leaving enough of a void within the cage for the silicon to expand. The particles broke into smaller pieces, but remained functional within the cages. 5261:
Suo, Liumin; Borodin, Oleg; Gao, Tao; Olguin, Marco; Ho, Janet; Fan, Xiulin; Luo, Chao; Wang, Chunsheng; Xu, Kang (20 November 2015). ""Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries".
288:. Conversion systems typically disproportionate to lithia and a metal (or lower metal oxide) at low voltages, < 1 V vs Li, and reform the metal oxide at voltage > 2 V, for example, CoO + 2Li -> Co+Li 6373:
Gur, K.; Chatzikyriakou, D.; Baschet, C.; Salomon, M. (2018). "The reuse of electrified vehicle batteries as a means of integrating renewable energy into the European electricity grid: A policy and market analysis".
631:
increases Coulombic efficiency and avoids the physical damage from silicon's expansion/contractions. The nanofibers were created by applying a high voltage between a rotating drum and a nozzle emitting a solution of
416:
cell chemistry, but were eventually replaced due to dendrite formation which caused internal short-circuits and was a fire hazard. Effort continued in areas that required lithium, including charged cathodes such as
4054:
Qi, Zhaoxiang; Liu, Aaron L.; Koenig, Gary M. (20 February 2017). "Carbon-free Solid Dispersion LiCoO2 Redox Couple Characterization and Electrochemical Evaluation for All Solid Dispersion Redox Flow Batteries".
827:
nanostructure can decrease charge time by a factor of 10 to 100. The technology is also capable of delivering a higher voltage output. In 2013, the team improved the microbattery design, delivering 30 times the
5568: 555:
energy density above 1,100 mAh/g and a durability of 600 cycles that used porous silicon particles using ball-milling and stain-etching. In 2013, researchers developed a battery made from porous silicon
3507:
Tan, Xin Fu; McDonald, Stuart D.; Gu, Qinfen; Hu, Yuxiang; Wang, Lianzhou; Matsumura, Syo; Nishimura, Tetsuro; Nogita, Kazuhiro (2019). "Characterisation of lithium-ion battery anodes fabricated via in-situ
619:
polymeric binder burned out. The design had performance similar to conventional electrode polymer binders with exceptional rate capability owing to the metallic nature of the structure and current pathways.
6486:
Schneider, E.L.; Oliveira, C.T.; Brito, R.M.; Malfatti, C.F. (September 2014). "Classification of discarded NiMH and Li-Ion batteries and reuse of the cells still in operational conditions in prototypes".
1674:
foil with one end attached to the negative terminal and the other end extending to outside the cell in order to create a third terminal. A temperature sensor attached to a switch completes the circuit.
1236:@C porous nanoboxes were synthesized via a wet-chemistry solid-state reaction method. The material displayed a hollow nanostructure with a crystalline porous shell composed of phase-pure Li 600:
nanowires. This technology utilizes relatively cheap materials and flexible processing methods, costing approximately $ 0.3 g−1, which is promising to boost the yield of Si alloy NWs with low cost.
355:. This layered oxide can be produced in multiple forms including nanowires, nanotubes, or oblong particles with an observed capacity of 210 mAh/g in the voltage window 1.5–2.0 V (vs Li). 6066:
Tong, Shijie; Fung, Tsz; Klein, Matthew P.; Weisbach, David A.; Park, Jae Wan (June 2017). "Demonstration of reusing electric vehicle battery for solar energy storage and demand side management".
263:
of a carbon precursor containing nitrogen element. Finally, the particles are etched with NaOH to create voids with nano-channel morphology inside the Si core to form the Si@void@C microreactors.
1049:(NMC) materials but without the cation ordering. The extra lithium creates better diffusion pathways and eliminates high energy transition points in the structure that inhibit lithium diffusion. 485:
Various forms of carbon are used in lithium-ion battery cell configurations. Besides graphite poorly or non-electrochemically active types of carbon are used in cells such as CNTs, carbon black,
2774:
Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno; Tarascon, Jean-Marie; van Schalkwijk, Walter (May 2005). "Nanostructured materials for advanced energy conversion and storage devices".
1690:
that allows it to fully utilize the active materials in battery cells. The process maintains lithium-ion diffusion at optimal levels and eliminates concentration polarization, thus allowing the
2825:
Chan, Candace K.; Peng, Hailin; Liu, Gao; McIlwrath, Kevin; Zhang, Xiao Feng; Huggins, Robert A.; Cui, Yi (16 December 2007). "High-performance lithium battery anodes using silicon nanowires".
2664:
Ye, Jianchao; Ong, Mitchell T.; Heo, Tae Wook; Campbell, Patrick G.; Worsley, Marcus A.; Liu, Yuanyue; Shin, Swanee J.; Charnvanichborikarn, Supakit; Matthews, Manyalibo J. (5 November 2015).
1013:
glass with reduced graphite oxide) as a cathode material. The cathode achieved around 1000 Wh/kg with high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles.
500:(SWCNTs) accommodate lithium much more efficiently than their semiconducting counterparts. If made denser, semiconducting SWCNT films take up lithium at levels comparable to metallic SWCNTs. 267:
formation beyond 5 cycles. Additionally, the specific capacity increased in subsequent cycles due to the activation of more electrode material, suggesting robust electrochemical stability.
6295:"A Comprehensive Review on Second-Life Batteries: Current State, Manufacturing Considerations, Applications, Impacts, Barriers & Potential Solutions, Business Strategies, and Policies" 4549:
Croy, J.; Balasubramanian, M.; Gallagher, K.; Burrell, A.K. (2015). "Review of the U.S. Department of Energy's "Deep Dive" Effort to Understand Voltage Fade in Li- and Mn-Rich Cathodes".
2069:
Lee, Won Jun; Hwang, Tae Hoon; Hwang, Jin Ok; Kim, Hyun Wook; Lim, Joonwon; Jeong, Hu Young; Shim, Jongwon; Han, Tae Hee; Kim, Je Young; Choi, Jang Wook; Kim, Sang Ouk (23 January 2014).
1454:
further catalyzes the electrochemical activity, converting an inactive component to an active one. More significantly, the technique was expected to substantially increase battery life.
331:
has also been evaluated and found to be electrochemically active when produced as nanoparticles with a capacity approximately half that of anatase (0.25Li/Ti). In 2014, researchers at
3922:
Sun, Pengcheng; Davis, Jerome; Cao, Luoxia; Jiang, Zhelong; Cook, John B.; Ning, Hailong; Liu, Jinyun; Kim, Sanghyeon; Fan, Feifei; Nuzzo, Ralph G.; Braun, Paul V. (1 February 2019).
4646:
Yang, X. F.; Yang, J.-H.; Zaghib, K.; Trudeau and, M. L.; Ying, J. Y. (March 2015). "Synthesis of phase-pure Li2MnSiO4@C porous nanoboxes for high-capacity Li-ion battery cathodes".
1359:-SPE cathodes form elastic CEI layers which are encapsulated by the elastic electrolyte and strong composite layer. The elastic SPE is able to withstand the volume expansion of FeF 3085:
Li, Yuzhang; Yan, Kai; Lee, Hyun-Wook; Lu, Zhenda; Liu, Nian; Cui, Yi (2016). "Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes".
571:
As a method to control the ability of fully lithiated silicon to expand and become electronically isolated, a method for caging 3 nm-diameter silicon particles in a shell of
510:
electrodes in LIBs was shown to improve their capacity and transport properties. Chemical synthesis methods used in standard anode manufacture leave significant amounts of atomic
3344: 755:
CuSn, with 0.2 Cu atoms occupying a usually unoccupied crystallographic position in the lattice. These copper atoms are displaced to the grain boundaries when charged to form Li
323:
has been observed to have a maximum capacity of 150 mAh/g (0.5Li/Ti) with the capacity limited by the availability of crystallographic vacancies in the framework. The TiO
3154:
Hong, Juan; Cheng, Kun; Xu, Guiyin; Stapelberg, Myles; Kuai, Yuan; Sun, Pengcheng; Qu, Subing; Zhang, Zexin; Geng, Qidong; Wu, Zhuangzhao; Zhu, Meifang (15 September 2021).
5654: 5089: 1111:, which is a lot more than the traditional 400 W·h/kg. It has a solid lithium positive electrode and a solid electrolyte. It could be used in underwater applications. 38: 1686:
announced a battery management system that increased cycles four-fold, that with specific energy of 110–175 Wh/kg using a battery pack architecture and controlling
1399:. Common solvents are organic carbonates (cyclic, straight chain), sulfones, imides, polymers (polyethylene oxide) and fluorinated derivatives. Common salts include LiPF 4494:
Thackeray, M.; Kang, S.-H; Johnson, C.S.; Vaughey, John; Benedek, Roy; Hackney, S (2007). "Li2MnO3-Stabilized LiMO2 (M-Mn,Ni,Co)Electrodes for Lithium-Ion Batteries".
5556: 1732:
A fourth group created a device that is one hundredth of an inch thick and doubles as a supercapacitor. The technique involved etching a 900 nanometer-thick layer of
1363:
and carbon nanotubes (CNTs) strengthen the composite to prevent mechanical fatigue. Another technique to circumvent volume expansion includes creating a lithiated FeF
964:
Vanadium oxides have been a common class of cathodes to study due to their high capacity, ease of synthesis, and electrochemical window that matches well with common
6578: 5947:
Ahmadi, Leila; Yip, Arthur; Fowler, Michael; Young, Steven B.; Fraser, Roydon A. (June 2014). "Environmental feasibility of re-use of electric vehicle batteries".
2982:
Chadha, Utkarsh; Selvaraj, Senthil Kumaran; Ashokan, Hridya; Hariharan, Sai P.; Mathew Paul, V.; Venkatarangan, Vishal; Paramasivam, Velmurugan (8 February 2022).
6547: 4592:
A123 Systems introduces new Nanophosphate EXT Li-ion battery technology with optimized performance in extreme temperatures; OEM micro-hybrid program due next year
614:
In 2012, Vaughey, et al., reported a new all-inorganic electrode structure based on electrochemically active silicon particles bound to a copper substrate by a Cu
968:. Vanadium oxides cathodes, typically classed as charged cathodes, are found in many different structure types. These materials have been extensively studied by 5526: 5444:
Wu, Fanglin; Fang, Shan; Kuenzel, Matthias; Mullaliu, Angelo; Kim, Jae-Kwang; Gao, Xinpei; Diemant, Thomas; Kim, Guk-Tae; Passerini, Stefano (18 August 2021).
1615:
above 560 Wh kg−1 at >4 volts. Capacity after 1k cycles was 88%. Importantly, the cathode retained its structural integrity throughout the charging cycles.
1442:
solid nature prevents dendrite formation and allows the use of pure metallic lithium anodes. They may have other benefits such as lower temperature operation.
3626:
Jansen, A.; Clevenger, Jessica; Baebler, Anna; Vaughey, John (2011). "Variable Temperature Performance of Intermetallic Lithium Ion Battery Anode Materials".
997:
aqueous solution. Electrochemical tests demonstrate deliver high reversible specific capacities with 100% coulombic efficiency, especially at high C rates (
5208:
Santanab Giri; Swayamprabha Behera; Puru Jena (14 October 2014). "Superhalogens as Building Blocks of Halogen-Free Electrolytes in Lithium-Ion Batteries".
1769: 6033:
Podias, Andreas; Pfrang, Andreas; Di Persio, Franco; Kriston, Akos; Bobba, Silvia; Mathieux, Fabrice; Messagie, Maarten; Boon-Brett, Lois (18 July 2018).
1445:
In 2015, researchers announced an electrolyte using superionic lithium-ion conductors, which are compounds of lithium, germanium, phosphorus and sulfur.
820: 691: 596: 6035:"Sustainability Assessment of Second Use Applications of Automotive Batteries: Ageing of Li-Ion Battery Cells in Automotive and Grid-Scale Applications" 2984:"Complex Nanomaterials in Catalysis for Chemically Significant Applications: From Synthesis and Hydrocarbon Processing to Renewable Energy Applications" 861:, was reported, proposing increased energy density and high operating efficiencies. A review of different semi-solid battery systems can be found here. 452:
have extensively studied the role of solvent and salt in the formation of films on the lithium surface. Notable observations were the addition of LiNO
5014:"Metal Fluorides Nanoconfined in Carbon Nanopores as Reversible High Capacity Cathodes for Li and Li-Ion Rechargeable Batteries: FeF 2 as an Example" 5502: 4760:
Qi, Zhaoxiang; Koenig, Gary M. (16 August 2016). "High-Performance LiCoO2Sub-Micrometer Materials from Scalable Microparticle Template Processing".
5102: 4949:
Huang, Qiao; Turcheniuk, Kostiantyn; Ren, Xiaolei; Magasinski, Alexandre; Song, Ah-Young; Xiao, Yiran; Kim, Doyoub; Yushin, Gleb (December 2019).
4620: 1275: 1812: 1502: 1131: 1120: 1025:
found that creating high lithium content lithium-ion batteries materials with cation disorder among the electroactive metals could achieve 660
44: 4188:
Chernova, N.; Roppolo, M; Dillon, Anne; Whittingham, Stanley (2009). "Layered vanadium and molybdenum oxides: batteries and electrochromics".
1711:
In 2014, multiple research teams and vendors demonstrated flexible battery technologies for potential use in textiles and other applications.
1633: 1141: 1046: 1022: 933: 4735: 2897: 6571: 858: 805:
Sb-type structure are attractive anode materials due to the open gallery space available and structural similarities to the discharge Li
3753:
Fransson, L.; Vaughey, J; Benedek, R.; Vaughey, John; Edstrom, K; Thomas, J.; Thackeray, M.M. (2001). "Phase Transition in Lithiated Cu
2032:"Silicon Microreactor as a Fast Charge, Long Cycle Life Anode with High Initial Coulombic Efficiency Synthesized via a Scalable Method" 5539: 3793: 3348: 4951:"Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites" 3237:
Trahey, L.; Kung, H; Thackeray, M.; Vaughey, John (2011). "Effect of Electrode Dimensionality and Morphology on the Performance of Cu
284:
electrode from conversion negative electrode that store lithium by complete disruption and formation of alternate phases, usually as
6531: 4096:
Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
1079: 189: 171: 109: 52: 5154:
Braga, M. H.; Grundish, N. S.; Murchison, A. J.; Goodenough, J. B. (2017). "Alternative strategy for a safe rechargeable battery".
4889:"High-Capacity Lithium-Ion Battery Conversion Cathodes Based on Iron Fluoride Nanowires and Insights into the Conversion Mechanism" 4411: 138: 76: 6293:
Hossain, Eklas; Murtaugh, Darren; Mody, Jaisen; Faruque, Hossain Mansur Resalat; Haque Sunny, Md. Samiul; Mohammad, Naeem (2019).
1295:. In 2017, researchers at University of Virginia reported a scalable method to produce sub-micrometer scale lithium cobalt oxide. 1518: 1249: 332: 279:
Several types of metal oxides and sulfides can reversibly intercalate lithium cations at voltages between 1 and 2 V against
259:
ball milling process with micron-sized silicon powder. The nanostructured Si particles are then encapsulated with carbon through
1752:
Current research has been primarily focused on finding new materials and characterising them by means of specific capacity (mAh/
690:
processes to create nanoscale tin needles that show 33% lower volume expansion during charging. In 2015, the research team at
3567:
Wang, Zhaodong; Shan, Zhongqiang; Tian, Jianhua; Huang, Wenlong; Luo, Didi; Zhu, Xi; Meng, Shuxian (2017). "Immersion-plated Cu
1436: 4462: 6833: 6718: 6564: 6147:"Fast Electrical Characterizations of High-Energy Second Life Lithium-Ion Batteries for Embedded and Stationary Applications" 5694: 1346:
Decreasing particle size is one of the main methods researchers have used to overcome iron fluoride’s insulating properties.
6451:
Schneider, E.L.; Kindlein, W.; Souza, S.; Malfatti, C.F. (April 2009). "Assessment and reuse of secondary batteries cells".
5182: 661:, have been studied as anode materials in lithium-ion energy storage systems for several decades. First reported in 1981 by 460:, and hexafluoroarsenate salts. They appeared to create films that inhibit dendrite formation while incorporating reduced Li 6811: 6698: 1718:. This discovery uses conventional materials and could be commercialized for foldable smartphones and other applications. 1252:
images revealed that the high phase purity and porous nanobox architecture were achieved via monodispersed MnCO
433:
based cell designs. The interest in lithium metal anodes was re-established with the increased interest in high capacity
1629: 1420: 5747: 2357:
Lu, Yuhao (2011). "Behavior of Li Guest in KNb5O13 Host with One-Dimensional Tunnels and Multiple Interstitial Sites".
1694:
to be more uniformly attached/detached to the cathode. The SEI layer remains stable, preventing energy density losses.
523: 146: 3712:
Hu, Renzong; Waller, Gordon Henry; Wang, Yukun; Chen, Yu; Yang, Chenghao; Zhou, Weijia; Zhu, Min; Liu, Meilin (2015).
1407:, LiTFSI, and LiFSI. Research centers on increased safety via reduced flammability and reducing shorts via preventing 1137: 887: 683: 335:
used a materials derived from a titanium dioxide gel derived from naturally spherical titanium dioxide particles into
5043:
Fan, Xiulin; Zhu, Yujie; Luo, Chao; Gao, Tao; Suo, Liumin; Liou, Sz-Chian; Xu, Kang; Wang, Chunsheng (1 March 2016).
3822:(2006). "Three Dimensionally Ordered Macroporous Li4Ti5O12:Effect of Wall Structure of Electrochemical Performance". 1841: 1071: 438: 91: 5244: 2384:
Han, Jian-Tao; Huang, Yunhui; Goodenough, John B. (2011). "New Anode Framework for Rechargeable Lithium Batteries".
3331: 2411:
Poizot, P. (2000). "Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries".
2666:"Universal roles of hydrogen in electrochemical performance of graphene: high rate capacity and atomistic origins" 142: 87: 6620: 3060: 2722: 2186:
Zhou, Xiang-yang; Tang, Jing-jing; Yang, Juan; Zou, You-lan; Wang, Song-can; Xie, Jing; Ma, Lu-lu (30 May 2012).
271:
at 8 A g, indicating their capability for ultrafast charging without compromising safety and capacity retention.
3875:"High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes" 471:) lithium metal strips. They were able to achieve energy density of 350 Wh/kg over 600 charge/discharge cycles. 6769: 6764: 6635: 3297:
Boukamp, B.A.; Lesh, G. C.; Huggins, R.A (1981). "All Solid Lithium Electrodes with a Mixed Conductor Matrix".
633: 6738: 6713: 6180:"Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling" 4345:
Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard (19 November 2014).
3714:"Cu6Sn5@SnO2–C nanocomposite with stable core/shell structure as a high reversible anode for Li-ion batteries" 2018:
G. Shao et al. Polymer-Derived SiOC Integrated with a Graphene Aerogel As a Highly Stable Li-Ion Battery Anode
1269: 434: 5045:"In situ lithiated FeF3/C nanocomposite as high energy conversion-reaction cathode for lithium-ion batteries" 793:-c hybrids have been shown to be effective, to accommodate volume changes and overall stability over cycles. 641:
a buffer layer; and the 8-25 nm fiber size, which is below the size at which silicon tends to fracture.
559:. Below are various structural morphologies attempted to overcome issue with silicon's intrinsic properties. 6784: 6774: 6703: 6675: 5814: 4256:
Chirayil, Thomas; Zavalij, Peter; Whittingham, Stanley (1998). "Hydrothermal Synthesis of vanadium Oxides".
1490: 1026: 493: 218: 153: 2868:
Szczech, Jeannine R.; Jin, Song (2011). "Nanostructured silicon for high capacity lithium battery anodes".
2462:
Whittingham, M.Stanley (1978). "Chemistry of intercalation compounds: Metal guests in chalcogenide hosts".
6743: 5129: 2149:"Nanosized silicon-based composite derived by in situ mechanochemical reduction for lithium ion batteries" 2110:"Spray Drying Method for Large-Scale and High-Performance Silicon Negative Electrodes in Li-Ion Batteries" 1506: 539:
it has a theoretical capacity of ~3,600 milliampere hours per gram (mAh/g), which is nearly 10 times the
6670: 6615: 6587: 2627: 1736:
with regularly spaced five nanometer holes to increase capacity. The device used an electrolyte made of
1670: 1379:, therefore significantly reduces the stress/strain that occurs during lithiation upon the first cycle. 1204: 304:
reported the synthesis and evaluation of a series of lithiated titanates. Of specific interest were the
243: 5585: 3860: 5771:"Comparison between cylindrical and prismatic lithium-ion cell costs using a process based cost model" 5514: 5044: 4799: 3923: 3155: 2187: 2148: 1965: 1926: 1815:
found that prismatic cells are more likely to benefit from production scaling than cylindrical cells.
6496: 6460: 6415: 6103: 5859: 5782: 5621: 5217: 5056: 4962: 4900: 4358: 4103: 4018: 4007:"A carbon-free lithium-ion solid dispersion redox couple with low viscosity for redox flow batteries" 3886: 3819: 3678: 3584: 3525: 3306: 3094: 2834: 2783: 2677: 2580: 2569:"The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth" 2498: 2420: 2315: 1775:
allow the use of materials that exhibit unacceptable flaws when used in bulk forms, such as silicon.
1638: 1608: 1484:, which are toxic. In 2015 researchers claimed that these materials could be replaced with non-toxic 1103:
more than triple that of traditional lithium-ion batteries using the halides or organic materials in
929: 874: 547:
electrodes, which exhibit a maximum capacity of 372 mAh/g for their fully lithiated state of LiC
4849: 4715:"Researchers Develop Solid-State, Rechargeable Lithium–Air Battery; Potential to Exceed 1,000 Wh/kg" 3848: 2070: 720:
Sb, lower voltages and higher capacities have been found when compared to their oxide counterparts.
6723: 6708: 6660: 6630: 3477: 3129: 2936:
Ge, Mingyuan; Rong, Jiepeng; Fang, Xin; Zhang, Anyi; Lu, Yunhao; Zhou, Chongwu (12 February 2013).
2071:"N-doped graphitic self-encapsulation for high performance silicon anodes in lithium-ion batteries" 1796:
Finally, various nanocoatings have been examined, to increase electrode stability and performance.
1737: 1733: 969: 965: 449: 430: 336: 208: 3981:"A clever twist on the batteries in smartphones could help us better harness wind and solar power" 6541: 6433: 6355: 6336:"Action planning and situation analysis of repurposing battery recovery and application in China" 6316: 6275: 6127: 6015: 5929: 5893: 5637: 5557:
New battery management technology could boost Li-ion capacity by 40%, quadruple recharging cycles
5485: 5390: 5295: 4994: 4696: 4170: 3961: 3608: 3549: 3409: 3383: 3110: 3041: 2957: 2807: 2522: 2444: 2339: 2280: 2188:"Effect of polypyrrole on improving electrochemical performance of silicon based anode materials" 1424: 1408: 1336: 1245: 1179: 1058: 904: 422: 380: 5668: 5446:"Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries" 4747: 4347:"New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses" 1154: 5722: 5090:
First nonflammable lithium-ion battery will stop your smartphone, car, and plane from exploding
2938:"USC team develops new porous silicon nanoparticle material for high-performance Li-ion anodes" 2911: 1001:, 140 mAh g at 10 C). In 2014, researchers announced the use of vanadate-borate glasses (V 6527: 6145:
Quinard, Honorat; Redondo-Iglesias, Eduardo; Pelissier, Serge; Venet, Pascal (14 March 2019).
6119: 6007: 5885: 5699: 5655:
Origami: The surprisingly simple secret to creating flexible, high-power lithium-ion batteries
5477: 5426: 5382: 5374: 5357:
Smith, Leland; Dunn, Bruce (20 November 2015). "Opening the window for aqueous electrolytes".
5339: 5331: 5287: 5279: 5072: 4986: 4978: 4924: 4916: 4869: 4821: 4777: 4714: 4574: 4566: 4392: 4374: 4327: 4238: 4162: 4121: 4072: 4036: 3953: 3945: 3904: 3774: 3735: 3694: 3643: 3600: 3541: 3401: 3216: 3175: 3005: 2850: 2799: 2747:
Wang, Yusheng (2015). "Porous graphene for high capacity lithium ion battery anode material".
2703: 2608: 2514: 2436: 2331: 2207: 2168: 2129: 2090: 2051: 1997: 1946: 1907: 1889: 1741: 1604: 1328: 824: 418: 4436: 6728: 6665: 6655: 6650: 6504: 6468: 6423: 6383: 6347: 6306: 6267: 6234: 6224: 6191: 6158: 6111: 6075: 6046: 5997: 5987: 5956: 5921: 5875: 5867: 5790: 5629: 5467: 5457: 5418: 5366: 5323: 5271: 5225: 5163: 5064: 5025: 4970: 4908: 4861: 4811: 4769: 4686: 4655: 4591: 4558: 4531: 4503: 4382: 4366: 4319: 4265: 4228: 4197: 4152: 4111: 4064: 4026: 3935: 3894: 3831: 3766: 3725: 3686: 3635: 3592: 3533: 3489: 3458: 3393: 3314: 3273:"Going small with silicon potentially has big implications for lithium-ion battery capacity" 3250: 3206: 3167: 3102: 3033: 2995: 2949: 2937: 2877: 2842: 2791: 2756: 2693: 2685: 2598: 2588: 2549: 2506: 2471: 2428: 2393: 2366: 2323: 2262: 2199: 2160: 2121: 2082: 2043: 1987: 1977: 1938: 1897: 1879: 1846: 1663: 1510: 1303: 908: 604: 532: 426: 222: 1714:
One technique made li-ion batteries flexible, bendable, twistable and crunchable using the
339:
In addition, a non-naturally occurring electrochemically active titanate referred to as TiO
4673:
Kumar, B.; Kumar, J.; Leese, R.; Fellner, J. P.; Rodrigues, S. J.; Abraham, K. M. (2010).
1782: 1612: 1396: 1170: 994: 870: 665:, the system has a multiphase discharge curve and stores approximately 1000 mAh/g (Li 497: 363:
In 2011, Lu et al., reported reversible electrochemical activity in the porous niobate KNb
5103:"Rechargeable batteries with almost infinite lifetimes coming, say MIT-Samsung engineers" 4621:"A 'breakthrough' in rechargeable batteries for electronic devices and electric vehicles" 6500: 6464: 6419: 6213:"Second-Life Batteries on a Gas Turbine Power Plant to Provide Area Regulation Services" 6107: 5863: 5786: 5625: 5221: 5060: 4966: 4904: 4362: 4107: 4022: 3890: 3682: 3588: 3529: 3310: 3098: 2838: 2787: 2681: 2584: 2502: 2424: 2319: 1964:
Nzereogu, P. U.; Omah, A. D.; Ezema, F. I.; Iwuoha, E. I.; Nwanya, A. C. (1 June 2022).
6748: 6690: 6645: 5880: 5843: 4387: 4346: 3480:(2003). "Structural Transformations in Intermetallic Electrode for Lithium Batteries". 2698: 2665: 2147:
Yang, Xuelin; Wen, Zhaoyin; Xu, Xiaoxiong; Lin, Bin; Huang, Shahua (10 February 2007).
2017: 1902: 1867: 1292: 1279: 1150: 1146: 1100: 1083: 949: 883: 837: 829: 695: 687: 662: 540: 474:
Further information on the American battery technology innovator and entrepreneur:
212: 6178:
Heymans, Catherine; Walker, Sean B.; Young, Steven B.; Fowler, Michael (August 2014).
3770: 772:
CuSn, over discharging the material results in disproportionation with formation of Li
6827: 6680: 6437: 6359: 6320: 6279: 6131: 5933: 5897: 5489: 5394: 5299: 4998: 4603: 4174: 3965: 3612: 3553: 3156:"Novel silicon/copper nanowires as high-performance anodes for lithium ion batteries" 3114: 3045: 2553: 2475: 2448: 2266: 1658: 1463: 1423:
found a way to replace the electrolyte's flammable organic solvent with nonflammable
1372: 1308: 1288: 833: 627:
In 2015, a prototype electrode was demonstrated that consists of sponge-like silicon
583: 445: 285: 260: 6019: 5641: 5540:"In and out with 10-minute electrical vehicle recharge | Penn State University" 4950: 4700: 4068: 2961: 2811: 2540:
Pan, B (1995). "Performance and Safety Behavior of Rechargeable AA Li/LiMnO2 Cell".
2526: 2489:
Whittingham, M. S. (1976). "Electrical Energy Storage and Intercalation Chemistry".
2203: 6640: 6508: 6472: 5795: 5770: 5068: 4031: 4006: 3537: 3413: 3272: 2343: 2225:
Cava, Robert (1978). "The Crystal Structures of Lithium-Inserted Titanium Oxides Li
2164: 1578: 1191: 879: 658: 556: 475: 343:(B) can be made by ion-exchange followed by dehydration of the potassium titanate K 5992: 5975: 5183:"Solid-state EV battery breakthrough from Li-ion battery inventor John Goodenough" 5012:
Gu, Wentian; Magasinski, Alexandre; Zdyrko, Bogdan; Yushin, Gleb (February 2015).
3639: 3171: 2510: 2306:
Fujishima, A; Honda, K (1972). "A New Layered Titanate Produced by Ion Exchange".
2031: 1607:
of 214 mAh g−1 and 88% capacity retention over 1,000 cycles with an average
6115: 5527:
Software on your smartphone can speed up lithium-ion battery charging by up to 6x
4816: 4659: 4562: 3730: 3713: 2760: 1982: 1942: 956:, or intermetallic insertion materials to create a working electrochemical cell. 6387: 6311: 6294: 6196: 6179: 5976:"Second life batteries lifespan: Rest of useful life and environmental analysis" 5462: 5445: 2651: 1884: 1388: 654: 403:
anodes were used for the first lithium-ion batteries in the 1960s, based on the
6428: 6403: 5960: 5925: 5871: 5723:"Flexible, high-performance battery could soon find its way to your smartwatch" 3940: 2108:
Jung, Dae Soo; Hwang, Tae Hoon; Park, Seung Bin; Choi, Jang Wook (8 May 2013).
2030:
He, Qianran; Ashuri, Maziar; Liu, Yuzi; Liu, Bingyu; Shaw, Leon (24 May 2021).
6779: 6079: 5013: 4974: 4233: 4216: 3596: 3037: 2953: 1799: 1715: 1654: 759:
CuSn. With retention of most of the metal-metal bonding down to 0.5 V, Cu
628: 468: 6229: 6212: 6163: 6146: 5481: 5430: 5378: 5335: 5283: 5076: 4982: 4920: 4888: 4873: 4825: 4781: 4378: 4331: 4166: 4125: 4076: 4040: 3949: 3778: 3739: 3698: 3647: 3604: 3545: 3220: 3179: 3009: 2281:"Ultra-fast charging batteries that can be 70% recharged in just two minutes" 2211: 2172: 2133: 2109: 2094: 2055: 2001: 1950: 1893: 215:, safety, rate capability, cycle durability, flexibility, and reducing cost. 6351: 6271: 5370: 5275: 3106: 1687: 1347: 845: 678: 637: 457: 301: 6404:"End-of-life or second-life options for retired electric vehicle batteries" 6123: 6011: 5889: 5633: 5386: 5343: 5327: 5291: 5229: 5029: 4990: 4928: 4773: 4578: 4396: 4242: 3924:"High capacity 3D structured tin-based electroplated Li-ion battery anodes" 3908: 3669:
Electrodes: Synthesis< Properties, and Current Collector Interactions".
3405: 3397: 3254: 3130:"Pomegranate-inspired electrode could mean longer lithium-ion battery life" 3000: 2983: 2854: 2846: 2803: 2707: 2612: 2518: 2440: 2335: 2047: 1911: 1108: 3849:
Batteries charge very quickly and retain capacity, thanks to new structure
3449:
An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries".
5472: 4748:
New Rechargeable Cell Has 7 Times Higher Energy Density Than Li-ion Cells
4736:
Researchers hard at work to make the workhorse lithium ion battery better
4535: 4092:"Review Article: Flow battery systems with solid electroactive materials" 2603: 1786: 1650: 1522: 1514: 1481: 1462:
In March 2017, researchers announced a solid-state battery with a glassy
1104: 945: 572: 544: 511: 507: 504: 486: 328: 247: 6556: 6051: 6034: 5974:
Casals, Lluc Canals; Amante García, B.; Canal, Camille (February 2019).
4850:"Conversion cathodes for rechargeable lithium and lithium-ion batteries" 3345:"Washington State University Gets Funding to Scale Up New Tin Batteries" 3211: 3194: 3061:"Lithium-ion battery boost could come from "caging" silicon in graphene" 535:, and is fairly inexpensive to refine to high purity. When alloyed with 6625: 6239: 6002: 5503:
Want lithium-ion batteries to last? Slow charging may not be the answer
5422: 5167: 5130:"Dual-functioning electrolyte improves capacity of long-life batteries" 4865: 4323: 3899: 3874: 3861:
Small in size, big on power: New microbatteries a boost for electronics
2881: 2593: 2568: 2086: 1868:"Artificial Intelligence Applied to Battery Research: Hype or Reality?" 1790: 1485: 1174: 1099:
In 2012, researchers at Polyplus Corporation created a battery with an
953: 937: 920: 900: 694:
create a 3D mechanically stable nickel–tin nanocomposite scaffold as a
674: 673:). Tin and its compounds have been extensively studied but, similar to 536: 528: 400: 320: 305: 280: 4912: 4691: 4674: 4570: 4370: 4269: 4157: 4140: 4116: 4091: 3957: 3835: 3818:
Sorenson, E.; Barry, S; Jung, H.K.; Rondinelli, James; Vaughey, John;
3690: 3493: 3462: 3370:
Zhang, H.; Shi, T.; Wetzel, D. J.; Nuzzo, R. G.; Braun, P. V. (2016).
3318: 3193:
Joyce, C.; Trahy, L; Bauer, Sara; Dogan, Fulya; Vaughey, John (2012).
2689: 2397: 2370: 2125: 1992: 1927:"Recent progress of advanced anode materials of lithium-ion batteries" 1925:
Cheng, Hui; Shapter, Joseph G.; Li, Yongying; Gao, Guo (1 June 2021).
4798:
Olbrich, Lorenz F.; Xiao, Albert W.; Pasta, Mauro (1 December 2021).
4507: 4201: 3661:
Kim, Il Seok.; Vaughey, John; Auciello, Orlando (2008). "Thin Film Cu
2898:
Researchers Developing Cheap, Better-Performing Lithium-Ion Batteries
2795: 2628:"Lithium strips take next-gen battery into record-breaking territory" 2432: 2327: 1683: 1317: 1313: 1284: 1087: 973: 941: 576: 309: 3195:"Metallic Copper Binders for Lithium-Ion Battery Silicon Electrodes" 94:. Statements consisting only of original research should be removed. 5569:
Long-life laptop battery the tech industry doesn't want you to have
3388: 4675:"A Solid-State, Rechargeable, Long Cycle Life Lithium–Air Battery" 1513:
electrolytes with very high salt concentration. By increasing the
1392: 1169:
is a 3.6 V lithium-ion battery cathode initially reported by
1030: 925: 2912:"Silicon nanoparticles used to create a super-performing battery" 882:
stack being added. Such devices are expected to provide a higher
3757:
Sb Anodes for lithium Batteries: An In-Situ X-Ray Diffraction".
1722: 1526: 748: 744: 444:
Research to inhibit dendrite formation has been an active area.
6560: 4284: 1228:, was able to support a charging capacity of 335 mAh/g. Li 4285:"Subaru doubles the battery range on its electric car concept" 4217:"Structural chemistry of vanadium oxides with open frameworks" 3873:
Pikul, JH; Gang Zhang, H; Cho, J; Braun, PV; King, WP (2013).
1691: 993:
O) synthesized by an oxidation reaction of vanadium foil in a
841: 121: 59: 18: 6211:
Canals Casals, Lluc; Amante García, Beatriz (17 March 2017).
4800:"Conversion-type fluoride cathodes: Current state of the art" 2900:, Product Design & Development, 1 April 2014, Megan Hazle 1307:
there is a general agreement that the strong metal-fluoride
1260: core–shell nanocubes with controlled shell thickness. 832:
1,000x faster charging. The technology also delivers better
3794:"New Foam Batteries Promise Fast Charging, Higher Capacity" 1603:
was demonstrated in 2021. This electrolyte enables initial
1501:
In 2015, researchers at the University of Maryland and the
575:
was reported in 2016. The particles were first coated with
4139:
Tolmachev, Yuriy; Starodubceva, Svetlana (5 August 2022).
1525:, the potential window could be increased from 1.23 to 3 6335: 6255: 928:, this class is more commonly studied. Examples include 6256:"Summary of safety standards for repurposing batteries" 5586:"Stanford researchers develop heat-sensitive batteries" 1632:, Samsung Advanced Institute of Technology America and 801:
The layered intermetallic materials derived from the Cu
492:
Recent work includes efforts in 2014 by researchers at
211:. Areas of research interest have focused on improving 83: 5669:"Scientists create weavable Li-ion fiber battery yarn" 3437:
Kepler, K.; Vaughey, John; Thackeray, M.M. (1999). "Li
3024:
silicon anode substitutes for Lithium-ion batteries".
5517:, Product Design & Development, 15 September 2014 4887:
Li, Linsen; Meng, Fei; Jin, Song (14 November 2012).
4412:"Messy Innards Make for a Better Lithium Ion Battery" 2020:
ACS Appl. Mater. Interfaces 2020, 12, 41, 46045–46056
1966:"Anode materials for lithium-ion batteries: A review" 1646: 919:, typically are tested in cell configurations with a 5837: 5835: 5245:"Physicists find toxic halogens in Li-ion batteries" 1074:
this system has high capacity on the formation of Li
886:
than traditional batteries, but suffer from a lower
751:
type nomenclature it would have the stoichiometry Cu
6757: 6689: 6608: 6601: 6594: 5844:"Charge and discharge profiles of repurposed LiFePO 5092:, Extreme Tech, 13 February 2014, Sebastian Anthony 3575:/Sn composite film anode for lithium ion battery". 1107:as the active cathode. Its energy density is 1,300 467:In 2021, researchers announced the use of thin (20 6524:Reuse and recycling of lithium-ion power batteries 5748:"Cooperation with AGM Batteries Ltd in full swing" 5695:"Flexible, Printed Batteries for Wearable Devices" 5657:, Extreme Tech, 5 February 2014, Sebastian Anthony 4750:, Nikkei Technology, 23 July 2014, Motohiko Hamada 3863:, News Bureau Illinois, 16 April 2013, Liz Ahlberg 3851:, News Bureau Illinois, 21 March 2011, Liz Ahlberg 1375:already contains lithium in close contact with FeF 5529:, Extreme Tech, 14 August 2014, Sebastian Anthony 4005:Qi, Zhaoxiang; Koenig, Gary M. (15 August 2016). 2723:"Using hydrogen to enhance lithium-ion batteries" 1789:have been examined for various purposes, as have 383:with an average voltage near 1.3 V (vs Li). 16:Overview of the research in lithium-ion batteries 3332:WSU Researchers Create Super Lithium-ion Battery 3241:Sb Thin Film Electrodes for Lithium Batteries". 5949:Sustainable Energy Technologies and Assessments 4848:Wu, Feixiang; Yushin, Gleb (15 February 2017). 4410:Umair Irfan and ClimateWire (17 January 2014). 3232: 3230: 2652:Nanotubes make for better lithium-ion batteries 789:at its core with a nonreactive outer shell, SnO 5815:"Customized Lithium ion Battery Pack Supplier" 3432: 3430: 1721:Another approached used carbon nanotube fiber 6572: 4215:Zavalij, Peter; Whittingham, Stanley (1999). 3347:. MacroCurrent. 30 April 2013. Archived from 2988:Advances in Materials Science and Engineering 1538:An experimental lithium metal battery with a 1519:Bis(trifluoromethane)sulfonimide lithium salt 977:of hierarchical vanadium oxide nanoflowers (V 8: 5559:, TreeHugger, 5 February 2014, Derek Markham 4090:Qi, Zhaoxiang; Koenig, Gary M. (July 2017). 3476:Fransson, L.; Vaughey, John; Thackeray, M.; 1480:Conventional electrolytes generally contain 1278:announced a solid-state battery with higher 823:discovered that wrapping a thin film into a 5769:Cieza, Rebecca E.; Whitacrea, J.F. (2017). 4141:"Flow batteries with solid energy boosters" 1770:Nanoarchitectures for lithium-ion batteries 1173:and is structurally related to the mineral 53:Learn how and when to remove these messages 6806: 6605: 6598: 6579: 6565: 6557: 6546:: CS1 maint: location missing publisher ( 4738:, Gigaom, 28 July 2014, Katie Fehrenbacher 3376:Advanced Materials (Deerfield Beach, Fla.) 2893: 2891: 1577:/NCM88 cathode material with a dual-anion 1367:nanocomposite with carbon. A lithiated FeF 1291:crystal structure gave it seven times the 1140:reported on the discovery of lithium rich 821:University of Illinois at Urbana-Champaign 692:University of Illinois at Urbana-Champaign 597:University of Illinois at Urbana-Champaign 582:In 2014, researchers encapsulated silicon 464:As as a lithium-ion conductive component. 379:) was reported in 2011 by Han, Huang, and 207:has produced many proposed refinements of 6427: 6310: 6260:Monthly Journal of Taipower's Engineering 6238: 6228: 6195: 6162: 6050: 6001: 5991: 5879: 5794: 5471: 5461: 4815: 4690: 4386: 4232: 4156: 4115: 4030: 3939: 3898: 3729: 3387: 3210: 2999: 2697: 2602: 2592: 1991: 1981: 1901: 1883: 636:(TEOS). The material was then exposed to 610:Porous-silicon inorganic-electrode design 308:form of titanium dioxide and the lithium 190:Learn how and when to remove this message 172:Learn how and when to remove this message 110:Learn how and when to remove this message 5914:Renewable and Sustainable Energy Reviews 5848:batteries based on the UL 1974 standard" 4604:A123's new battery tech goes to extremes 1760:) of various materials to their design. 932:, lithium nickel manganese cobalt oxide 743:is an intermetallic alloy with a defect 152:Relevant discussion may be found on the 5316:Angewandte Chemie International Edition 3516:growth on a copper current collector". 3451:Electrochemical and Solid-State Letters 3243:European Journal of Inorganic Chemistry 1857: 1276:University of Dayton Research Institute 1033:. The materials of the stoichiometry Li 6539: 4717:. Green Car Congress. 21 November 2009 4679:Journal of the Electrochemical Society 4524:Journal of the Electrochemical Society 3671:Journal of the Electrochemical Society 3482:Journal of the Electrochemical Society 3299:Journal of the Electrochemical Society 3199:Journal of the Electrochemical Society 2013: 2011: 1682:In 2014, independent researchers from 1505:showed significantly increased stable 1132:Lithium nickel manganese cobalt oxides 1121:Lithium nickel cobalt aluminium oxides 496:who found that metallic single-walled 5256: 5254: 4944: 4942: 4940: 4938: 4843: 4841: 4839: 4837: 4835: 4793: 4791: 3266: 3264: 1634:Lawrence Berkeley National Laboratory 1126:Lithium nickel manganese cobalt oxide 1057:In 2015 researchers blended powdered 1047:lithium nickel manganese cobalt oxide 1023:Massachusetts Institute of Technology 7: 4463:"Seawater battery sparks sub dreams" 3271:Borghino, Dario (25 February 2015). 6334:Chung, H. C.; Cheng, Y. C. (2019). 6254:Chung, H. C.; Cheng, Y. C. (2020). 5980:Journal of Environmental Management 4804:Current Opinion in Electrochemistry 3792:Martin, Richard (25 October 2015). 859:Solid Dispersion Redox Flow Battery 5411:Energy & Environmental Science 5243:McNeill, Brian (24 October 2014). 5156:Energy & Environmental Science 4854:Energy & Environmental Science 4594:, Green Car Congress, 12 June 2012 2870:Energy & Environmental Science 2721:Stark, Anne M. (5 November 2015). 2075:Energy & Environmental Science 1866:Alejandro A. (16 September 2021). 14: 6734:Research in lithium-ion batteries 5693:Lovering, Daniel (18 July 2014). 5667:Sandhana, Lakshmi (30 May 2014). 2910:Ben Coxworth (14 February 2013). 2464:Progress in Solid State Chemistry 1489:batteries, such as sodium-ion or 1299:Transition Metal Fluorides (TMFs) 1080:USC Viterbi School of Engineering 703:Intermetallic insertion materials 205:Research in lithium-ion batteries 34:This article has multiple issues. 6805: 5575:, 6 February 2014, Jordana Divon 5515:Why Lithium Ion Batteries Go Bad 4221:Acta Crystallographica Section B 3128:Nick Lavars (19 February 2014). 2654:, Nanotechweb.org, 3 March 2014. 2255:Journal of Solid State Chemistry 1970:Applied Surface Science Advances 1793:and other novel bulk materials. 1611:of 99.94%. The cells achieved a 1250:transmission electron microscopy 1045:are similar to the lithium rich 940:which can be combined with most 595:In 2021 Paul V.Braun's group at 333:Nanyang Technological University 126: 64: 23: 5181:Hislop, Martin (1 March 2017). 4069:10.1016/j.electacta.2017.01.061 3759:Electrochemistry Communications 3628:Journal of Alloys and Compounds 3160:Journal of Alloys and Compounds 2204:10.1016/j.electacta.2012.03.098 1437:Solid-state lithium-ion battery 1199:Lithium manganese silicon oxide 814:Three-dimensional nanostructure 42:or discuss these issues on the 6719:Lithium iron phosphate battery 6509:10.1016/j.jpowsour.2014.03.095 6473:10.1016/j.jpowsour.2008.12.154 6039:World Electric Vehicle Journal 5796:10.1016/j.jpowsour.2016.11.054 5721:Borghino, Dario (2 May 2014). 5069:10.1016/j.jpowsour.2016.01.004 4496:Journal of Materials Chemistry 4465:. New Scientist. 25 April 2012 4437:"Glass for battery electrodes" 4190:Journal of Materials Chemistry 4032:10.1016/j.jpowsour.2016.05.033 3538:10.1016/j.jpowsour.2019.01.034 3059:Mack, Eric (30 January 2016). 2165:10.1016/j.jpowsour.2006.11.010 1391:are typically made of lithium 489:, graphene oxides, or MWCNTs. 1: 6699:Compressed-air energy storage 6408:Cell Reports Physical Science 5993:10.1016/j.jenvman.2018.11.046 4551:Accounts of Chemical Research 4283:Loz Blain (2 November 2007). 3771:10.1016/S1388-2481(01)00140-0 3640:10.1016/j.jallcom.2011.01.111 3172:10.1016/j.jallcom.2021.159927 2511:10.1126/science.192.4244.1126 1669:In 2019, Chao-Yang Wang from 1628:In 2014, researchers at MIT, 6116:10.1016/j.wasman.2020.05.034 4817:10.1016/j.coelec.2021.100779 4660:10.1016/j.nanoen.2014.12.021 4563:10.1021/acs.accounts.5b00277 3731:10.1016/j.nanoen.2015.10.037 3577:Journal of Materials Science 2761:10.1016/j.apsusc.2015.11.264 2626:Lavars, Nick (1 July 2021). 2554:10.1016/0378-7753(94)02055-8 2476:10.1016/0079-6786(78)90003-1 2267:10.1016/0022-4596(84)90228-7 2036:ACS Applied Energy Materials 1983:10.1016/j.apsadv.2022.100233 1943:10.1016/j.jechem.2020.08.056 1630:Sandia National Laboratories 1421:University of North Carolina 1274:In 2009, researchers at the 1207:-related" cathode compound, 936:, or lithium iron phosphate 6388:10.1016/j.enpol.2017.11.002 6312:10.1109/access.2019.2917859 6197:10.1016/j.enpol.2014.04.016 5463:10.1016/j.joule.2021.06.014 5128:Lavars, Nick (4 May 2014). 1931:Journal of Energy Chemistry 1885:10.1021/acs.chemrev.1c00108 1138:Argonne National Laboratory 1078:S. In 2014, researchers at 948:, lithium titanate spinel, 684:Washington State University 90:the claims made and adding 6850: 6429:10.1016/j.xcrp.2021.100537 5961:10.1016/j.seta.2014.01.006 5926:10.1016/j.rser.2018.04.035 5872:10.1038/s41597-021-00954-3 5189:. The American Energy News 5187:North American Energy News 3941:10.1016/j.ensm.2018.11.017 2727:Research & Development 1811:In 2016, researchers from 1767: 1434: 1267: 1129: 1118: 1070:Used as the cathode for a 873:and his co-workers at the 602: 521: 473: 246:are most commonly made of 6801: 6621:Artificial photosynthesis 6080:10.1016/j.est.2017.03.003 6068:Journal of Energy Storage 5018:Advanced Energy Materials 4975:10.1038/s41563-019-0472-7 4234:10.1107/S0108768199004000 3597:10.1007/s10853-017-0841-z 3334:Retrieved 10 January 2013 3038:10.1016/j.est.2022.105352 3026:Journal of Energy Storage 2954:10.1007/s12274-013-0293-y 6770:Battery electric vehicle 6765:Alternative fuel vehicle 6636:Concentrated solar power 6489:Journal of Power Sources 6453:Journal of Power Sources 6340:Journal of Taiwan Energy 6230:10.3390/batteries3010010 6164:10.3390/batteries5010033 5775:Journal of Power Sources 5049:Journal of Power Sources 4011:Journal of Power Sources 3928:Energy Storage Materials 3518:Journal of Power Sources 2542:Journal of Power Sources 2153:Journal of Power Sources 1645:In 2014, researchers at 1503:Army Research Laboratory 1419:In 2014, researchers at 1246:Powder X-ray diffraction 1190:In 2012, researchers at 1021:In 2014, researchers at 634:tetraethyl orthosilicate 300:In 1984, researchers at 135:This article or section 6775:Hybrid electric vehicle 6704:Flywheel energy storage 6676:Space-based solar power 6522:Zhao, Guangjin (2017). 5371:10.1126/science.aad5575 5276:10.1126/science.aab1595 3107:10.1038/nenergy.2015.29 2749:Applied Surface Science 1491:magnesium-ion batteries 1027:watt-hours per kilogram 972:among others. In 2007, 524:Lithium–silicon battery 494:Northwestern University 387:Transition-metal oxides 219:Artificial intelligence 6744:Thermal energy storage 5634:10.1038/nenergy.2015.9 5328:10.1002/anie.201602397 5230:10.1002/ange.201408648 5030:10.1002/aenm.201500243 4774:10.1002/slct.201600872 4258:Chemistry of Materials 3824:Chemistry of Materials 3398:10.1002/adma.201504780 3255:10.1002/ejic.201100329 2847:10.1038/nnano.2007.411 2386:Chemistry of Materials 2359:Chemistry of Materials 2048:10.1021/acsaem.1c00351 1842:Lithium–sulfur battery 1161:Lithium–iron phosphate 1115:Lithium-based cathodes 1072:lithium–sulfur battery 699:improved cyclability. 503:Hydrogen treatment of 439:lithium–sulfur battery 254:Si@void@C microreactor 6834:Lithium-ion batteries 6671:Photovoltaic pavement 6616:Airborne wind turbine 6588:Emerging technologies 6352:10.31224/osf.io/nxv7f 6272:10.31224/osf.io/d4n3s 5842:Chung, H. C. (2021). 4145:J.Electrochem.Sci.Eng 3985:MIT Technology Review 3879:Nature Communications 3820:Poeppelmeier, Kenneth 3798:MIT Technology Review 2827:Nature Nanotechnology 2573:Nature Communications 1832:repurposing battery. 1819:Repurposing and reuse 1671:Penn State University 1205:lithium orthosilicate 1182:of the olivine LiFePO 1136:In 1998, a team from 865:Redox-targeted solids 567:Silicon encapsulation 531:is an earth abundant 209:lithium-ion batteries 139:synthesis of material 4536:10.1149/2.1041501jes 3001:10.1155/2022/1552334 1639:particle accelerator 1609:Coulombic efficiency 1244: nanocrystals. 1017:Disordered materials 966:polymer electrolytes 930:lithium cobalt oxide 875:University of Geneva 481:Non-graphitic carbon 275:Intercalation oxides 242:Lithium-ion battery 6739:Silicon–air battery 6724:Molten-salt battery 6714:Lithium–air battery 6709:Grid energy storage 6661:Molten salt reactor 6631:Carbon-neutral fuel 6501:2014JPS...262....1S 6465:2009JPS...189.1264S 6420:2021CRPS....200537Z 6108:2020WaMan.113..497K 6052:10.3390/wevj9020024 5864:2021NatSD...8..165C 5787:2017JPS...340..273C 5626:2016NatEn...115009C 5222:2014AngCh.12614136G 5216:(50): 14136–14139. 5061:2016JPS...307..435F 4967:2019NatMa..18.1343H 4905:2012NanoL..12.6030L 4416:Scientific American 4363:2014NatSR...4E7113A 4108:2017JVSTB..35d0801Q 4057:Electrochimica Acta 4023:2016JPS...323...97Q 3891:2013NatCo...4.1732P 3683:2008JElS..155A.448K 3589:2017JMatS..52.6020W 3530:2019JPS...415...50T 3311:1981JElS..128..725B 3212:10.1149/2.107206jes 3099:2016NatEn...115029L 2839:2008NatNa...3...31C 2788:2005NatMa...4..366A 2682:2015NatSR...516190Y 2585:2015NatCo...6.7436L 2503:1976Sci...192.1126W 2497:(4244): 1126–1127. 2425:2000Natur.407..496P 2320:1972Natur.238...37F 2192:Electrochimica Acta 1878:(12): 10899–10969. 1738:potassium hydroxide 1734:Nickel(II) fluoride 1534:Dual anionic liquid 1458:Glassy electrolytes 1337:iron (III) fluoride 1270:Lithium–air battery 970:Stanley Whittingham 747:type structure. In 450:Bar-Ilan University 435:lithium–air battery 431:polymer electrolyte 244:negative electrodes 5573:The Globe and Mail 5423:10.1039/c6ee02604d 5168:10.1039/c6ee02888h 5107:www.kurzweilai.net 4866:10.1039/C6EE02326F 4627:. 26 February 2015 4502:(30): 31122–3125. 4351:Scientific Reports 4324:10.1039/C2TA00351A 3979:Woyke, Elizabeth. 3900:10.1038/ncomms2747 3372:"Northwestern SSO" 2882:10.1039/C0EE00281J 2670:Scientific Reports 2594:10.1038/ncomms8436 2087:10.1039/C3EE43322F 1581:electrolyte (ILE) 1425:perfluoropolyether 1415:Perfluoropolyether 1329:Iron (II) fluoride 1180:nanoball batteries 1059:vanadium pentoxide 905:vanadium pentoxide 448:and co-workers at 423:vanadium pentoxide 381:John B. Goodenough 234:Negative electrode 149:to the main topic. 143:verifiably mention 137:possibly contains 75:possibly contains 6821: 6820: 6797: 6796: 6793: 6792: 5750:. 12 October 2016 5700:Technology Review 5592:. 12 January 2016 5417:(12): 3666–3673. 5322:(25): 7136–7141. 5270:(6263): 938–943. 5210:Angewandte Chemie 4961:(12): 1343–1349. 4913:10.1021/nl303630p 4899:(11): 6030–6037. 4768:(13): 3992–3999. 4692:10.1149/1.3256129 4557:(11): 2813–2821. 4443:. 13 January 2015 4371:10.1038/srep07113 4312:J. Mater. Chem. A 4270:10.1021/cm980242m 4264:(10): 2629–2640. 4196:(17): 2526–2552. 4158:10.5599/jese.1363 4117:10.1116/1.4983210 3836:10.1021/cm052203y 3691:10.1149/1.2904525 3583:(10): 6020–6033. 3494:10.1149/1.1524610 3463:10.1149/1.1390819 3319:10.1149/1.2127495 3249:(26): 3984–3988. 2690:10.1038/srep16190 2419:(6803): 496–499. 2398:10.1021/cm200441h 2371:10.1021/cm200958r 2365:(13): 3210–3216. 2287:. 13 October 2014 2126:10.1021/nl400437f 1742:polyvinyl alcohol 1605:specific capacity 1507:potential windows 888:energy efficiency 825:three-dimensional 797:Copper antimonide 623:Silicon nanofiber 419:manganese dioxide 200: 199: 192: 182: 181: 174: 120: 119: 112: 77:original research 57: 6841: 6809: 6808: 6729:Nanowire battery 6656:Methanol economy 6651:Hydrogen economy 6606: 6599: 6581: 6574: 6567: 6558: 6552: 6551: 6545: 6537: 6519: 6513: 6512: 6483: 6477: 6476: 6459:(2): 1264–1269. 6448: 6442: 6441: 6431: 6398: 6392: 6391: 6370: 6364: 6363: 6331: 6325: 6324: 6314: 6290: 6284: 6283: 6251: 6245: 6244: 6242: 6232: 6208: 6202: 6201: 6199: 6175: 6169: 6168: 6166: 6142: 6136: 6135: 6096:Waste Management 6090: 6084: 6083: 6063: 6057: 6056: 6054: 6030: 6024: 6023: 6005: 5995: 5971: 5965: 5964: 5944: 5938: 5937: 5908: 5902: 5901: 5883: 5839: 5830: 5829: 5827: 5825: 5811: 5805: 5804: 5798: 5766: 5760: 5759: 5757: 5755: 5744: 5738: 5737: 5735: 5733: 5718: 5712: 5711: 5709: 5707: 5690: 5684: 5683: 5681: 5679: 5664: 5658: 5652: 5646: 5645: 5608: 5602: 5601: 5599: 5597: 5582: 5576: 5566: 5560: 5554: 5548: 5547: 5536: 5530: 5524: 5518: 5512: 5506: 5500: 5494: 5493: 5475: 5465: 5456:(8): 2177–2194. 5441: 5435: 5434: 5405: 5399: 5398: 5354: 5348: 5347: 5310: 5304: 5303: 5258: 5249: 5248: 5240: 5234: 5233: 5205: 5199: 5198: 5196: 5194: 5178: 5172: 5171: 5151: 5145: 5144: 5142: 5140: 5125: 5119: 5118: 5116: 5114: 5109:. 24 August 2015 5099: 5093: 5087: 5081: 5080: 5040: 5034: 5033: 5009: 5003: 5002: 4955:Nature Materials 4946: 4933: 4932: 4884: 4878: 4877: 4845: 4830: 4829: 4819: 4795: 4786: 4785: 4757: 4751: 4745: 4739: 4733: 4727: 4726: 4724: 4722: 4711: 4705: 4704: 4694: 4670: 4664: 4663: 4643: 4637: 4636: 4634: 4632: 4617: 4611: 4601: 4595: 4589: 4583: 4582: 4546: 4540: 4539: 4518: 4512: 4511: 4508:10.1039/b702425h 4491: 4485: 4481: 4475: 4474: 4472: 4470: 4459: 4453: 4452: 4450: 4448: 4433: 4427: 4426: 4424: 4422: 4407: 4401: 4400: 4390: 4342: 4336: 4335: 4306: 4300: 4299: 4297: 4295: 4280: 4274: 4273: 4253: 4247: 4246: 4236: 4212: 4206: 4205: 4202:10.1039/b819629j 4185: 4179: 4178: 4160: 4136: 4130: 4129: 4119: 4087: 4081: 4080: 4051: 4045: 4044: 4034: 4002: 3996: 3995: 3993: 3991: 3976: 3970: 3969: 3943: 3919: 3913: 3912: 3902: 3870: 3864: 3858: 3852: 3846: 3840: 3839: 3815: 3809: 3808: 3806: 3804: 3789: 3783: 3782: 3750: 3744: 3743: 3733: 3709: 3703: 3702: 3658: 3652: 3651: 3623: 3617: 3616: 3564: 3558: 3557: 3504: 3498: 3497: 3473: 3467: 3466: 3434: 3425: 3424: 3422: 3420: 3391: 3367: 3361: 3360: 3358: 3356: 3351:on 28 April 2014 3341: 3335: 3329: 3323: 3322: 3294: 3288: 3287: 3285: 3283: 3268: 3259: 3258: 3234: 3225: 3224: 3214: 3190: 3184: 3183: 3151: 3145: 3144: 3142: 3140: 3125: 3119: 3118: 3082: 3076: 3075: 3073: 3071: 3056: 3050: 3049: 3020: 3014: 3013: 3003: 2979: 2973: 2972: 2970: 2968: 2933: 2927: 2926: 2924: 2922: 2907: 2901: 2895: 2886: 2885: 2865: 2859: 2858: 2822: 2816: 2815: 2796:10.1038/nmat1368 2776:Nature Materials 2771: 2765: 2764: 2744: 2738: 2737: 2735: 2733: 2718: 2712: 2711: 2701: 2661: 2655: 2649: 2643: 2642: 2640: 2638: 2623: 2617: 2616: 2606: 2596: 2564: 2558: 2557: 2537: 2531: 2530: 2486: 2480: 2479: 2459: 2453: 2452: 2433:10.1038/35035045 2408: 2402: 2401: 2392:(8): 2027–2029. 2381: 2375: 2374: 2354: 2348: 2347: 2328:10.1038/238037a0 2303: 2297: 2296: 2294: 2292: 2277: 2271: 2270: 2222: 2216: 2215: 2183: 2177: 2176: 2144: 2138: 2137: 2120:(5): 2092–2097. 2105: 2099: 2098: 2066: 2060: 2059: 2042:(5): 4744–4757. 2027: 2021: 2015: 2006: 2005: 1995: 1985: 1961: 1955: 1954: 1922: 1916: 1915: 1905: 1887: 1872:Chemical Reviews 1862: 1847:Trickle charging 1783:Carbon nanotubes 1779:within another. 1748:Volume expansion 1729:without damage. 1602: 1600: 1599: 1591: 1590: 1576: 1575: 1574: 1566: 1565: 1557: 1556: 1548: 1547: 1304:Transition metal 1227: 1226: 1225: 1217: 1216: 909:molybdenum oxide 844:Sn loading in a 657:, discovered by 605:Nanowire battery 591:Silicon nanowire 498:carbon nanotubes 427:molybdenum oxide 415: 413: 412: 296:Titanium dioxide 223:machine learning 195: 188: 177: 170: 166: 163: 157: 130: 129: 122: 115: 108: 104: 101: 95: 92:inline citations 68: 67: 60: 49: 27: 26: 19: 6849: 6848: 6844: 6843: 6842: 6840: 6839: 6838: 6824: 6823: 6822: 6817: 6789: 6753: 6685: 6590: 6585: 6555: 6538: 6534: 6521: 6520: 6516: 6485: 6484: 6480: 6450: 6449: 6445: 6400: 6399: 6395: 6372: 6371: 6367: 6333: 6332: 6328: 6305:: 73215–73252. 6292: 6291: 6287: 6253: 6252: 6248: 6210: 6209: 6205: 6177: 6176: 6172: 6144: 6143: 6139: 6092: 6091: 6087: 6065: 6064: 6060: 6032: 6031: 6027: 5973: 5972: 5968: 5946: 5945: 5941: 5910: 5909: 5905: 5852:Scientific Data 5847: 5841: 5840: 5833: 5823: 5821: 5813: 5812: 5808: 5768: 5767: 5763: 5753: 5751: 5746: 5745: 5741: 5731: 5729: 5720: 5719: 5715: 5705: 5703: 5692: 5691: 5687: 5677: 5675: 5666: 5665: 5661: 5653: 5649: 5610: 5609: 5605: 5595: 5593: 5584: 5583: 5579: 5567: 5563: 5555: 5551: 5538: 5537: 5533: 5525: 5521: 5513: 5509: 5501: 5497: 5443: 5442: 5438: 5407: 5406: 5402: 5356: 5355: 5351: 5312: 5311: 5307: 5260: 5259: 5252: 5242: 5241: 5237: 5207: 5206: 5202: 5192: 5190: 5180: 5179: 5175: 5153: 5152: 5148: 5138: 5136: 5127: 5126: 5122: 5112: 5110: 5101: 5100: 5096: 5088: 5084: 5042: 5041: 5037: 5011: 5010: 5006: 4948: 4947: 4936: 4886: 4885: 4881: 4847: 4846: 4833: 4797: 4796: 4789: 4762:ChemistrySelect 4759: 4758: 4754: 4746: 4742: 4734: 4730: 4720: 4718: 4713: 4712: 4708: 4672: 4671: 4667: 4645: 4644: 4640: 4630: 4628: 4619: 4618: 4614: 4602: 4598: 4590: 4586: 4548: 4547: 4543: 4520: 4519: 4515: 4493: 4492: 4488: 4482: 4478: 4468: 4466: 4461: 4460: 4456: 4446: 4444: 4435: 4434: 4430: 4420: 4418: 4409: 4408: 4404: 4344: 4343: 4339: 4308: 4307: 4303: 4293: 4291: 4282: 4281: 4277: 4255: 4254: 4250: 4214: 4213: 4209: 4187: 4186: 4182: 4138: 4137: 4133: 4089: 4088: 4084: 4053: 4052: 4048: 4004: 4003: 3999: 3989: 3987: 3978: 3977: 3973: 3921: 3920: 3916: 3872: 3871: 3867: 3859: 3855: 3847: 3843: 3817: 3816: 3812: 3802: 3800: 3791: 3790: 3786: 3756: 3752: 3751: 3747: 3711: 3710: 3706: 3668: 3664: 3660: 3659: 3655: 3634:(13): 4457–61. 3625: 3624: 3620: 3574: 3570: 3566: 3565: 3561: 3515: 3511: 3506: 3505: 3501: 3475: 3474: 3470: 3448: 3444: 3440: 3436: 3435: 3428: 3418: 3416: 3369: 3368: 3364: 3354: 3352: 3343: 3342: 3338: 3330: 3326: 3296: 3295: 3291: 3281: 3279: 3270: 3269: 3262: 3240: 3236: 3235: 3228: 3192: 3191: 3187: 3153: 3152: 3148: 3138: 3136: 3127: 3126: 3122: 3084: 3083: 3079: 3069: 3067: 3058: 3057: 3053: 3022: 3021: 3017: 2981: 2980: 2976: 2966: 2964: 2935: 2934: 2930: 2920: 2918: 2909: 2908: 2904: 2896: 2889: 2867: 2866: 2862: 2824: 2823: 2819: 2773: 2772: 2768: 2746: 2745: 2741: 2731: 2729: 2720: 2719: 2715: 2663: 2662: 2658: 2650: 2646: 2636: 2634: 2625: 2624: 2620: 2567:Lei, W (2015). 2566: 2565: 2561: 2539: 2538: 2534: 2488: 2487: 2483: 2461: 2460: 2456: 2410: 2409: 2405: 2383: 2382: 2378: 2356: 2355: 2351: 2314:(5358): 37–40. 2305: 2304: 2300: 2290: 2288: 2279: 2278: 2274: 2252: 2248: 2244: 2240: 2236: 2232: 2228: 2224: 2223: 2219: 2185: 2184: 2180: 2146: 2145: 2141: 2107: 2106: 2102: 2068: 2067: 2063: 2029: 2028: 2024: 2016: 2009: 1963: 1962: 1958: 1924: 1923: 1919: 1864: 1863: 1859: 1855: 1838: 1831: 1821: 1809: 1772: 1766: 1750: 1709: 1700: 1680: 1626: 1621: 1613:specific energy 1598: 1595: 1594: 1593: 1589: 1586: 1585: 1584: 1582: 1573: 1570: 1569: 1568: 1564: 1561: 1560: 1559: 1555: 1552: 1551: 1550: 1546: 1543: 1542: 1541: 1539: 1536: 1499: 1478: 1473: 1460: 1451: 1439: 1433: 1417: 1406: 1402: 1397:organic solvent 1385: 1378: 1370: 1366: 1362: 1358: 1342: 1334: 1326: 1301: 1272: 1266: 1259: 1255: 1243: 1239: 1235: 1231: 1224: 1221: 1220: 1219: 1215: 1212: 1211: 1210: 1208: 1201: 1185: 1171:John Goodenough 1168: 1163: 1134: 1128: 1123: 1117: 1097: 1077: 1068: 1055: 1044: 1040: 1036: 1019: 1012: 1008: 1004: 992: 984: 980: 962: 960:Vanadium oxides 918: 914: 896: 871:Michael Gratzel 867: 854: 848:configuration. 838:supercapacitors 816: 808: 804: 799: 792: 788: 784: 779: 775: 771: 766: 762: 758: 754: 742: 738: 733: 731: 727: 719: 715: 711: 705: 682:researchers at 672: 668: 651: 625: 617: 612: 607: 593: 569: 550: 526: 520: 483: 478: 463: 455: 411: 408: 407: 406: 404: 398: 389: 378: 374: 370: 366: 361: 354: 350: 346: 342: 326: 319: 315: 298: 291: 277: 256: 236: 231: 196: 185: 184: 183: 178: 167: 161: 158: 151: 141:which does not 131: 127: 116: 105: 99: 96: 81: 69: 65: 28: 24: 17: 12: 11: 5: 6847: 6845: 6837: 6836: 6826: 6825: 6819: 6818: 6816: 6815: 6802: 6799: 6798: 6795: 6794: 6791: 6790: 6788: 6787: 6785:Wireless power 6782: 6777: 6772: 6767: 6761: 6759: 6755: 6754: 6752: 6751: 6749:Ultracapacitor 6746: 6741: 6736: 6731: 6726: 6721: 6716: 6711: 6706: 6701: 6695: 6693: 6687: 6686: 6684: 6683: 6678: 6673: 6668: 6663: 6658: 6653: 6648: 6646:Home fuel cell 6643: 6638: 6633: 6628: 6623: 6618: 6612: 6610: 6603: 6596: 6592: 6591: 6586: 6584: 6583: 6576: 6569: 6561: 6554: 6553: 6532: 6514: 6478: 6443: 6393: 6365: 6326: 6285: 6246: 6203: 6170: 6137: 6085: 6058: 6025: 5966: 5939: 5903: 5845: 5831: 5806: 5761: 5739: 5713: 5685: 5659: 5647: 5603: 5577: 5561: 5549: 5531: 5519: 5507: 5495: 5436: 5400: 5349: 5305: 5250: 5235: 5200: 5173: 5146: 5120: 5094: 5082: 5035: 5004: 4934: 4879: 4860:(2): 435–459. 4831: 4787: 4752: 4740: 4728: 4706: 4665: 4638: 4612: 4610:, 12 June 2012 4596: 4584: 4541: 4513: 4486: 4476: 4454: 4428: 4402: 4337: 4301: 4275: 4248: 4227:(5): 627–663. 4207: 4180: 4151:(4): 731–766. 4131: 4082: 4046: 3997: 3971: 3914: 3865: 3853: 3841: 3810: 3784: 3754: 3745: 3704: 3677:(6): A448–51. 3666: 3662: 3653: 3618: 3572: 3568: 3559: 3513: 3509: 3499: 3468: 3446: 3442: 3438: 3426: 3382:(4): 742–747. 3362: 3336: 3324: 3289: 3260: 3238: 3226: 3205:(6): A909–15. 3185: 3146: 3120: 3077: 3051: 3015: 2974: 2948:(3): 174–181. 2928: 2902: 2887: 2860: 2817: 2782:(5): 366–377. 2766: 2739: 2713: 2656: 2644: 2618: 2559: 2532: 2481: 2454: 2403: 2376: 2349: 2298: 2272: 2250: 2246: 2242: 2238: 2234: 2230: 2226: 2217: 2178: 2159:(2): 880–884. 2139: 2100: 2081:(2): 621–626. 2061: 2022: 2007: 1956: 1917: 1856: 1854: 1851: 1850: 1849: 1844: 1837: 1834: 1829: 1820: 1817: 1808: 1805: 1768:Main article: 1765: 1764:Nanotechnology 1762: 1749: 1746: 1708: 1705: 1699: 1696: 1679: 1676: 1625: 1622: 1620: 1617: 1596: 1587: 1571: 1562: 1553: 1544: 1535: 1532: 1498: 1495: 1477: 1474: 1472: 1469: 1459: 1456: 1450: 1447: 1435:Main article: 1432: 1429: 1416: 1413: 1404: 1400: 1384: 1381: 1376: 1368: 1364: 1360: 1356: 1340: 1332: 1325: 1322: 1300: 1297: 1293:energy density 1280:energy density 1268:Main article: 1265: 1262: 1257: 1253: 1241: 1237: 1233: 1229: 1222: 1213: 1200: 1197: 1183: 1166: 1162: 1159: 1151:Chevrolet Bolt 1147:Chevrolet Volt 1127: 1124: 1116: 1113: 1101:energy density 1096: 1093: 1084:graphite oxide 1075: 1067: 1064: 1054: 1051: 1042: 1038: 1034: 1018: 1015: 1010: 1006: 1002: 990: 982: 978: 961: 958: 950:titanium oxide 916: 912: 895: 892: 884:energy density 866: 863: 853: 850: 830:energy density 815: 812: 806: 802: 798: 795: 790: 786: 782: 777: 773: 769: 764: 760: 756: 752: 740: 736: 732: 729: 725: 722: 717: 713: 709: 708:for example Cu 704: 701: 696:Li-ion battery 688:electroplating 686:used standard 670: 666: 663:Robert Huggins 650: 647: 624: 621: 615: 611: 608: 603:Main article: 592: 589: 568: 565: 548: 541:energy density 522:Main article: 519: 516: 482: 479: 461: 453: 409: 397: 394: 388: 385: 376: 372: 368: 364: 360: 357: 352: 348: 344: 340: 324: 317: 313: 297: 294: 289: 276: 273: 255: 252: 235: 232: 230: 227: 213:energy density 198: 197: 180: 179: 134: 132: 125: 118: 117: 72: 70: 63: 58: 32: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 6846: 6835: 6832: 6831: 6829: 6814: 6813: 6804: 6803: 6800: 6786: 6783: 6781: 6778: 6776: 6773: 6771: 6768: 6766: 6763: 6762: 6760: 6756: 6750: 6747: 6745: 6742: 6740: 6737: 6735: 6732: 6730: 6727: 6725: 6722: 6720: 6717: 6715: 6712: 6710: 6707: 6705: 6702: 6700: 6697: 6696: 6694: 6692: 6688: 6682: 6681:Vortex engine 6679: 6677: 6674: 6672: 6669: 6667: 6664: 6662: 6659: 6657: 6654: 6652: 6649: 6647: 6644: 6642: 6639: 6637: 6634: 6632: 6629: 6627: 6624: 6622: 6619: 6617: 6614: 6613: 6611: 6607: 6604: 6600: 6597: 6593: 6589: 6582: 6577: 6575: 6570: 6568: 6563: 6562: 6559: 6549: 6543: 6535: 6533:9781119321859 6529: 6526:. Singapore. 6525: 6518: 6515: 6510: 6506: 6502: 6498: 6494: 6490: 6482: 6479: 6474: 6470: 6466: 6462: 6458: 6454: 6447: 6444: 6439: 6435: 6430: 6425: 6421: 6417: 6414:(8): 100537. 6413: 6409: 6405: 6397: 6394: 6389: 6385: 6381: 6377: 6376:Energy Policy 6369: 6366: 6361: 6357: 6353: 6349: 6345: 6341: 6337: 6330: 6327: 6322: 6318: 6313: 6308: 6304: 6300: 6296: 6289: 6286: 6281: 6277: 6273: 6269: 6265: 6261: 6257: 6250: 6247: 6241: 6236: 6231: 6226: 6222: 6218: 6214: 6207: 6204: 6198: 6193: 6189: 6185: 6184:Energy Policy 6181: 6174: 6171: 6165: 6160: 6156: 6152: 6148: 6141: 6138: 6133: 6129: 6125: 6121: 6117: 6113: 6109: 6105: 6101: 6097: 6089: 6086: 6081: 6077: 6073: 6069: 6062: 6059: 6053: 6048: 6044: 6040: 6036: 6029: 6026: 6021: 6017: 6013: 6009: 6004: 5999: 5994: 5989: 5985: 5981: 5977: 5970: 5967: 5962: 5958: 5954: 5950: 5943: 5940: 5935: 5931: 5927: 5923: 5919: 5915: 5907: 5904: 5899: 5895: 5891: 5887: 5882: 5877: 5873: 5869: 5865: 5861: 5857: 5853: 5849: 5838: 5836: 5832: 5820: 5816: 5810: 5807: 5803: 5797: 5792: 5788: 5784: 5780: 5776: 5772: 5765: 5762: 5749: 5743: 5740: 5728: 5724: 5717: 5714: 5702: 5701: 5696: 5689: 5686: 5674: 5670: 5663: 5660: 5656: 5651: 5648: 5643: 5639: 5635: 5631: 5627: 5623: 5619: 5615: 5614:Nature Energy 5607: 5604: 5591: 5587: 5581: 5578: 5574: 5570: 5565: 5562: 5558: 5553: 5550: 5545: 5541: 5535: 5532: 5528: 5523: 5520: 5516: 5511: 5508: 5504: 5499: 5496: 5491: 5487: 5483: 5479: 5474: 5473:11573/1588399 5469: 5464: 5459: 5455: 5451: 5447: 5440: 5437: 5432: 5428: 5424: 5420: 5416: 5412: 5404: 5401: 5396: 5392: 5388: 5384: 5380: 5376: 5372: 5368: 5365:(6263): 918. 5364: 5360: 5353: 5350: 5345: 5341: 5337: 5333: 5329: 5325: 5321: 5317: 5309: 5306: 5301: 5297: 5293: 5289: 5285: 5281: 5277: 5273: 5269: 5265: 5257: 5255: 5251: 5246: 5239: 5236: 5231: 5227: 5223: 5219: 5215: 5211: 5204: 5201: 5188: 5184: 5177: 5174: 5169: 5165: 5161: 5157: 5150: 5147: 5135: 5131: 5124: 5121: 5108: 5104: 5098: 5095: 5091: 5086: 5083: 5078: 5074: 5070: 5066: 5062: 5058: 5054: 5050: 5046: 5039: 5036: 5031: 5027: 5023: 5019: 5015: 5008: 5005: 5000: 4996: 4992: 4988: 4984: 4980: 4976: 4972: 4968: 4964: 4960: 4956: 4952: 4945: 4943: 4941: 4939: 4935: 4930: 4926: 4922: 4918: 4914: 4910: 4906: 4902: 4898: 4894: 4890: 4883: 4880: 4875: 4871: 4867: 4863: 4859: 4855: 4851: 4844: 4842: 4840: 4838: 4836: 4832: 4827: 4823: 4818: 4813: 4809: 4805: 4801: 4794: 4792: 4788: 4783: 4779: 4775: 4771: 4767: 4763: 4756: 4753: 4749: 4744: 4741: 4737: 4732: 4729: 4716: 4710: 4707: 4702: 4698: 4693: 4688: 4684: 4680: 4676: 4669: 4666: 4661: 4657: 4653: 4649: 4642: 4639: 4626: 4622: 4616: 4613: 4609: 4605: 4600: 4597: 4593: 4588: 4585: 4580: 4576: 4572: 4568: 4564: 4560: 4556: 4552: 4545: 4542: 4537: 4533: 4530:: A235–A243. 4529: 4525: 4517: 4514: 4509: 4505: 4501: 4497: 4490: 4487: 4480: 4477: 4464: 4458: 4455: 4442: 4438: 4432: 4429: 4417: 4413: 4406: 4403: 4398: 4394: 4389: 4384: 4380: 4376: 4372: 4368: 4364: 4360: 4356: 4352: 4348: 4341: 4338: 4333: 4329: 4325: 4321: 4317: 4313: 4305: 4302: 4290: 4286: 4279: 4276: 4271: 4267: 4263: 4259: 4252: 4249: 4244: 4240: 4235: 4230: 4226: 4222: 4218: 4211: 4208: 4203: 4199: 4195: 4191: 4184: 4181: 4176: 4172: 4168: 4164: 4159: 4154: 4150: 4146: 4142: 4135: 4132: 4127: 4123: 4118: 4113: 4109: 4105: 4102:(4): 040801. 4101: 4097: 4093: 4086: 4083: 4078: 4074: 4070: 4066: 4062: 4058: 4050: 4047: 4042: 4038: 4033: 4028: 4024: 4020: 4016: 4012: 4008: 4001: 3998: 3986: 3982: 3975: 3972: 3967: 3963: 3959: 3955: 3951: 3947: 3942: 3937: 3933: 3929: 3925: 3918: 3915: 3910: 3906: 3901: 3896: 3892: 3888: 3884: 3880: 3876: 3869: 3866: 3862: 3857: 3854: 3850: 3845: 3842: 3837: 3833: 3829: 3825: 3821: 3814: 3811: 3799: 3795: 3788: 3785: 3780: 3776: 3772: 3768: 3764: 3760: 3749: 3746: 3741: 3737: 3732: 3727: 3723: 3719: 3715: 3708: 3705: 3700: 3696: 3692: 3688: 3684: 3680: 3676: 3672: 3657: 3654: 3649: 3645: 3641: 3637: 3633: 3629: 3622: 3619: 3614: 3610: 3606: 3602: 3598: 3594: 3590: 3586: 3582: 3578: 3563: 3560: 3555: 3551: 3547: 3543: 3539: 3535: 3531: 3527: 3523: 3519: 3503: 3500: 3495: 3491: 3487: 3483: 3479: 3472: 3469: 3464: 3460: 3456: 3452: 3433: 3431: 3427: 3415: 3411: 3407: 3403: 3399: 3395: 3390: 3385: 3381: 3377: 3373: 3366: 3363: 3350: 3346: 3340: 3337: 3333: 3328: 3325: 3320: 3316: 3312: 3308: 3305:(4): 725–29. 3304: 3300: 3293: 3290: 3278: 3274: 3267: 3265: 3261: 3256: 3252: 3248: 3244: 3233: 3231: 3227: 3222: 3218: 3213: 3208: 3204: 3200: 3196: 3189: 3186: 3181: 3177: 3173: 3169: 3165: 3161: 3157: 3150: 3147: 3135: 3131: 3124: 3121: 3116: 3112: 3108: 3104: 3100: 3096: 3092: 3088: 3087:Nature Energy 3081: 3078: 3066: 3062: 3055: 3052: 3047: 3043: 3039: 3035: 3031: 3027: 3019: 3016: 3011: 3007: 3002: 2997: 2993: 2989: 2985: 2978: 2975: 2963: 2959: 2955: 2951: 2947: 2943: 2942:Nano Research 2939: 2932: 2929: 2917: 2913: 2906: 2903: 2899: 2894: 2892: 2888: 2883: 2879: 2875: 2871: 2864: 2861: 2856: 2852: 2848: 2844: 2840: 2836: 2832: 2828: 2821: 2818: 2813: 2809: 2805: 2801: 2797: 2793: 2789: 2785: 2781: 2777: 2770: 2767: 2762: 2758: 2754: 2750: 2743: 2740: 2728: 2724: 2717: 2714: 2709: 2705: 2700: 2695: 2691: 2687: 2683: 2679: 2675: 2671: 2667: 2660: 2657: 2653: 2648: 2645: 2633: 2629: 2622: 2619: 2614: 2610: 2605: 2604:1721.1/103047 2600: 2595: 2590: 2586: 2582: 2578: 2574: 2570: 2563: 2560: 2555: 2551: 2547: 2543: 2536: 2533: 2528: 2524: 2520: 2516: 2512: 2508: 2504: 2500: 2496: 2492: 2485: 2482: 2477: 2473: 2469: 2465: 2458: 2455: 2450: 2446: 2442: 2438: 2434: 2430: 2426: 2422: 2418: 2414: 2407: 2404: 2399: 2395: 2391: 2387: 2380: 2377: 2372: 2368: 2364: 2360: 2353: 2350: 2345: 2341: 2337: 2333: 2329: 2325: 2321: 2317: 2313: 2309: 2302: 2299: 2286: 2285:Science Daily 2282: 2276: 2273: 2268: 2264: 2260: 2256: 2241:Spinel and Li 2233:anatase, LiTi 2221: 2218: 2213: 2209: 2205: 2201: 2197: 2193: 2189: 2182: 2179: 2174: 2170: 2166: 2162: 2158: 2154: 2150: 2143: 2140: 2135: 2131: 2127: 2123: 2119: 2115: 2111: 2104: 2101: 2096: 2092: 2088: 2084: 2080: 2076: 2072: 2065: 2062: 2057: 2053: 2049: 2045: 2041: 2037: 2033: 2026: 2023: 2019: 2014: 2012: 2008: 2003: 1999: 1994: 1989: 1984: 1979: 1975: 1971: 1967: 1960: 1957: 1952: 1948: 1944: 1940: 1936: 1932: 1928: 1921: 1918: 1913: 1909: 1904: 1899: 1895: 1891: 1886: 1881: 1877: 1873: 1869: 1861: 1858: 1852: 1848: 1845: 1843: 1840: 1839: 1835: 1833: 1825: 1818: 1816: 1814: 1806: 1804: 1801: 1797: 1794: 1792: 1788: 1784: 1780: 1776: 1771: 1763: 1761: 1759: 1755: 1747: 1745: 1743: 1739: 1735: 1730: 1726: 1724: 1719: 1717: 1712: 1706: 1704: 1697: 1695: 1693: 1689: 1685: 1677: 1675: 1672: 1667: 1665: 1660: 1659:computer chip 1656: 1652: 1648: 1643: 1640: 1635: 1631: 1623: 1618: 1616: 1614: 1610: 1606: 1580: 1533: 1531: 1528: 1524: 1520: 1516: 1512: 1508: 1504: 1497:Water-in-salt 1496: 1494: 1492: 1487: 1486:superhalogens 1483: 1475: 1470: 1468: 1465: 1464:ferroelectric 1457: 1455: 1449:Thiophosphate 1448: 1446: 1443: 1438: 1430: 1428: 1426: 1422: 1414: 1412: 1410: 1398: 1394: 1390: 1382: 1380: 1374: 1373:nanocomposite 1352: 1349: 1344: 1338: 1330: 1324:Iron Fluoride 1323: 1321: 1319: 1315: 1310: 1305: 1298: 1296: 1294: 1290: 1289:lithium oxide 1286: 1281: 1277: 1271: 1263: 1261: 1251: 1248:patterns and 1247: 1206: 1198: 1196: 1193: 1188: 1181: 1176: 1172: 1160: 1158: 1156: 1152: 1148: 1143: 1139: 1133: 1125: 1122: 1114: 1112: 1110: 1106: 1102: 1094: 1092: 1089: 1085: 1081: 1073: 1065: 1063: 1060: 1052: 1050: 1048: 1032: 1028: 1024: 1016: 1014: 1000: 996: 988: 975: 971: 967: 959: 957: 955: 951: 947: 943: 939: 935: 931: 927: 922: 910: 906: 902: 893: 891: 889: 885: 881: 876: 872: 864: 862: 860: 851: 849: 847: 843: 839: 835: 834:power density 831: 826: 822: 813: 811: 796: 794: 750: 746: 723: 721: 702: 700: 697: 693: 689: 685: 680: 676: 664: 660: 656: 648: 646: 642: 639: 635: 630: 622: 620: 609: 606: 601: 598: 590: 588: 585: 584:nanoparticles 580: 578: 574: 566: 564: 560: 558: 557:nanoparticles 552: 546: 542: 538: 534: 530: 525: 517: 515: 513: 509: 506: 501: 499: 495: 490: 488: 480: 477: 472: 470: 465: 459: 451: 447: 446:Doron Aurbach 442: 440: 436: 432: 428: 424: 420: 402: 395: 393: 386: 384: 382: 358: 356: 338: 334: 330: 322: 311: 307: 303: 295: 293: 287: 282: 274: 272: 268: 264: 262: 261:carbonization 253: 251: 249: 245: 240: 233: 228: 226: 224: 220: 216: 214: 210: 206: 202: 194: 191: 176: 173: 165: 155: 150: 148: 144: 140: 133: 124: 123: 114: 111: 103: 93: 89: 85: 79: 78: 73:This article 71: 62: 61: 56: 54: 47: 46: 41: 40: 35: 30: 21: 20: 6810: 6733: 6641:Fusion power 6523: 6517: 6492: 6488: 6481: 6456: 6452: 6446: 6411: 6407: 6396: 6379: 6375: 6368: 6343: 6339: 6329: 6302: 6298: 6288: 6263: 6259: 6249: 6220: 6216: 6206: 6187: 6183: 6173: 6154: 6150: 6140: 6099: 6095: 6088: 6071: 6067: 6061: 6042: 6038: 6028: 5983: 5979: 5969: 5952: 5948: 5942: 5917: 5913: 5906: 5855: 5851: 5822:. Retrieved 5818: 5809: 5800: 5778: 5774: 5764: 5752:. Retrieved 5742: 5730:. Retrieved 5726: 5716: 5704:. Retrieved 5698: 5688: 5676:. Retrieved 5672: 5662: 5650: 5620:(1): 15009. 5617: 5613: 5606: 5594:. Retrieved 5589: 5580: 5572: 5564: 5552: 5544:news.psu.edu 5543: 5534: 5522: 5510: 5498: 5453: 5449: 5439: 5414: 5410: 5403: 5362: 5358: 5352: 5319: 5315: 5308: 5267: 5263: 5238: 5213: 5209: 5203: 5191:. Retrieved 5186: 5176: 5159: 5155: 5149: 5137:. Retrieved 5133: 5123: 5111:. Retrieved 5106: 5097: 5085: 5052: 5048: 5038: 5021: 5017: 5007: 4958: 4954: 4896: 4893:Nano Letters 4892: 4882: 4857: 4853: 4807: 4803: 4765: 4761: 4755: 4743: 4731: 4719:. Retrieved 4709: 4682: 4678: 4668: 4651: 4647: 4641: 4629:. Retrieved 4624: 4615: 4607: 4599: 4587: 4554: 4550: 4544: 4527: 4523: 4516: 4499: 4495: 4489: 4479: 4467:. Retrieved 4457: 4445:. Retrieved 4440: 4431: 4419:. Retrieved 4415: 4405: 4354: 4350: 4340: 4318:(1): 82–88. 4315: 4311: 4304: 4292:. Retrieved 4288: 4278: 4261: 4257: 4251: 4224: 4220: 4210: 4193: 4189: 4183: 4148: 4144: 4134: 4099: 4095: 4085: 4060: 4056: 4049: 4014: 4010: 4000: 3988:. Retrieved 3984: 3974: 3931: 3927: 3917: 3882: 3878: 3868: 3856: 3844: 3827: 3823: 3813: 3801:. Retrieved 3797: 3787: 3762: 3758: 3748: 3721: 3717: 3707: 3674: 3670: 3656: 3631: 3627: 3621: 3580: 3576: 3562: 3521: 3517: 3502: 3485: 3481: 3471: 3454: 3450: 3417:. Retrieved 3379: 3375: 3365: 3353:. Retrieved 3349:the original 3339: 3327: 3302: 3298: 3292: 3280:. Retrieved 3276: 3246: 3242: 3202: 3198: 3188: 3163: 3159: 3149: 3137:. Retrieved 3133: 3123: 3093:(2): 15029. 3090: 3086: 3080: 3068:. Retrieved 3064: 3054: 3029: 3025: 3018: 2994:: e1552334. 2991: 2987: 2977: 2965:. Retrieved 2945: 2941: 2931: 2919:. Retrieved 2915: 2905: 2876:(1): 56–72. 2873: 2869: 2863: 2833:(1): 31–35. 2830: 2826: 2820: 2779: 2775: 2769: 2752: 2748: 2742: 2730:. Retrieved 2726: 2716: 2673: 2669: 2659: 2647: 2635:. Retrieved 2631: 2621: 2576: 2572: 2562: 2545: 2541: 2535: 2494: 2490: 2484: 2467: 2463: 2457: 2416: 2412: 2406: 2389: 2385: 2379: 2362: 2358: 2352: 2311: 2307: 2301: 2289:. Retrieved 2284: 2275: 2258: 2254: 2220: 2195: 2191: 2181: 2156: 2152: 2142: 2117: 2114:Nano Letters 2113: 2103: 2078: 2074: 2064: 2039: 2035: 2025: 1973: 1969: 1959: 1934: 1930: 1920: 1875: 1871: 1860: 1826: 1822: 1810: 1798: 1795: 1781: 1777: 1773: 1757: 1753: 1751: 1731: 1727: 1720: 1713: 1710: 1701: 1681: 1668: 1644: 1627: 1579:ionic liquid 1537: 1500: 1479: 1476:Superhalogen 1461: 1452: 1444: 1440: 1418: 1395:in a liquid 1389:electrolytes 1386: 1353: 1348:Ball milling 1345: 1327: 1302: 1273: 1202: 1192:A123 Systems 1189: 1164: 1135: 1098: 1069: 1056: 1020: 998: 986: 963: 897: 880:flow battery 868: 855: 817: 800: 734: 706: 659:Eduard Zintl 655:Zintl phases 653:Lithium tin 652: 643: 626: 613: 594: 581: 570: 561: 553: 527: 502: 491: 484: 476:Hany Eitouni 466: 443: 399: 390: 362: 299: 278: 269: 265: 257: 241: 237: 217: 204: 203: 201: 186: 168: 162:January 2020 159: 136: 106: 100:January 2020 97: 74: 50: 43: 37: 36:Please help 33: 6382:: 535–545. 6346:: 425–451. 6299:IEEE Access 6240:2117/102963 6102:: 497–507. 6074:: 200–210. 6003:2117/126136 5986:: 354–363. 5920:: 701–718. 5781:: 273–281. 5590:ZME Science 5162:: 331–336. 5113:10 February 5055:: 435–442. 4654:: 305–313. 4648:Nano Energy 4357:(1): 7113. 3934:: 151–156. 3830:: 482–489. 3803:10 February 3765:: 317–323. 3724:: 232–244. 3718:Nano Energy 3478:Edstrom, K. 3457:: 307–309. 3419:20 November 2755:: 318–322. 2732:10 February 2198:: 296–303. 1937:: 451–468. 1800:Nanosensors 1707:Flexibility 1431:Solid-state 1387:Currently, 1383:Electrolyte 6780:Smart grid 6609:Production 5858:(1): 165. 5819:LargePower 5596:7 February 5505:, PC World 4810:: 100779. 4625:KurzweilAI 4017:: 97–106. 3990:2 February 3488:: A86-91. 3389:1504.07047 3166:: 159927. 3032:: 105352. 2579:: 7436–9. 2548:: 143–47. 1993:10566/7724 1976:: 100233. 1853:References 1716:Miura fold 1678:Durability 1655:smartphone 1649:developed 1619:Management 1309:ionic bond 1130:See also: 1119:See also: 852:Semi-solid 629:nanofibers 84:improve it 39:improve it 6542:cite book 6438:238701303 6360:241657732 6321:182891496 6280:242911477 6266:: 35–44. 6223:(4): 10. 6217:Batteries 6190:: 22–30. 6157:(1): 33. 6151:Batteries 6132:219552264 6045:(2): 24. 5955:: 64–74. 5934:115675123 5898:235718828 5754:7 January 5732:7 January 5727:New Atlas 5706:7 January 5678:7 January 5673:New Atlas 5490:237655120 5482:2542-4785 5431:1754-5706 5395:206643843 5379:0036-8075 5336:1521-3773 5300:206637574 5284:0036-8075 5139:6 January 5134:New Atlas 5077:0378-7753 4999:201967393 4983:1476-4660 4921:1530-6984 4874:1754-5706 4826:2451-9103 4782:2365-6549 4721:28 August 4631:6 January 4447:6 January 4421:7 January 4379:2045-2322 4332:2050-7488 4294:7 January 4289:New Atlas 4175:252374044 4167:1847-9286 4126:2166-2746 4077:0013-4686 4063:: 91–99. 4041:0378-7753 3966:139973258 3950:2405-8297 3779:1388-2481 3740:2211-2855 3699:0013-4651 3648:0925-8388 3613:135963600 3605:0022-2461 3554:104470427 3546:0378-7753 3524:: 50–61. 3282:6 January 3277:New Atlas 3221:0013-4651 3180:0925-8388 3139:6 January 3134:New Atlas 3115:256713197 3070:6 January 3065:New Atlas 3046:251820707 3010:1687-8434 2921:7 January 2916:New Atlas 2676:: 16190. 2632:New Atlas 2470:: 41–99. 2449:205009092 2291:7 January 2261:: 64–75. 2212:0013-4686 2173:0378-7753 2134:1530-6984 2095:1754-5706 2056:2574-0962 2002:2666-5239 1951:2095-4956 1894:0009-2665 1787:nanowires 1688:algorithm 1664:dendrites 1642:density. 1409:dendrites 869:In 2007, 846:half-cell 679:germanium 638:magnesium 458:dioxolane 441:systems. 429:and some 337:nanotubes 327:polytype 302:Bell Labs 221:(AI) and 154:talk page 88:verifying 45:talk page 6828:Category 6666:Nantenna 6626:Biofuels 6124:32513441 6020:54168385 6012:30496965 5890:34215731 5642:28230945 5387:26586752 5344:27120336 5292:26586759 5193:15 March 4991:31501555 4929:23106167 4701:92403112 4608:EE Times 4579:26451674 4397:25408200 4243:10927405 3909:23591899 3885:: 1732. 3406:26618617 2962:31924978 2855:18654447 2812:35269951 2804:15867920 2708:26536830 2637:3 August 2613:26081242 2527:36607505 2519:17748676 2441:11028997 2336:12635268 1912:34529918 1836:See also 1791:aerogels 1651:software 1624:Charging 1515:molality 1482:halogens 1105:seawater 1095:Seawater 946:graphite 944:such as 573:graphene 545:graphite 512:hydrogen 508:nanofoam 505:graphene 487:graphene 359:Niobates 329:brookite 248:graphite 6691:Storage 6497:Bibcode 6495:: 1–9. 6461:Bibcode 6416:Bibcode 6104:Bibcode 5881:8253776 5860:Bibcode 5824:5 March 5783:Bibcode 5622:Bibcode 5359:Science 5264:Science 5218:Bibcode 5057:Bibcode 4963:Bibcode 4901:Bibcode 4685:: A50. 4571:1237845 4469:22 June 4441:R&D 4388:5382707 4359:Bibcode 4104:Bibcode 4019:Bibcode 3958:1606379 3887:Bibcode 3679:Bibcode 3585:Bibcode 3526:Bibcode 3414:9956207 3307:Bibcode 3095:Bibcode 2835:Bibcode 2784:Bibcode 2699:4633639 2678:Bibcode 2581:Bibcode 2499:Bibcode 2491:Science 2421:Bibcode 2344:4251015 2316:Bibcode 1903:9227745 1807:Economy 1698:Thermal 1511:aqueous 1287:to the 1175:olivine 1086:coated 1082:used a 1053:Glasses 1029:at 2.5 954:silicon 938:olivine 921:lithium 901:spinels 894:Cathode 675:silicon 537:lithium 533:element 529:Silicon 518:Silicon 401:Lithium 396:Lithium 321:Anatase 306:anatase 281:lithium 82:Please 6602:Energy 6595:Fields 6530:  6436:  6358:  6319:  6278:  6130:  6122:  6018:  6010:  5932:  5896:  5888:  5878:  5802:cells. 5640:  5488:  5480:  5429:  5393:  5385:  5377:  5342:  5334:  5298:  5290:  5282:  5075:  4997:  4989:  4981:  4927:  4919:  4872:  4824:  4780:  4699:  4577:  4569:  4484:(1998) 4395:  4385:  4377:  4330:  4241:  4173:  4165:  4124:  4075:  4039:  3964:  3956:  3948:  3907:  3777:  3738:  3697:  3646:  3611:  3603:  3552:  3544:  3412:  3404:  3355:4 June 3219:  3178:  3113:  3044:  3008:  2967:4 June 2960:  2853:  2810:  2802:  2706:  2696:  2611:  2525:  2517:  2447:  2439:  2413:Nature 2342:  2334:  2308:Nature 2210:  2171:  2132:  2093:  2054:  2000:  1949:  1910:  1900:  1892:  1684:Canada 1657:and a 1653:for a 1601:LiTFSI 1583:0.8Pyr 1521:to 21 1403:, LiBF 1335:) and 1318:cobalt 1314:nickel 1285:cobalt 1165:LiFePO 1153:, and 1109:W·h/kg 1088:sulfur 1066:Sulfur 1009:– LiBO 974:Subaru 942:anodes 911:or LiV 577:nickel 469:micron 310:spinel 286:lithia 229:Design 147:relate 6758:Other 6434:S2CID 6356:S2CID 6317:S2CID 6276:S2CID 6128:S2CID 6016:S2CID 5930:S2CID 5894:S2CID 5638:S2CID 5486:S2CID 5450:Joule 5391:S2CID 5296:S2CID 5024:(4). 4995:S2CID 4697:S2CID 4171:S2CID 3962:S2CID 3609:S2CID 3550:S2CID 3410:S2CID 3384:arXiv 3111:S2CID 3042:S2CID 2958:S2CID 2808:S2CID 2523:S2CID 2445:S2CID 2340:S2CID 1723:yarns 1647:Qnovo 1471:Salts 1393:salts 1240:MnSiO 1232:MnSiO 1218:MnSiO 1041:-LiMO 1031:volts 926:anode 836:than 425:, or 6812:List 6548:link 6528:ISBN 6120:PMID 6008:PMID 5886:PMID 5826:2016 5756:2017 5734:2017 5708:2017 5680:2017 5598:2016 5478:ISSN 5427:ISSN 5383:PMID 5375:ISSN 5340:PMID 5332:ISSN 5288:PMID 5280:ISSN 5195:2017 5141:2017 5115:2016 5073:ISSN 4987:PMID 4979:ISSN 4925:PMID 4917:ISSN 4870:ISSN 4822:ISSN 4778:ISSN 4723:2013 4633:2017 4575:PMID 4567:OSTI 4471:2012 4449:2017 4423:2017 4393:PMID 4375:ISSN 4328:ISSN 4296:2017 4239:PMID 4163:ISSN 4122:ISSN 4073:ISSN 4037:ISSN 3992:2017 3954:OSTI 3946:ISSN 3905:PMID 3805:2016 3775:ISSN 3736:ISSN 3695:ISSN 3644:ISSN 3601:ISSN 3542:ISSN 3421:2021 3402:PMID 3357:2013 3284:2017 3247:2011 3217:ISSN 3176:ISSN 3141:2017 3072:2017 3006:ISSN 2992:2022 2969:2013 2923:2017 2851:PMID 2800:PMID 2734:2016 2704:PMID 2639:2021 2609:PMID 2515:PMID 2437:PMID 2332:PMID 2293:2017 2208:ISSN 2169:ISSN 2130:ISSN 2091:ISSN 2052:ISSN 1998:ISSN 1947:ISSN 1908:PMID 1890:ISSN 1785:and 1692:ions 1563:0.03 1554:0.09 1545:0.88 1540:LiNi 1509:for 1339:(FeF 1331:(FeF 1316:and 1256:@SiO 1155:Toda 1149:and 999:e.g. 995:NaCl 749:NiAs 745:NiAs 716:, Mn 437:and 312:LiTi 6505:doi 6493:262 6469:doi 6457:189 6424:doi 6384:doi 6380:113 6348:doi 6307:doi 6268:doi 6264:860 6235:hdl 6225:doi 6192:doi 6159:doi 6112:doi 6100:113 6076:doi 6047:doi 5998:hdl 5988:doi 5984:232 5957:doi 5922:doi 5876:PMC 5868:doi 5791:doi 5779:340 5630:doi 5468:hdl 5458:doi 5419:doi 5367:doi 5363:350 5324:doi 5272:doi 5268:350 5226:doi 5214:126 5164:doi 5065:doi 5053:307 5026:doi 4971:doi 4909:doi 4862:doi 4812:doi 4770:doi 4687:doi 4683:157 4656:doi 4559:doi 4532:doi 4528:162 4504:doi 4383:PMC 4367:doi 4320:doi 4266:doi 4229:doi 4198:doi 4153:doi 4112:doi 4065:doi 4061:228 4027:doi 4015:323 3936:doi 3895:doi 3832:doi 3767:doi 3726:doi 3687:doi 3675:155 3636:doi 3632:509 3593:doi 3534:doi 3522:415 3490:doi 3486:150 3459:doi 3394:doi 3315:doi 3303:128 3251:doi 3207:doi 3203:159 3168:doi 3164:875 3103:doi 3034:doi 2996:doi 2950:doi 2878:doi 2843:doi 2792:doi 2757:doi 2753:363 2694:PMC 2686:doi 2599:hdl 2589:doi 2550:doi 2507:doi 2495:192 2472:doi 2429:doi 2417:407 2394:doi 2367:doi 2324:doi 2312:238 2263:doi 2253:". 2229:TiO 2200:doi 2161:doi 2157:164 2122:doi 2083:doi 2044:doi 1988:hdl 1978:doi 1939:doi 1898:PMC 1880:doi 1876:122 1813:CMU 1740:in 1597:0.2 1592:FSI 1517:of 1371:/C 1264:Air 1203:A " 1142:NMC 934:NMC 842:v/v 753:0.2 677:or 649:Tin 543:of 414:/Li 405:TiS 292:O. 145:or 86:by 6830:: 6544:}} 6540:{{ 6503:. 6491:. 6467:. 6455:. 6432:. 6422:. 6410:. 6406:. 6378:. 6354:. 6342:. 6338:. 6315:. 6301:. 6297:. 6274:. 6262:. 6258:. 6233:. 6219:. 6215:. 6188:71 6186:. 6182:. 6153:. 6149:. 6126:. 6118:. 6110:. 6098:. 6072:11 6070:. 6041:. 6037:. 6014:. 6006:. 5996:. 5982:. 5978:. 5951:. 5928:. 5918:93 5916:. 5892:. 5884:. 5874:. 5866:. 5854:. 5850:. 5834:^ 5817:. 5799:. 5789:. 5777:. 5773:. 5725:. 5697:. 5671:. 5636:. 5628:. 5616:. 5588:. 5571:, 5542:. 5484:. 5476:. 5466:. 5452:. 5448:. 5425:. 5413:. 5389:. 5381:. 5373:. 5361:. 5338:. 5330:. 5320:55 5318:. 5294:. 5286:. 5278:. 5266:. 5253:^ 5224:. 5212:. 5185:. 5160:10 5158:. 5132:. 5105:. 5071:. 5063:. 5051:. 5047:. 5020:. 5016:. 4993:. 4985:. 4977:. 4969:. 4959:18 4957:. 4953:. 4937:^ 4923:. 4915:. 4907:. 4897:12 4895:. 4891:. 4868:. 4858:10 4856:. 4852:. 4834:^ 4820:. 4808:30 4806:. 4802:. 4790:^ 4776:. 4764:. 4695:. 4681:. 4677:. 4652:12 4650:. 4623:. 4606:, 4573:. 4565:. 4555:48 4553:. 4526:. 4500:17 4498:. 4439:. 4414:. 4391:. 4381:. 4373:. 4365:. 4353:. 4349:. 4326:. 4314:. 4287:. 4262:10 4260:. 4237:. 4225:55 4223:. 4219:. 4194:19 4192:. 4169:. 4161:. 4149:12 4147:. 4143:. 4120:. 4110:. 4100:35 4098:. 4094:. 4071:. 4059:. 4035:. 4025:. 4013:. 4009:. 3983:. 3960:. 3952:. 3944:. 3932:17 3930:. 3926:. 3903:. 3893:. 3881:. 3877:. 3828:18 3826:. 3796:. 3773:. 3761:. 3734:. 3722:18 3720:. 3716:. 3693:. 3685:. 3673:. 3665:Sn 3642:. 3630:. 3607:. 3599:. 3591:. 3581:52 3579:. 3571:Sn 3548:. 3540:. 3532:. 3520:. 3512:Sn 3508:Cu 3484:. 3453:. 3445:Sn 3441:Cu 3429:^ 3408:. 3400:. 3392:. 3380:28 3378:. 3374:. 3313:. 3301:. 3275:. 3263:^ 3245:. 3229:^ 3215:. 3201:. 3197:. 3174:. 3162:. 3158:. 3132:. 3109:. 3101:. 3089:. 3063:. 3040:. 3030:55 3028:. 3004:. 2990:. 2986:. 2956:. 2944:. 2940:. 2914:. 2890:^ 2872:. 2849:. 2841:. 2829:. 2806:. 2798:. 2790:. 2778:. 2751:. 2725:. 2702:. 2692:. 2684:. 2672:. 2668:. 2630:. 2607:. 2597:. 2587:. 2575:. 2571:. 2546:54 2544:. 2521:. 2513:. 2505:. 2493:. 2468:12 2466:. 2443:. 2435:. 2427:. 2415:. 2390:23 2388:. 2363:23 2361:. 2338:. 2330:. 2322:. 2310:. 2283:. 2259:53 2257:. 2245:Ti 2206:. 2196:70 2194:. 2190:. 2167:. 2155:. 2151:. 2128:. 2118:13 2116:. 2112:. 2089:. 2077:. 2073:. 2050:. 2038:. 2034:. 2010:^ 1996:. 1986:. 1972:. 1968:. 1945:. 1935:57 1933:. 1929:. 1906:. 1896:. 1888:. 1874:. 1870:. 1758:cm 1666:. 1588:14 1558:Mn 1549:Co 1493:. 1411:. 1320:. 1209:Li 1037:MO 983:24 979:10 952:, 907:, 903:, 890:. 785:Sn 776:Sn 774:22 763:Sn 739:Sn 735:Cu 728:Sn 724:Cu 712:Sn 669:Sn 667:22 456:, 421:, 369:13 347:Ti 48:. 6580:e 6573:t 6566:v 6550:) 6536:. 6511:. 6507:: 6499:: 6475:. 6471:: 6463:: 6440:. 6426:: 6418:: 6412:2 6390:. 6386:: 6362:. 6350:: 6344:6 6323:. 6309:: 6303:7 6282:. 6270:: 6243:. 6237:: 6227:: 6221:3 6200:. 6194:: 6167:. 6161:: 6155:5 6134:. 6114:: 6106:: 6082:. 6078:: 6055:. 6049:: 6043:9 6022:. 6000:: 5990:: 5963:. 5959:: 5953:6 5936:. 5924:: 5900:. 5870:: 5862:: 5856:8 5846:4 5828:. 5793:: 5785:: 5758:. 5736:. 5710:. 5682:. 5644:. 5632:: 5624:: 5618:1 5600:. 5546:. 5492:. 5470:: 5460:: 5454:5 5433:. 5421:: 5415:9 5397:. 5369:: 5346:. 5326:: 5302:. 5274:: 5247:. 5232:. 5228:: 5220:: 5197:. 5170:. 5166:: 5143:. 5117:. 5079:. 5067:: 5059:: 5032:. 5028:: 5022:5 5001:. 4973:: 4965:: 4931:. 4911:: 4903:: 4876:. 4864:: 4828:. 4814:: 4784:. 4772:: 4766:1 4725:. 4703:. 4689:: 4662:. 4658:: 4635:. 4581:. 4561:: 4538:. 4534:: 4510:. 4506:: 4473:. 4451:. 4425:. 4399:. 4369:: 4361:: 4355:4 4334:. 4322:: 4316:1 4298:. 4272:. 4268:: 4245:. 4231:: 4204:. 4200:: 4177:. 4155:: 4128:. 4114:: 4106:: 4079:. 4067:: 4043:. 4029:: 4021:: 3994:. 3968:. 3938:: 3911:. 3897:: 3889:: 3883:4 3838:. 3834:: 3807:. 3781:. 3769:: 3763:3 3755:2 3742:. 3728:: 3701:. 3689:: 3681:: 3667:5 3663:6 3650:. 3638:: 3615:. 3595:: 3587:: 3573:5 3569:6 3556:. 3536:: 3528:: 3514:5 3510:6 3496:. 3492:: 3465:. 3461:: 3455:2 3447:5 3443:6 3439:x 3423:. 3396:: 3386:: 3359:. 3321:. 3317:: 3309:: 3286:. 3257:. 3253:: 3239:2 3223:. 3209:: 3182:. 3170:: 3143:. 3117:. 3105:: 3097:: 3091:1 3074:. 3048:. 3036:: 3012:. 2998:: 2971:. 2952:: 2946:6 2925:. 2884:. 2880:: 2874:4 2857:. 2845:: 2837:: 2831:3 2814:. 2794:: 2786:: 2780:4 2763:. 2759:: 2736:. 2710:. 2688:: 2680:: 2674:5 2641:. 2615:. 2601:: 2591:: 2583:: 2577:6 2556:. 2552:: 2529:. 2509:: 2501:: 2478:. 2474:: 2451:. 2431:: 2423:: 2400:. 2396:: 2373:. 2369:: 2346:. 2326:: 2318:: 2295:. 2269:. 2265:: 2251:4 2249:O 2247:2 2243:2 2239:4 2237:O 2235:2 2231:2 2227:x 2214:. 2202:: 2175:. 2163:: 2136:. 2124:: 2097:. 2085:: 2079:7 2058:. 2046:: 2040:4 2004:. 1990:: 1980:: 1974:9 1953:. 1941:: 1914:. 1882:: 1830:4 1754:g 1572:2 1567:O 1527:V 1523:m 1405:4 1401:6 1377:3 1369:3 1365:3 1361:2 1357:2 1341:3 1333:2 1258:2 1254:3 1242:4 1238:2 1234:4 1230:2 1223:4 1214:2 1184:4 1167:4 1076:2 1043:2 1039:3 1035:2 1011:2 1007:5 1005:O 1003:2 991:2 989:H 987:n 985:· 981:O 917:8 915:O 913:3 807:2 803:2 791:2 787:5 783:6 778:5 770:2 765:5 761:6 757:2 741:5 737:6 730:5 726:6 718:2 714:5 710:6 671:5 616:3 549:6 462:3 454:3 410:2 377:7 375:O 373:2 367:O 365:5 353:9 351:O 349:4 345:2 341:2 325:2 318:4 316:O 314:2 290:2 193:) 187:( 175:) 169:( 164:) 160:( 156:. 113:) 107:( 102:) 98:( 80:. 55:) 51:(

Index

improve it
talk page
Learn how and when to remove these messages
original research
improve it
verifying
inline citations
Learn how and when to remove this message
synthesis of material
verifiably mention
relate
talk page
Learn how and when to remove this message
Learn how and when to remove this message
lithium-ion batteries
energy density
Artificial intelligence
machine learning
negative electrodes
graphite
carbonization
lithium
lithia
Bell Labs
anatase
spinel
Anatase
brookite
Nanyang Technological University
nanotubes

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.