Knowledge (XXG)

Metric circle

Source đź“ť

772: 296: 382:; Maehara, Hiroshi; Pang, Sabrina Xing Mei; Zeng, Zhenbing (2019), "On the Structure of Discrete Metric Spaces Isometric to Circles", in Du, Ding{-}Zhu; Li, Lian; Sun, Xiaoming; Zhang, Jialin (eds.), 275: 198: 121: 732: 587: 552: 592: 69:, but this term has also been used for other concepts. A metric circle, defined in this way, is unrelated to and should be distinguished from a 399: 384:
Algorithmic Aspects in Information and Management – 13th International Conference, AAIM 2019, Beijing, China, August 6–8, 2019, Proceedings
707: 697: 682: 602: 742: 757: 752: 747: 722: 577: 545: 352: 414:
Katz, Mikhail (1991), "On neighborhoods of the Kuratowski imbedding beyond the first extremum of the diameter functional",
572: 798: 687: 712: 737: 717: 359:, according to which the unit hemisphere is the minimum-area surface having the Riemannian circle as its boundary. 50:
of bounded length. The metric spaces that can be embedded into metric circles can be characterized by a four-point
813: 776: 538: 727: 808: 617: 582: 82: 81:
A metric space is a subspace of a metric circle (or of an equivalently defined metric line, interpreted as a
637: 356: 290: 62: 652: 203: 126: 677: 340: 336: 308: 351:
on the Riemannian circle. This difference in internal metrics between the hemisphere and the disk led
702: 612: 597: 66: 51: 622: 692: 632: 395: 347:, for which opposite points on the unit disk would have distance 2, instead of their distance 47: 88: 803: 627: 607: 561: 509: 463: 423: 387: 521: 475: 437: 672: 647: 517: 471: 433: 662: 657: 792: 379: 85:
case of a metric circle) if every four of its points can be permuted and labeled as
642: 332: 300: 35: 497: 451: 17: 667: 391: 386:, Lecture Notes in Computer Science, vol. 11640, Springer, pp. 83–94, 328: 316: 70: 467: 39: 513: 428: 344: 73:, the subset of a metric space within a given radius from a central point. 295: 484:
those curves on whose developments into the Euclidean space are circles.
324: 304: 43: 323:
can be embedded, without any change of distance, into the metric of
530: 339:. The same metric space would also be obtained from distances on a 294: 534: 303:
are the same as the distance between the same points on a
206: 129: 91: 269: 192: 115: 277:. A space with this property has been called a 123:so that they obey the equalities of distances 546: 452:"On certain mappings of Riemannian manifolds" 8: 588:Grothendieck–Hirzebruch–Riemann–Roch theorem 553: 539: 531: 733:Riemann–Roch theorem for smooth manifolds 427: 311:into which the circle divides the sphere. 205: 128: 90: 27:Great circle with a characteristic length 57:Some authors have called metric circles 368: 374: 372: 343:. This differs from the boundary of a 7: 270:{\displaystyle D(b,c)+D(c,d)=D(b,d)} 193:{\displaystyle D(a,b)+D(b,c)=D(a,c)} 61:, especially in connection with the 698:Riemannian connection on a surface 603:Measurable Riemann mapping theorem 25: 771: 770: 502:Journal of Differential Geometry 683:Riemann's differential equation 593:Hirzebruch–Riemann–Roch theorem 48:rectifiable simple closed curve 708:Riemann–Hilbert correspondence 578:Generalized Riemann hypothesis 498:"Filling Riemannian manifolds" 264: 252: 243: 231: 222: 210: 187: 175: 166: 154: 145: 133: 1: 743:Riemann–Siegel theta function 331:, by mapping the circle to a 77:Characterization of subspaces 758:Riemann–von Mangoldt formula 456:Nagoya Mathematical Journal 392:10.1007/978-3-030-27195-4_8 830: 753:Riemann–Stieltjes integral 748:Riemann–Silberstein vector 723:Riemann–Liouville integral 288: 766: 688:Riemann's minimal surface 568: 468:10.1017/S0027763000011491 46:, or equivalently on any 713:Riemann–Hilbert problems 618:Riemann curvature tensor 583:Grand Riemann hypothesis 573:Cauchy–Riemann equations 496:Gromov, Mikhael (1983), 429:10.4064/fm-137-3-161-175 638:Riemann mapping theorem 450:Kurita, Minoru (1965), 357:filling area conjecture 291:Filling area conjecture 116:{\displaystyle a,b,c,d} 63:filling area conjecture 738:Riemann–Siegel formula 718:Riemann–Lebesgue lemma 653:Riemann series theorem 514:10.4310/jdg/1214509283 312: 271: 194: 117: 678:Riemann zeta function 337:great-circle distance 298: 279:circular metric space 272: 195: 118: 728:Riemann–Roch theorem 416:Polska Akademia Nauk 380:Dress, Andreas W. M. 204: 127: 89: 799:Riemannian geometry 703:Riemannian geometry 613:Riemann Xi function 598:Local zeta function 299:Arc distances on a 67:Riemannian geometry 623:Riemann hypothesis 482:Riemannian circles 335:and its metric to 313: 267: 190: 113: 59:Riemannian circles 30:In mathematics, a 786: 785: 693:Riemannian circle 633:Riemann invariant 401:978-3-030-27194-7 52:triangle equality 18:Riemannian circle 16:(Redirected from 821: 814:Bernhard Riemann 774: 773: 628:Riemann integral 608:Riemann (crater) 562:Bernhard Riemann 555: 548: 541: 532: 525: 524: 493: 487: 486: 480:Here we mean by 447: 441: 440: 431: 411: 405: 404: 376: 350: 322: 276: 274: 273: 268: 199: 197: 196: 191: 122: 120: 119: 114: 21: 829: 828: 824: 823: 822: 820: 819: 818: 809:Metric geometry 789: 788: 787: 782: 762: 673:Riemann surface 648:Riemann problem 564: 559: 529: 528: 495: 494: 490: 449: 448: 444: 413: 412: 408: 402: 378: 377: 370: 365: 348: 320: 315:The Riemannian 293: 287: 202: 201: 125: 124: 87: 86: 79: 28: 23: 22: 15: 12: 11: 5: 827: 825: 817: 816: 811: 806: 801: 791: 790: 784: 783: 781: 780: 767: 764: 763: 761: 760: 755: 750: 745: 740: 735: 730: 725: 720: 715: 710: 705: 700: 695: 690: 685: 680: 675: 670: 665: 663:Riemann sphere 660: 658:Riemann solver 655: 650: 645: 640: 635: 630: 625: 620: 615: 610: 605: 600: 595: 590: 585: 580: 575: 569: 566: 565: 560: 558: 557: 550: 543: 535: 527: 526: 488: 442: 422:(3): 161–175, 406: 400: 367: 366: 364: 361: 353:Mikhael Gromov 289:Main article: 286: 283: 266: 263: 260: 257: 254: 251: 248: 245: 242: 239: 236: 233: 230: 227: 224: 221: 218: 215: 212: 209: 189: 186: 183: 180: 177: 174: 171: 168: 165: 162: 159: 156: 153: 150: 147: 144: 141: 138: 135: 132: 112: 109: 106: 103: 100: 97: 94: 78: 75: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 826: 815: 812: 810: 807: 805: 802: 800: 797: 796: 794: 779: 778: 769: 768: 765: 759: 756: 754: 751: 749: 746: 744: 741: 739: 736: 734: 731: 729: 726: 724: 721: 719: 716: 714: 711: 709: 706: 704: 701: 699: 696: 694: 691: 689: 686: 684: 681: 679: 676: 674: 671: 669: 666: 664: 661: 659: 656: 654: 651: 649: 646: 644: 641: 639: 636: 634: 631: 629: 626: 624: 621: 619: 616: 614: 611: 609: 606: 604: 601: 599: 596: 594: 591: 589: 586: 584: 581: 579: 576: 574: 571: 570: 567: 563: 556: 551: 549: 544: 542: 537: 536: 533: 523: 519: 515: 511: 507: 503: 499: 492: 489: 485: 483: 477: 473: 469: 465: 461: 457: 453: 446: 443: 439: 435: 430: 425: 421: 417: 410: 407: 403: 397: 393: 389: 385: 381: 375: 373: 369: 362: 360: 358: 354: 346: 342: 338: 334: 330: 326: 318: 310: 307:, and on the 306: 302: 297: 292: 284: 282: 280: 261: 258: 255: 249: 246: 240: 237: 234: 228: 225: 219: 216: 213: 207: 184: 181: 178: 172: 169: 163: 160: 157: 151: 148: 142: 139: 136: 130: 110: 107: 104: 101: 98: 95: 92: 84: 76: 74: 72: 68: 64: 60: 55: 53: 49: 45: 41: 37: 33: 32:metric circle 19: 775: 643:Riemann form 508:(1): 1–147, 505: 501: 491: 481: 479: 459: 455: 445: 419: 415: 409: 383: 355:to pose his 333:great circle 314: 301:great circle 278: 80: 58: 56: 36:metric space 31: 29: 668:Riemann sum 462:: 121–142, 329:unit sphere 319:of length 2 317:unit circle 309:hemispheres 71:metric ball 793:Categories 363:References 341:hemisphere 83:degenerate 40:arc length 345:unit disk 325:geodesics 777:Category 804:Circles 522:0697984 476:0175062 438:1110030 285:Filling 34:is the 520:  474:  436:  398:  305:sphere 44:circle 327:on a 42:on a 396:ISBN 200:and 510:doi 464:doi 424:doi 420:137 388:doi 65:in 38:of 795:: 518:MR 516:, 506:18 504:, 500:, 478:, 472:MR 470:, 460:25 458:, 454:, 434:MR 432:, 418:, 394:, 371:^ 281:. 54:. 554:e 547:t 540:v 512:: 466:: 426:: 390:: 349:Ď€ 321:Ď€ 265:) 262:d 259:, 256:b 253:( 250:D 247:= 244:) 241:d 238:, 235:c 232:( 229:D 226:+ 223:) 220:c 217:, 214:b 211:( 208:D 188:) 185:c 182:, 179:a 176:( 173:D 170:= 167:) 164:c 161:, 158:b 155:( 152:D 149:+ 146:) 143:b 140:, 137:a 134:( 131:D 111:d 108:, 105:c 102:, 99:b 96:, 93:a 20:)

Index

Riemannian circle
metric space
arc length
circle
rectifiable simple closed curve
triangle equality
filling area conjecture
Riemannian geometry
metric ball
degenerate
Filling area conjecture

great circle
sphere
hemispheres
unit circle
geodesics
unit sphere
great circle
great-circle distance
hemisphere
unit disk
Mikhael Gromov
filling area conjecture


Dress, Andreas W. M.
doi
10.1007/978-3-030-27195-4_8
ISBN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑