Knowledge

Ropelength

Source 📝

47: 758:
The proof of this near-linear upper bound uses a divide-and-conquer argument to show that minimum projections of knots can be embedded as planar graphs in the cubic lattice. However, no one has yet observed a knot family with super-linear dependence of length on crossing number and it is conjectured
756: 359:. However, the search for the answer has spurred research on both theoretical and computational ground. It has been shown that for each link type there is a ropelength minimizer although it may only be of 661: 145: 665:
On the other hand, there also exist knots whose ropelength is larger, proportional to the crossing number itself rather than to a smaller power of it. This is nearly tight, as for every knot,
486: 177: 518: 226: 668: 556: 35:. Intuitively this is the minimal length of an ideally flexible rope that is needed to tie a given link, or knot. Knots and links that minimize ropelength are called 387: 357: 333: 579: 439: 419: 297: 277: 250: 197: 81: 829:
Gonzalez, O.; Maddocks, J. H.; Schuricht, F.; von der Mosel, H. (2002), "Global curvature and self-contact of nonlinearly elastic curves and rods",
999:
Diao, Yuanan; Ernst, Claus; Por, Attila; Ziegler, Uta (2019), "The Ropelengths of Knots Are Almost Linear in Terms of Their Crossing Numbers",
592: 389:. For the simplest nontrivial knot, the trefoil knot, computer simulations have shown that its minimum ropelength is at most 16.372. 867: 780: 1026: 86: 398: 1077: 397:
An extensive search has been devoted to showing relations between ropelength and other knot invariants such as the
444: 1072: 965:
Diao, Y.; Ernst, C.; Thistlethwaite, M. (2003), "The linear growth in the lengths of a family of thick knots",
879: 150: 491: 785: 898: 20: 888: 794: 28: 24: 202: 523: 1008: 974: 940: 906: 838: 804: 1045: 986: 952: 918: 850: 816: 365: 342: 1041: 982: 948: 914: 871: 846: 812: 902: 318: 586: 564: 424: 404: 282: 262: 256: 235: 229: 182: 66: 944: 1066: 1049: 336: 51: 931:
Buck, Gregory; Simon, Jonathan (1999), "Thickness and crossing number of knots",
751:{\displaystyle L(K)=O(\operatorname {Cr} (K)\log ^{5}(\operatorname {Cr} (K))).} 1012: 978: 910: 558: 360: 783:(2006), "Quadrisecants give new lower bounds for the ropelength of a knot", 582: 307:
One of the earliest knot theory questions was posed in the following terms:
46: 842: 808: 893: 799: 520:
denotes the crossing number. There exist knots and links, namely the
315:
In terms of ropelength, this asks if there is a knot with ropelength
585:, for which this lower bound is tight. That is, for these knots (in 339:
shows that the ropelength of any nontrivial knot has to be at least
45: 1027:"Realizable powers of ropelengths by non-trivial knot families" 311:
Can I tie a knot on a foot-long rope that is one inch thick?
279:
to be the minimum ropelength over all curves that realize
831:
Calculus of Variations and Partial Differential Equations
671: 656:{\displaystyle L(K)=O(\operatorname {Cr} (K)^{3/4}).} 595: 567: 526: 494: 447: 427: 407: 368: 345: 321: 285: 265: 238: 205: 185: 153: 140:{\displaystyle L(C)=\operatorname {Len} (C)/\tau (C)} 89: 69: 750: 655: 573: 550: 512: 480: 433: 413: 381: 351: 327: 291: 271: 244: 220: 191: 171: 139: 75: 872:"On the minimum ropelength of knots and links" 759:that the tight upper bound should be linear. 8: 1001:Journal of Knot Theory and its Ramifications 967:Journal of Knot Theory and its Ramifications 481:{\displaystyle \operatorname {Cr} (K)^{3/4}} 892: 798: 712: 670: 637: 633: 594: 566: 525: 493: 468: 464: 446: 426: 406: 373: 367: 344: 320: 284: 264: 237: 204: 184: 152: 120: 88: 68: 768: 335:. The answer is no: an argument using 172:{\displaystyle \operatorname {Len} (C)} 866:Cantarella, Jason; Kusner, Robert B.; 513:{\displaystyle \operatorname {Cr} (K)} 861: 859: 774: 772: 259:by defining the ropelength of a knot 7: 50:A numeric approximation of an ideal 1034:JP Journal of Geometry and Topology 1025:Diao, Yuanan; Ernst, Claus (2004), 63:The ropelength of a knotted curve 14: 779:Denne, Elizabeth; Diao, Yuanan; 255:Ropelength can be turned into a 742: 739: 736: 730: 721: 705: 699: 690: 681: 675: 647: 630: 623: 614: 605: 599: 545: 527: 507: 501: 461: 454: 215: 209: 166: 160: 134: 128: 117: 111: 99: 93: 1: 945:10.1016/S0166-8641(97)00211-3 933:Topology and its Applications 393:Dependence on crossing number 441:is at least proportional to 1094: 401:of a knot. For every knot 1013:10.1142/S0218216519500858 979:10.1142/S0218216503002615 911:10.1007/s00222-002-0234-y 880:Inventiones Mathematicae 221:{\displaystyle \tau (C)} 83:is defined as the ratio 23:, each realization of a 786:Geometry & Topology 551:{\displaystyle (k,k-1)} 361:differentiability class 752: 657: 575: 552: 514: 482: 435: 415: 383: 353: 329: 293: 273: 246: 222: 193: 173: 141: 77: 55: 843:10.1007/s005260100089 753: 658: 576: 553: 515: 483: 436: 416: 384: 382:{\displaystyle C^{1}} 354: 352:{\displaystyle 15.66} 330: 303:Ropelength minimizers 294: 274: 247: 223: 194: 174: 142: 78: 49: 809:10.2140/gt.2006.10.1 669: 593: 565: 524: 492: 445: 425: 421:, the ropelength of 405: 366: 343: 319: 283: 263: 236: 203: 183: 151: 87: 67: 21:physical knot theory 903:2002InMat.150..257C 1078:Geometric topology 748: 653: 571: 548: 510: 478: 431: 411: 379: 349: 328:{\displaystyle 12} 325: 289: 269: 242: 218: 189: 169: 137: 73: 56: 31:has an associated 868:Sullivan, John M. 781:Sullivan, John M. 574:{\displaystyle k} 434:{\displaystyle K} 414:{\displaystyle K} 292:{\displaystyle K} 272:{\displaystyle K} 245:{\displaystyle C} 192:{\displaystyle C} 179:is the length of 76:{\displaystyle C} 1085: 1057: 1056: 1054: 1048:, archived from 1031: 1022: 1016: 1015: 996: 990: 989: 962: 956: 955: 928: 922: 921: 896: 876: 863: 854: 853: 826: 820: 819: 802: 776: 757: 755: 754: 749: 717: 716: 662: 660: 659: 654: 646: 645: 641: 580: 578: 577: 572: 557: 555: 554: 549: 519: 517: 516: 511: 487: 485: 484: 479: 477: 476: 472: 440: 438: 437: 432: 420: 418: 417: 412: 388: 386: 385: 380: 378: 377: 358: 356: 355: 350: 334: 332: 331: 326: 298: 296: 295: 290: 278: 276: 275: 270: 251: 249: 248: 243: 227: 225: 224: 219: 198: 196: 195: 190: 178: 176: 175: 170: 146: 144: 143: 138: 124: 82: 80: 79: 74: 1093: 1092: 1088: 1087: 1086: 1084: 1083: 1082: 1073:Knot invariants 1063: 1062: 1061: 1060: 1052: 1029: 1024: 1023: 1019: 1007:(14): 1950085, 998: 997: 993: 964: 963: 959: 930: 929: 925: 874: 865: 864: 857: 828: 827: 823: 778: 777: 770: 765: 708: 667: 666: 629: 591: 590: 563: 562: 522: 521: 490: 489: 460: 443: 442: 423: 422: 403: 402: 399:crossing number 395: 369: 364: 363: 341: 340: 317: 316: 313: 305: 281: 280: 261: 260: 234: 233: 201: 200: 181: 180: 149: 148: 85: 84: 65: 64: 61: 17: 12: 11: 5: 1091: 1089: 1081: 1080: 1075: 1065: 1064: 1059: 1058: 1040:(2): 197–208, 1017: 991: 973:(5): 709–715, 957: 939:(3): 245–257, 923: 887:(2): 257–286, 855: 821: 767: 766: 764: 761: 747: 744: 741: 738: 735: 732: 729: 726: 723: 720: 715: 711: 707: 704: 701: 698: 695: 692: 689: 686: 683: 680: 677: 674: 652: 649: 644: 640: 636: 632: 628: 625: 622: 619: 616: 613: 610: 607: 604: 601: 598: 587:big O notation 570: 547: 544: 541: 538: 535: 532: 529: 509: 506: 503: 500: 497: 475: 471: 467: 463: 459: 456: 453: 450: 430: 410: 394: 391: 376: 372: 348: 324: 309: 304: 301: 288: 268: 257:knot invariant 241: 230:knot thickness 217: 214: 211: 208: 188: 168: 165: 162: 159: 156: 136: 133: 130: 127: 123: 119: 116: 113: 110: 107: 104: 101: 98: 95: 92: 72: 60: 57: 43:respectively. 16:Knot invariant 15: 13: 10: 9: 6: 4: 3: 2: 1090: 1079: 1076: 1074: 1071: 1070: 1068: 1055:on 2005-02-15 1051: 1047: 1043: 1039: 1035: 1028: 1021: 1018: 1014: 1010: 1006: 1002: 995: 992: 988: 984: 980: 976: 972: 968: 961: 958: 954: 950: 946: 942: 938: 934: 927: 924: 920: 916: 912: 908: 904: 900: 895: 890: 886: 882: 881: 873: 869: 862: 860: 856: 852: 848: 844: 840: 836: 832: 825: 822: 818: 814: 810: 806: 801: 796: 792: 788: 787: 782: 775: 773: 769: 762: 760: 745: 733: 727: 724: 718: 713: 709: 702: 696: 693: 687: 684: 678: 672: 663: 650: 642: 638: 634: 626: 620: 617: 611: 608: 602: 596: 588: 584: 568: 560: 542: 539: 536: 533: 530: 504: 498: 495: 473: 469: 465: 457: 451: 448: 428: 408: 400: 392: 390: 374: 370: 362: 346: 338: 337:quadrisecants 322: 312: 308: 302: 300: 286: 266: 258: 253: 239: 231: 212: 206: 186: 163: 157: 154: 131: 125: 121: 114: 108: 105: 102: 96: 90: 70: 58: 53: 48: 44: 42: 38: 34: 30: 26: 22: 1050:the original 1037: 1033: 1020: 1004: 1000: 994: 970: 966: 960: 936: 932: 926: 894:math/0103224 884: 878: 837:(1): 29–68, 834: 830: 824: 800:math/0408026 790: 784: 664: 396: 314: 310: 306: 254: 62: 40: 36: 32: 18: 559:torus knots 41:ideal links 37:ideal knots 1067:Categories 763:References 583:Hopf links 59:Definition 33:ropelength 728:⁡ 719:⁡ 697:⁡ 621:⁡ 540:− 499:⁡ 452:⁡ 207:τ 158:⁡ 126:τ 109:⁡ 870:(2002), 793:: 1–26, 488:, where 147:, where 1046:2105812 987:1999639 953:1666650 919:1933586 899:Bibcode 851:1883599 817:2207788 228:is the 52:trefoil 1044:  985:  951:  917:  849:  815:  1053:(PDF) 1030:(PDF) 889:arXiv 875:(PDF) 795:arXiv 347:15.66 561:and 199:and 39:and 29:knot 25:link 1009:doi 975:doi 941:doi 907:doi 885:150 839:doi 805:doi 710:log 589:), 232:of 155:Len 106:Len 27:or 19:In 1069:: 1042:MR 1036:, 1032:, 1005:28 1003:, 983:MR 981:, 971:12 969:, 949:MR 947:, 937:91 935:, 915:MR 913:, 905:, 897:, 883:, 877:, 858:^ 847:MR 845:, 835:14 833:, 813:MR 811:, 803:, 791:10 789:, 771:^ 725:Cr 694:Cr 618:Cr 496:Cr 449:Cr 323:12 299:. 252:. 1038:4 1011:: 977:: 943:: 909:: 901:: 891:: 841:: 807:: 797:: 746:. 743:) 740:) 737:) 734:K 731:( 722:( 714:5 706:) 703:K 700:( 691:( 688:O 685:= 682:) 679:K 676:( 673:L 651:. 648:) 643:4 639:/ 635:3 631:) 627:K 624:( 615:( 612:O 609:= 606:) 603:K 600:( 597:L 581:- 569:k 546:) 543:1 537:k 534:, 531:k 528:( 508:) 505:K 502:( 474:4 470:/ 466:3 462:) 458:K 455:( 429:K 409:K 375:1 371:C 287:K 267:K 240:C 216:) 213:C 210:( 187:C 167:) 164:C 161:( 135:) 132:C 129:( 122:/ 118:) 115:C 112:( 103:= 100:) 97:C 94:( 91:L 71:C 54:.

Index

physical knot theory
link
knot
A numeric approximation of an ideal trefoil.
trefoil
knot thickness
knot invariant
quadrisecants
differentiability class
crossing number
torus knots
Hopf links
big O notation


Sullivan, John M.
Geometry & Topology
arXiv
math/0408026
doi
10.2140/gt.2006.10.1
MR
2207788
doi
10.1007/s005260100089
MR
1883599


Sullivan, John M.

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.