Knowledge

Rokhlin's theorem

Source đź“ť

1815: 1581: 258: 1363: 1715: 1684: 1623: 930: 1184: 1069: 1034: 1851: 1502: 412: 760: 502: 288: 168: 895: 1439: 1403: 712: 668: 594: 377: 328: 137: 86: 1704: 1490: 1459: 1299: 1244: 1134: 1107: 962: 621: 1907:
showed that the  genus is the index of the Atiyah–Singer operator, which is always integral, and is even in dimensions 4 mod 8. For a 4-dimensional manifold, the
536: 860: 840: 817: 452: 432: 1311: 2107: 140: 1109:, so its Rokhlin invariant is 1. This result has some elementary consequences: the Poincaré homology sphere does not admit a smooth embedding in 2137: 1810:{\displaystyle \operatorname {signature} (M)=\Sigma \cdot \Sigma +8\operatorname {Arf} (M,\Sigma )+8\operatorname {ks} (M){\bmod {1}}6} 509: 334:, any even unimodular lattice has signature divisible by 8, so Rokhlin's theorem forces one extra factor of 2 to divide the signature. 2074: 1981: 1947: 2209: 728: 1896: 770: 766: 1632: 1854: 153: 93: 1940:
Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, pp. 85–97
2219: 2129: 1942:, Proceedings of Symposia in Pure Mathematics, vol. XXXII, Providence, Rhode Island: American Mathematics Society, 1908: 2199: 791:
Since Rokhlin's theorem states that the signature of a spin smooth manifold is divisible by 16, the definition of the
1590: 1079: 627:. This manifold shows that Rokhlin's theorem fails for the set of merely topological (rather than smooth) manifolds. 2066: 2010: 50: 900: 1154: 1039: 999: 1576:{\displaystyle \operatorname {signature} (M)=\Sigma \cdot \Sigma +8\operatorname {Arf} (M,\Sigma ){\bmod {1}}6} 2214: 2094:
Signature modulo 16, invariants de Kervaire généralisés et nombres caractéristiques dans la K-théorie réelle
2054: 1824: 984:
is divisible by 8, and an easy application of Rokhlin's theorem shows that its value mod 16 depends only on
634:
is simply connected (or more generally if the first homology group has no 2-torsion), then the vanishing of
35: 1911:
shows that the signature is −8 times the Ă‚ genus, so in dimension 4 this implies Rokhlin's theorem.
1369:
A characteristic sphere is an embedded 2-sphere whose homology class represents the Stiefel–Whitney class
553: 1709:
A generalization of the Freedman-Kirby theorem to topological (rather than smooth) manifolds states that
1921:
is a compact oriented smooth spin manifold of dimension 4 mod 8, then its signature is divisible by 16.
385: 2204: 1876: 557: 505: 253:{\displaystyle Q_{M}\colon H^{2}(M,\mathbb {Z} )\times H^{2}(M,\mathbb {Z} )\rightarrow \mathbb {Z} } 89: 291: 733: 457: 271: 2179: 379:
vanishes, and the signature is −16, so 16 is the best possible number in Rokhlin's theorem.
265: 865: 2133: 2070: 1977: 1943: 1408: 1372: 715: 681: 637: 563: 346: 297: 106: 55: 1689: 1475: 1444: 1284: 2163: 2058: 2042: 1969: 1931: 1461:
to be any small sphere, which has self intersection number 0, so Rokhlin's theorem follows.
1258: 671: 624: 545: 101: 2175: 2147: 2118: 2101: 2084: 2034: 2018: 1991: 1957: 1217: 1112: 1085: 935: 599: 2171: 2143: 2115: 2097: 2080: 2030: 2014: 1998: 1987: 1953: 2044:
An elementary proof of Rochlin's signature theorem and its extension by Guillou and Marin
515: 932:
is defined to be the signature of any smooth compact spin 4-manifold with spin boundary
1904: 1900: 1207: 1148: 1137: 993: 973: 845: 825: 820: 802: 437: 417: 97: 46: 2193: 2183: 1884: 1626: 1935: 1872: 776: 670:
is equivalent to the intersection form being even. This is not true in general: an
17: 2002: 996:
so we can define the Rokhlin invariant of a homology 3-sphere to be the element
549: 2167: 1888: 1358:{\displaystyle \operatorname {signature} (M)=\Sigma \cdot \Sigma {\bmod {1}}6} 539: 340: 27:
On the intersection form of a smooth, closed 4-manifold with a spin structure
2025:
Kervaire, Michel A.; Milnor, John W. (1961), "On 2-spheres in 4-manifolds",
331: 39: 2005:(1960), "Bernoulli numbers, homotopy groups, and a theorem of Rohlin", 1973: 1265:-valued lift of the Rokhlin invariant of integral homology 3-sphere. 623:
of signature 8. Rokhlin's theorem implies that this manifold has no
2007:
Proceedings of the International Congress of Mathematicians, 1958
1968:, Lecture Notes in Mathematics, vol. 1374, Springer-Verlag, 674:
is a compact smooth 4 manifold and has even intersection form II
1706:
is a sphere, so the Kervaire–Milnor theorem is a special case.
1194:
is well defined mod 16, and is called the Rokhlin invariant of
727:
Rokhlin's theorem can be deduced from the fact that the third
1795: 1561: 1343: 1186:
homology sphere), then the signature of any spin 4-manifold
762:
is cyclic of order 24; this is Rokhlin's original approach.
330:
implies that the intersection form is even. By a theorem of
1492:
is a characteristic surface in a smooth compact 4-manifold
1214:, and which evaluates to the Rokhlin invariant of the pair 678:
of signature −8 (not divisible by 16), but the class
1301:
is a characteristic sphere in a smooth compact 4-manifold
1679:{\displaystyle H_{1}(\Sigma ,\mathbb {Z} /2\mathbb {Z} )} 2112:
New results in the theory of four-dimensional manifolds
2114:, Doklady Acad. Nauk. SSSR (N.S.) 84 (1952) 221–224. 1827: 1718: 1692: 1635: 1593: 1505: 1478: 1447: 1411: 1375: 1314: 1287: 1220: 1157: 1115: 1088: 1042: 1002: 938: 903: 868: 848: 828: 805: 736: 684: 640: 602: 566: 518: 460: 440: 420: 388: 349: 300: 274: 171: 109: 58: 30:
In 4-dimensional topology, a branch of mathematics,
1938:(1978), "A geometric proof of Rochlin's theorem", 1845: 1809: 1698: 1678: 1617: 1575: 1484: 1453: 1433: 1397: 1357: 1293: 1238: 1178: 1128: 1101: 1075:any spin 4-manifold bounding the homology sphere. 1063: 1028: 956: 924: 889: 854: 834: 811: 754: 706: 662: 615: 588: 530: 496: 446: 426: 406: 371: 322: 282: 252: 131: 80: 2154:Szűcs, András (2003), "Two Theorems of Rokhlin", 1257:The Rokhlin invariant of M is equal to half the 1082:bounds a spin 4-manifold with intersection form 2027:Proceedings of the National Academy of Sciences 1891:is an integer, and is even if the dimension of 1618:{\displaystyle \operatorname {Arf} (M,\Sigma )} 139:, is divisible by 16. The theorem is named for 1278: 1469: 1261:mod 2. The Casson invariant is viewed as the 8: 976:3-manifold then it bounds a spin 4-manifold 1206:refers to the function whose domain is the 925:{\displaystyle \mathbb {Z} /16\mathbb {Z} } 1179:{\displaystyle \mathbb {Z} /2\mathbb {Z} } 1064:{\displaystyle \mathbb {Z} /2\mathbb {Z} } 1029:{\displaystyle \operatorname {sign} (M)/8} 2096:, MĂ©m. Soc. Math. France 1980/81, no. 5, 1895:is 4 mod 8. This can be deduced from the 1826: 1798: 1794: 1717: 1691: 1669: 1668: 1660: 1656: 1655: 1640: 1634: 1592: 1564: 1560: 1504: 1477: 1446: 1416: 1410: 1380: 1374: 1346: 1342: 1313: 1286: 1219: 1172: 1171: 1163: 1159: 1158: 1156: 1120: 1114: 1093: 1087: 1057: 1056: 1048: 1044: 1043: 1041: 1018: 1001: 937: 918: 917: 909: 905: 904: 902: 867: 847: 827: 804: 746: 741: 735: 689: 683: 645: 639: 607: 601: 571: 565: 517: 486: 474: 459: 439: 419: 398: 394: 391: 390: 387: 354: 348: 305: 299: 276: 275: 273: 246: 245: 235: 234: 219: 205: 204: 189: 176: 170: 114: 108: 63: 57: 1914: 714:does not vanish and is represented by a 1686:. This Arf invariant is obviously 0 if 1846:{\displaystyle \operatorname {ks} (M)} 1887:of dimension divisible by 4 then the 780: 7: 2029:, vol. 47, pp. 1651–1657, 1861:. The Kirby–Siebenmann invariant of 992:. Homology 3-spheres have a unique 1767: 1743: 1737: 1693: 1649: 1609: 1554: 1530: 1524: 1479: 1448: 1339: 1333: 1288: 25: 1879:proved the following theorem: If 538:gives back the last example of a 407:{\displaystyle \mathbb {CP} ^{3}} 2156:Journal of Mathematical Sciences 765:It can also be deduced from the 729:stable homotopy group of spheres 1629:of a certain quadratic form on 718:in the second cohomology group. 343:is compact, 4 dimensional, and 1840: 1834: 1791: 1785: 1770: 1758: 1731: 1725: 1673: 1646: 1612: 1600: 1557: 1545: 1518: 1512: 1428: 1422: 1392: 1386: 1327: 1321: 1233: 1221: 1198:. On a topological 3-manifold 1015: 1009: 951: 939: 884: 872: 701: 695: 657: 651: 583: 577: 480: 461: 366: 360: 317: 311: 242: 239: 225: 209: 195: 126: 120: 75: 69: 49:(or, equivalently, the second 1: 2130:American Mathematical Society 2126:The wild world of 4-manifolds 2041:Matsumoto, Yoichirou (1986), 1204:generalized Rokhlin invariant 1151:3-manifold (for example, any 771:Ă‚ genus and Rochlin's theorem 1909:Hirzebruch signature theorem 755:{\displaystyle \pi _{3}^{S}} 497:{\displaystyle (4-d^{2})d/3} 283:{\displaystyle \mathbb {Z} } 2124:Scorpan, Alexandru (2005), 1966:The Topology of 4-Manifolds 1897:Atiyah–Singer index theorem 783:) gives a geometric proof. 767:Atiyah–Singer index theorem 2236: 2067:Princeton University Press 2011:Cambridge University Press 1855:Kirby–Siebenmann invariant 1279:Kervaire & Milnor 1960 454:is even. It has signature 2065:, Princeton, New Jersey: 1470:Freedman & Kirby 1978 988:and not on the choice of 890:{\displaystyle \mu (N,s)} 504:, which can be seen from 143:, who proved it in 1952. 2055:Michelsohn, Marie-Louise 1434:{\displaystyle w_{2}(M)} 1398:{\displaystyle w_{2}(M)} 1080:PoincarĂ© homology sphere 862:, the Rokhlin invariant 707:{\displaystyle w_{2}(M)} 663:{\displaystyle w_{2}(M)} 589:{\displaystyle w_{2}(M)} 372:{\displaystyle w_{2}(M)} 323:{\displaystyle w_{2}(M)} 132:{\displaystyle H^{2}(M)} 81:{\displaystyle w_{2}(M)} 2210:Differential structures 2168:10.1023/A:1021208007146 1699:{\displaystyle \Sigma } 1485:{\displaystyle \Sigma } 1454:{\displaystyle \Sigma } 1294:{\displaystyle \Sigma } 1275:Kervaire–Milnor theorem 1250:is a spin structure on 795:is deduced as follows: 434:is spin if and only if 294:, and the vanishing of 38:, orientable, closed 4- 1964:Kirby, Robion (1989), 1847: 1811: 1700: 1680: 1619: 1577: 1486: 1466:Freedman–Kirby theorem 1455: 1441:vanishes, we can take 1435: 1399: 1359: 1295: 1240: 1180: 1136:, nor does it bound a 1130: 1103: 1065: 1030: 958: 926: 891: 856: 836: 813: 756: 708: 664: 617: 596:and intersection form 590: 532: 498: 448: 428: 408: 373: 324: 284: 254: 133: 82: 2088:(especially page 280) 1848: 1812: 1701: 1681: 1620: 1578: 1487: 1456: 1436: 1400: 1360: 1296: 1241: 1239:{\displaystyle (N,s)} 1181: 1131: 1129:{\displaystyle S^{4}} 1104: 1102:{\displaystyle E_{8}} 1066: 1031: 959: 957:{\displaystyle (N,s)} 927: 892: 857: 837: 814: 787:The Rokhlin invariant 757: 709: 665: 618: 616:{\displaystyle E_{8}} 591: 533: 499: 449: 429: 409: 382:A complex surface in 374: 325: 285: 255: 134: 83: 51:Stiefel–Whitney class 2220:Theorems in topology 2108:Rokhlin, Vladimir A. 2013:, pp. 454–458, 1883:is a smooth compact 1877:Friedrich Hirzebruch 1825: 1716: 1690: 1633: 1591: 1503: 1476: 1445: 1409: 1373: 1312: 1285: 1218: 1155: 1113: 1086: 1040: 1000: 936: 901: 866: 846: 826: 803: 734: 682: 638: 600: 564: 558:topological manifold 516: 506:Friedrich Hirzebruch 458: 438: 418: 386: 347: 298: 272: 169: 107: 88:vanishes), then the 56: 1999:Kervaire, Michel A. 1143:More generally, if 980:. The signature of 751: 531:{\displaystyle d=4} 2200:Geometric topology 1974:10.1007/BFb0089031 1843: 1807: 1696: 1676: 1615: 1573: 1482: 1451: 1431: 1395: 1355: 1291: 1236: 1176: 1126: 1099: 1061: 1026: 954: 922: 887: 852: 832: 809: 752: 737: 704: 660: 613: 586: 528: 494: 444: 424: 404: 369: 320: 280: 250: 129: 78: 2139:978-0-8218-3749-8 2092:Ochanine, Serge, 2059:Lawson, H. Blaine 1932:Freedman, Michael 1472:) states that if 1281:) states that if 1078:For example, the 855:{\displaystyle N} 835:{\displaystyle s} 812:{\displaystyle N} 793:Rokhlin invariant 510:signature theorem 447:{\displaystyle d} 427:{\displaystyle d} 154:intersection form 94:intersection form 34:states that if a 32:Rokhlin's theorem 18:Rochlin invariant 16:(Redirected from 2227: 2186: 2150: 2104: 2087: 2050: 2049: 2037: 2021: 1994: 1960: 1852: 1850: 1849: 1844: 1816: 1814: 1813: 1808: 1803: 1802: 1705: 1703: 1702: 1697: 1685: 1683: 1682: 1677: 1672: 1664: 1659: 1645: 1644: 1624: 1622: 1621: 1616: 1582: 1580: 1579: 1574: 1569: 1568: 1491: 1489: 1488: 1483: 1460: 1458: 1457: 1452: 1440: 1438: 1437: 1432: 1421: 1420: 1404: 1402: 1401: 1396: 1385: 1384: 1364: 1362: 1361: 1356: 1351: 1350: 1300: 1298: 1297: 1292: 1259:Casson invariant 1245: 1243: 1242: 1237: 1185: 1183: 1182: 1177: 1175: 1167: 1162: 1135: 1133: 1132: 1127: 1125: 1124: 1108: 1106: 1105: 1100: 1098: 1097: 1070: 1068: 1067: 1062: 1060: 1052: 1047: 1035: 1033: 1032: 1027: 1022: 963: 961: 960: 955: 931: 929: 928: 923: 921: 913: 908: 896: 894: 893: 888: 861: 859: 858: 853: 841: 839: 838: 833: 818: 816: 815: 810: 777:Robion Kirby 761: 759: 758: 753: 750: 745: 713: 711: 710: 705: 694: 693: 672:Enriques surface 669: 667: 666: 661: 650: 649: 630:If the manifold 625:smooth structure 622: 620: 619: 614: 612: 611: 595: 593: 592: 587: 576: 575: 554:simply connected 546:Michael Freedman 537: 535: 534: 529: 503: 501: 500: 495: 490: 479: 478: 453: 451: 450: 445: 433: 431: 430: 425: 413: 411: 410: 405: 403: 402: 397: 378: 376: 375: 370: 359: 358: 329: 327: 326: 321: 310: 309: 292:PoincarĂ© duality 289: 287: 286: 281: 279: 259: 257: 256: 251: 249: 238: 224: 223: 208: 194: 193: 181: 180: 141:Vladimir Rokhlin 138: 136: 135: 130: 119: 118: 102:cohomology group 87: 85: 84: 79: 68: 67: 21: 2235: 2234: 2230: 2229: 2228: 2226: 2225: 2224: 2190: 2189: 2153: 2140: 2123: 2091: 2077: 2053: 2047: 2040: 2024: 2003:Milnor, John W. 1997: 1984: 1963: 1950: 1930: 1927: 1917:proved that if 1915:Ochanine (1980) 1823: 1822: 1714: 1713: 1688: 1687: 1636: 1631: 1630: 1589: 1588: 1501: 1500: 1474: 1473: 1443: 1442: 1412: 1407: 1406: 1376: 1371: 1370: 1310: 1309: 1283: 1282: 1271: 1269:Generalizations 1216: 1215: 1208:spin structures 1153: 1152: 1116: 1111: 1110: 1089: 1084: 1083: 1038: 1037: 998: 997: 934: 933: 899: 898: 864: 863: 844: 843: 824: 823: 801: 800: 799:For 3-manifold 789: 732: 731: 725: 716:torsion element 685: 680: 679: 677: 641: 636: 635: 603: 598: 597: 567: 562: 561: 560:with vanishing 514: 513: 470: 456: 455: 436: 435: 416: 415: 389: 384: 383: 350: 345: 344: 301: 296: 295: 270: 269: 215: 185: 172: 167: 166: 149: 110: 105: 104: 59: 54: 53: 28: 23: 22: 15: 12: 11: 5: 2233: 2231: 2223: 2222: 2217: 2215:Surgery theory 2212: 2207: 2202: 2192: 2191: 2188: 2187: 2162:(6): 888–892, 2151: 2138: 2121: 2105: 2089: 2075: 2051: 2038: 2022: 1995: 1982: 1961: 1948: 1926: 1923: 1905:Isadore Singer 1901:Michael Atiyah 1842: 1839: 1836: 1833: 1830: 1819: 1818: 1806: 1801: 1797: 1793: 1790: 1787: 1784: 1781: 1778: 1775: 1772: 1769: 1766: 1763: 1760: 1757: 1754: 1751: 1748: 1745: 1742: 1739: 1736: 1733: 1730: 1727: 1724: 1721: 1695: 1675: 1671: 1667: 1663: 1658: 1654: 1651: 1648: 1643: 1639: 1614: 1611: 1608: 1605: 1602: 1599: 1596: 1585: 1584: 1572: 1567: 1563: 1559: 1556: 1553: 1550: 1547: 1544: 1541: 1538: 1535: 1532: 1529: 1526: 1523: 1520: 1517: 1514: 1511: 1508: 1481: 1450: 1430: 1427: 1424: 1419: 1415: 1394: 1391: 1388: 1383: 1379: 1367: 1366: 1354: 1349: 1345: 1341: 1338: 1335: 1332: 1329: 1326: 1323: 1320: 1317: 1290: 1270: 1267: 1235: 1232: 1229: 1226: 1223: 1190:with boundary 1174: 1170: 1166: 1161: 1138:Mazur manifold 1123: 1119: 1096: 1092: 1059: 1055: 1051: 1046: 1025: 1021: 1017: 1014: 1011: 1008: 1005: 994:spin structure 966: 965: 953: 950: 947: 944: 941: 920: 916: 912: 907: 886: 883: 880: 877: 874: 871: 851: 831: 821:spin structure 808: 788: 785: 749: 744: 740: 724: 721: 720: 719: 703: 700: 697: 692: 688: 675: 659: 656: 653: 648: 644: 628: 610: 606: 585: 582: 579: 574: 570: 543: 527: 524: 521: 493: 489: 485: 482: 477: 473: 469: 466: 463: 443: 423: 401: 396: 393: 380: 368: 365: 362: 357: 353: 336: 335: 319: 316: 313: 308: 304: 278: 262: 261: 260: 248: 244: 241: 237: 233: 230: 227: 222: 218: 214: 211: 207: 203: 200: 197: 192: 188: 184: 179: 175: 161: 160: 148: 145: 128: 125: 122: 117: 113: 100:on the second 98:quadratic form 77: 74: 71: 66: 62: 47:spin structure 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2232: 2221: 2218: 2216: 2213: 2211: 2208: 2206: 2203: 2201: 2198: 2197: 2195: 2185: 2181: 2177: 2173: 2169: 2165: 2161: 2157: 2152: 2149: 2145: 2141: 2135: 2131: 2127: 2122: 2120: 2117: 2113: 2109: 2106: 2103: 2099: 2095: 2090: 2086: 2082: 2078: 2076:0-691-08542-0 2072: 2068: 2064: 2063:Spin geometry 2060: 2056: 2052: 2046: 2045: 2039: 2036: 2032: 2028: 2023: 2020: 2016: 2012: 2008: 2004: 2000: 1996: 1993: 1989: 1985: 1983:0-387-51148-2 1979: 1975: 1971: 1967: 1962: 1959: 1955: 1951: 1949:0-8218-1432-X 1945: 1941: 1937: 1936:Kirby, Robion 1933: 1929: 1928: 1924: 1922: 1920: 1916: 1912: 1910: 1906: 1902: 1898: 1894: 1890: 1886: 1885:spin manifold 1882: 1878: 1874: 1870: 1868: 1864: 1860: 1856: 1837: 1831: 1828: 1804: 1799: 1788: 1782: 1779: 1776: 1773: 1764: 1761: 1755: 1752: 1749: 1746: 1740: 1734: 1728: 1722: 1719: 1712: 1711: 1710: 1707: 1665: 1661: 1652: 1641: 1637: 1628: 1627:Arf invariant 1606: 1603: 1597: 1594: 1570: 1565: 1551: 1548: 1542: 1539: 1536: 1533: 1527: 1521: 1515: 1509: 1506: 1499: 1498: 1497: 1495: 1471: 1467: 1462: 1425: 1417: 1413: 1389: 1381: 1377: 1352: 1347: 1336: 1330: 1324: 1318: 1315: 1308: 1307: 1306: 1304: 1280: 1276: 1268: 1266: 1264: 1260: 1255: 1253: 1249: 1230: 1227: 1224: 1213: 1209: 1205: 1201: 1197: 1193: 1189: 1168: 1164: 1150: 1146: 1141: 1139: 1121: 1117: 1094: 1090: 1081: 1076: 1074: 1053: 1049: 1023: 1019: 1012: 1006: 1003: 995: 991: 987: 983: 979: 975: 971: 948: 945: 942: 914: 910: 881: 878: 875: 869: 849: 829: 822: 806: 798: 797: 796: 794: 786: 784: 782: 778: 774: 772: 768: 763: 747: 742: 738: 730: 722: 717: 698: 690: 686: 673: 654: 646: 642: 633: 629: 626: 608: 604: 580: 572: 568: 559: 555: 551: 547: 544: 541: 525: 522: 519: 511: 507: 491: 487: 483: 475: 471: 467: 464: 441: 421: 399: 381: 363: 355: 351: 342: 338: 337: 333: 314: 306: 302: 293: 267: 263: 231: 228: 220: 216: 212: 201: 198: 190: 186: 182: 177: 173: 165: 164: 163: 162: 159: 155: 151: 150: 146: 144: 142: 123: 115: 111: 103: 99: 95: 91: 72: 64: 60: 52: 48: 44: 41: 37: 33: 19: 2159: 2155: 2125: 2111: 2093: 2062: 2043: 2026: 2009:, New York: 2006: 1965: 1939: 1918: 1913: 1892: 1880: 1873:Armand Borel 1871: 1866: 1862: 1858: 1820: 1708: 1586: 1493: 1465: 1463: 1368: 1302: 1274: 1272: 1262: 1256: 1251: 1247: 1211: 1203: 1199: 1195: 1191: 1187: 1144: 1142: 1077: 1072: 989: 985: 981: 977: 969: 967: 792: 790: 775: 764: 726: 631: 157: 42: 31: 29: 2205:4-manifolds 1869:is smooth. 550:E8 manifold 512:. The case 2194:Categories 1925:References 540:K3 surface 414:of degree 341:K3 surface 266:unimodular 2184:117175810 1832:⁡ 1783:⁡ 1768:Σ 1756:⁡ 1744:Σ 1741:⋅ 1738:Σ 1723:⁡ 1720:signature 1694:Σ 1650:Σ 1610:Σ 1598:⁡ 1555:Σ 1543:⁡ 1531:Σ 1528:⋅ 1525:Σ 1510:⁡ 1507:signature 1480:Σ 1449:Σ 1340:Σ 1337:⋅ 1334:Σ 1319:⁡ 1316:signature 1289:Σ 1007:⁡ 870:μ 739:π 468:− 332:Cahit Arf 243:→ 213:× 183:: 90:signature 2061:(1989), 1865:is 0 if 1496:, then 1305:, then 1071:, where 556:compact 147:Examples 40:manifold 2176:1809832 2148:2136212 2119:0052101 2102:1809832 2085:1031992 2035:0133134 2019:0121801 1992:1001966 1958:0520525 1889:Ă‚ genus 1853:is the 1625:is the 779: ( 92:of its 2182:  2174:  2146:  2136:  2100:  2083:  2073:  2033:  2017:  1990:  1980:  1956:  1946:  1821:where 1587:where 1246:where 1202:, the 819:and a 769:. See 723:Proofs 45:has a 36:smooth 2180:S2CID 2048:(PDF) 1405:. If 1147:is a 972:is a 552:is a 2134:ISBN 2071:ISBN 1978:ISBN 1944:ISBN 1903:and 1875:and 1464:The 1273:The 1149:spin 1004:sign 974:spin 781:1989 152:The 96:, a 2164:doi 2160:113 1970:doi 1857:of 1796:mod 1753:Arf 1595:Arf 1562:mod 1540:Arf 1344:mod 1210:on 1036:of 968:If 897:in 842:on 676:1,9 548:'s 508:'s 290:by 268:on 264:is 156:on 2196:: 2178:, 2172:MR 2170:, 2158:, 2144:MR 2142:, 2132:, 2128:, 2116:MR 2110:, 2098:MR 2081:MR 2079:, 2069:, 2057:; 2031:MR 2015:MR 2001:; 1988:MR 1986:, 1976:, 1954:MR 1952:, 1934:; 1899:: 1829:ks 1780:ks 1254:. 1140:. 915:16 773:. 339:A 2166:: 1972:: 1919:X 1893:X 1881:X 1867:M 1863:M 1859:M 1841:) 1838:M 1835:( 1817:, 1805:6 1800:1 1792:) 1789:M 1786:( 1777:8 1774:+ 1771:) 1765:, 1762:M 1759:( 1750:8 1747:+ 1735:= 1732:) 1729:M 1726:( 1674:) 1670:Z 1666:2 1662:/ 1657:Z 1653:, 1647:( 1642:1 1638:H 1613:) 1607:, 1604:M 1601:( 1583:. 1571:6 1566:1 1558:) 1552:, 1549:M 1546:( 1537:8 1534:+ 1522:= 1519:) 1516:M 1513:( 1494:M 1468:( 1429:) 1426:M 1423:( 1418:2 1414:w 1393:) 1390:M 1387:( 1382:2 1378:w 1365:. 1353:6 1348:1 1331:= 1328:) 1325:M 1322:( 1303:M 1277:( 1263:Z 1252:N 1248:s 1234:) 1231:s 1228:, 1225:N 1222:( 1212:N 1200:N 1196:N 1192:N 1188:M 1173:Z 1169:2 1165:/ 1160:Z 1145:N 1122:4 1118:S 1095:8 1091:E 1073:M 1058:Z 1054:2 1050:/ 1045:Z 1024:8 1020:/ 1016:) 1013:M 1010:( 990:M 986:N 982:M 978:M 970:N 964:. 952:) 949:s 946:, 943:N 940:( 919:Z 911:/ 906:Z 885:) 882:s 879:, 876:N 873:( 850:N 830:s 807:N 748:S 743:3 702:) 699:M 696:( 691:2 687:w 658:) 655:M 652:( 647:2 643:w 632:M 609:8 605:E 584:) 581:M 578:( 573:2 569:w 542:. 526:4 523:= 520:d 492:3 488:/ 484:d 481:) 476:2 472:d 465:4 462:( 442:d 422:d 400:3 395:P 392:C 367:) 364:M 361:( 356:2 352:w 318:) 315:M 312:( 307:2 303:w 277:Z 247:Z 240:) 236:Z 232:, 229:M 226:( 221:2 217:H 210:) 206:Z 202:, 199:M 196:( 191:2 187:H 178:M 174:Q 158:M 127:) 124:M 121:( 116:2 112:H 76:) 73:M 70:( 65:2 61:w 43:M 20:)

Index

Rochlin invariant
smooth
manifold
spin structure
Stiefel–Whitney class
signature
intersection form
quadratic form
cohomology group
Vladimir Rokhlin
intersection form
unimodular
Poincaré duality
Cahit Arf
K3 surface
Friedrich Hirzebruch
signature theorem
K3 surface
Michael Freedman
E8 manifold
simply connected
topological manifold
smooth structure
Enriques surface
torsion element
stable homotopy group of spheres
Atiyah–Singer index theorem
Ă‚ genus and Rochlin's theorem
Robion Kirby
1989

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑