Knowledge (XXG)

SOS response

Source 📝

332: 822: 32: 1603: 20: 27:
addition to being a LexA protease, the RecA protein also catalyzes a few novel DNA reactions such as annealing of single-stranded DNA and transfer of strands. The SOS system has enhanced DNA-repair capacity, including excision and post-replication repair, enhanced mutagenesis and prophage induction. The system can also inhibit cell division and cell respiration.
224: 115:) in the operator region for those genes. Some of these SOS genes are expressed at certain levels even in the repressed state, according to the affinity of LexA for their SOS box. Activation of the SOS genes occurs after DNA damage by the accumulation of single stranded (ssDNA) regions generated at replication forks, where 123:
Once the pool of LexA decreases, repression of the SOS genes goes down according to the level of LexA affinity for the SOS boxes. Operators that bind LexA weakly are the first to be fully expressed. In this way LexA can sequentially activate different mechanisms of repair. Genes having a weak SOS box
26:
SOS System: DNA can be damaged by cross-linking agents, UV irradiation, alkylating agents, etc. Once damaged, RecA, a LexA protease, senses that damaged DNA and becomes activated by removing its repressor. Once the LexA dimer repressor is removed, the expression of LexA operon is autoregulatory. In
172:, and the induction of UmuDC-dependent mutagenic repair. As a result of these properties, some genes may be partially induced in response to even endogenous levels of DNA damage, while other genes appear to be induced only when high or persistent DNA damage is present in the cell. 200:. Researchers are now targeting these proteins with the aim of creating drugs that prevent SOS repair. By doing so, the time needed for pathogenic bacteria to evolve antibiotic resistance could be extended, thus improving the long term viability of some antibiotic drugs. 331: 148:(NER), whose aim is to fix DNA damage without commitment to a full-fledged SOS response. If, however, NER does not suffice to fix the damage, the LexA concentration is further reduced, so the expression of genes with stronger LexA boxes (such as 119:
is blocked. RecA forms a filament around these ssDNA regions in an ATP-dependent fashion, and becomes activated. The activated form of RecA interacts with the LexA repressor to facilitate the LexA repressor's self-cleavage from the operator.
262:
mutation, which renders the bacteria lipopolysaccharide-deficient, allowing better diffusion of certain chemicals into the cell in order to induce the SOS response. Commercial kits which measures the primary response of the
203:
As well as genetic resistance the SOS response can also promote phenotypic resistance. Here, the genome is preserved whilst other non-genetic factors are altered to enable the bacteria to survive. The SOS dependent
243:
is possible. A lactose analog is added to the bacteria, which is then degraded by beta-galactosidase, thereby producing a colored compound which can be measured quantitatively through
1013:
Quillardet, Philippe; de Bellecombe, Christine; Hofnung, Maurice (June 1985). "The SOS Chromotest, a colorimetric bacterial assay for genotoxins: validation study with 83 compounds".
99:
detailed the SOS response to UV radiation in bacteria. The SOS response to DNA damage was a seminal discovery because it was the first coordinated stress response to be elucidated.
79:) of SOS response genes thereby inducing the response. It is an error-prone repair system that contributes significantly to DNA changes observed in a wide range of species. 239:(responsible for producing beta-galactosidase, a protein which degrades lactose) under the control of an SOS-related protein, a simple colorimetric assay for 247:. The degree of color development is an indirect measure of the beta-galactosidase produced, which itself is directly related to the amount of DNA damage. 884:
Lee, AM; Ross, CT; Zeng, BB; Singleton, SF (July 2005). "A molecular target for suppression of the evolution of antibiotic resistance: Inhibition of the
1536: 1510: 235:, different classes of DNA-damaging agents can initiate the SOS response, as described above. Taking advantage of an operon fusion placing the 750: 1171: 1226: 1479: 1410: 258:
mutation which renders the strain deficient in excision repair, increasing the response to certain DNA-damaging agents, as well as an
1494: 205: 837:"Mutations for Worse or Better: Low Fidelity DNA Synthesis by SOS DNA Polymerase V is a Tightly-Regulated Double-Edged Sword" 144:) are fully induced in response to even weak SOS-inducing treatments. Thus the first SOS repair mechanism to be induced is 1469: 1376: 75:
in eukaryotes). The RecA protein, stimulated by single-stranded DNA, is involved in the inactivation of the repressor (
1398: 1222: 1215: 145: 527:"The radiation sensitivity of Escherichia coli B: a hypothesis relating filament formation and prophage induction" 1050:"The role of biology in planetary evolution: cyanobacterial primary production in low‐oxygen Proterozoic oceans" 1627: 1393: 1315: 1164: 36: 821: 1505: 1415: 1210: 208: 1271: 181: 40: 184:
to antibiotics. The increased rate of mutation during the SOS response is caused by three low-fidelity
31: 1099:"Comparative Genomics of DNA Recombination and Repair in Cyanobacteria: Biotechnological Implications" 835:
Jaszczur, M; Bertram, JG; Robinson, A; van Oijen, AM; Woodgate, R; Cox, MM; Goodman, MF (April 2016).
1196: 697: 538: 337:
The SOS response inhibits septum formation until bacterial DNA can be repaired and is observable as
1632: 1606: 1293: 1157: 397: 1489: 1130: 1079: 1030: 995: 960: 905: 866: 810: 756: 746: 723: 657: 618: 566: 500: 448: 389: 372:
Little, John W.; Mount, David W. (May 1982). "The SOS regulatory system of Escherichia coli".
244: 1120: 1110: 1069: 1061: 1022: 987: 950: 940: 897: 856: 848: 800: 790: 713: 705: 649: 608: 600: 584: 556: 546: 490: 486: 482: 438: 428: 381: 1205: 470: 292: 212: 96: 777:
Cirz, RT; Chin, JK; Andes, DR; De Crécy-Lagard, V; Craig, WA; Romesberg, FE (June 2005).
701: 542: 180:
Research has shown that the SOS response system can lead to mutations which can lead to
1125: 1098: 1074: 1049: 978:
Quillardet, Philippe; Hofnung, Maurice (October 1993). "The SOS chromotest: a review".
955: 924: 861: 836: 805: 778: 718: 685: 495: 443: 416: 312: 287: 185: 116: 111:
protein dimers. Under normal conditions, LexA binds to a 20-bp consensus sequence (the
108: 613: 588: 561: 526: 1621: 1517: 1338: 1026: 991: 385: 338: 298: 279: 169: 161: 88: 401: 1484: 1403: 1386: 1333: 1286: 604: 352: 290:, are major producers of the Earth’s oxygenic atmosphere. The marine cyanobacteria 240: 19: 945: 795: 653: 636:
Radman, M (1975). "Phenomenology of an inducible mutagenic DNA repair pathway in
433: 1048:
Hamilton, Trinity L.; Bryant, Donald A.; Macalady, Jennifer L. (February 2016).
852: 64: 223: 1420: 1241: 1188: 1180: 283: 236: 60: 56: 1115: 779:"Inhibition of mutation and combating the evolution of antibiotic resistance" 306:
like SOS system for repair of DNA, since they encode genes homologous to key
1097:
Cassier-Chauvat, Corinne; Veaudor, Théo; Chauvat, Franck (9 November 2016).
1065: 760: 268: 1134: 1083: 964: 909: 870: 814: 727: 551: 504: 452: 267:
cell to genetic damage are available and may be highly correlated with the
1034: 999: 661: 570: 469:
Fitzgerald, Devon M.; Hastings, P.J.; Rosenberg, Susan M. (6 March 2017).
393: 1501: 622: 925:"Ciprofloxacin Causes Persister Formation by Inducing the TisB toxin in 686:"The SOS system: A complex and tightly regulated response to DNA damage" 471:"Stress-Induced Mutagenesis: Implications in Cancer and Drug Resistance" 417:"After 30 Years of Study, the Bacterial SOS Response Still Surprises Us" 254:
are further modified in order to have a number of mutations including a
1448: 1200: 684:
Maslowska, K. H.; Makiela-Dzbenska, K.; Fijalkowska, I. J. (May 2019).
112: 901: 589:"Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli" 1573: 1328: 1281: 1276: 709: 193: 189: 1588: 1583: 1578: 1568: 1561: 1556: 1551: 1546: 1541: 1531: 1526: 1381: 1345: 1266: 1261: 1256: 1246: 222: 197: 72: 30: 18: 741:
Lehninger, Albert L.; Nelson, David Lee; Cox, Michael M. (2005).
227:
Overview of the use of the SOS response for genotoxicity testing.
1474: 1430: 1425: 1360: 1355: 1350: 1323: 1303: 1298: 1251: 1015:
Mutation Research/Environmental Mutagenesis and Related Subjects
165: 107:
During normal growth, the SOS genes are negatively regulated by
76: 68: 1153: 1236: 1231: 52: 1149: 341:
when cells are examined by microscopy (top right of image).
91:. Later, by characterizing the phenotypes of mutagenised 745:(4th ed.). New York: W.H. Freeman. p. 1098. 211:
has, for example, been linked to DNA damage-dependent
168:, the initiating protein in this process. This causes 1462: 1441: 1369: 1314: 1187: 160:– these are expressed late) is induced. SulA stops 35:The SOS response has been proposed as a model for 980:Mutation Research/Reviews in Genetic Toxicology 531:Proceedings of the National Academy of Sciences 1165: 923:Dörr, T; Vulić, M; Lewis, K (February 2010). 8: 464: 462: 679: 677: 675: 673: 671: 1172: 1158: 1150: 1124: 1114: 1073: 954: 944: 860: 804: 794: 717: 612: 560: 550: 494: 442: 432: 690:Environmental and Molecular Mutagenesis 487:10.1146/annurev-cancerbio-050216-121919 364: 327: 888:RecA Protein by N6-(1-Naphthyl)-ADP". 772: 770: 67:are induced. The system involves the 7: 743:Lehninger principles of biochemistry 87:The SOS response was articulated by 1480:Proliferating Cell Nuclear Antigen 1411:Microhomology-mediated end joining 415:Michel, Bénédicte (12 July 2005). 353:Induction of lysis in lambda phage 14: 1602: 1601: 1495:Meiotic recombination checkpoint 820: 330: 95:, she and post doctoral student 475:Annual Review of Cancer Biology 890:Journal of Medicinal Chemistry 605:10.1128/MMBR.40.4.869-907.1976 1: 1377:Transcription-coupled repair 1027:10.1016/0165-1161(85)90021-4 992:10.1016/0165-1110(93)90019-J 946:10.1371/journal.pbio.1000317 796:10.1371/journal.pbio.0030176 654:10.1007/978-1-4684-2895-7_48 434:10.1371/journal.pbio.0030255 386:10.1016/0092-8674(82)90085-X 853:10.1021/acs.biochem.6b00117 286:capable of oxygen evolving 16:Cell response to DNA damage 1649: 1399:Non-homologous end joining 1223:Nucleotide excision repair 1216:Poly ADP ribose polymerase 1054:Environmental Microbiology 640:: SOS repair hypothesis". 146:nucleotide excision repair 1597: 1103:Frontiers in Microbiology 1394:Homology directed repair 1316:Homologous recombination 1116:10.3389/fmicb.2016.01809 525:Witkin, E M (May 1967). 51:is a global response to 1066:10.1111/1462-2920.13118 593:Bacteriological Reviews 271:for certain materials. 1416:Postreplication repair 1211:Uracil-DNA glycosylase 552:10.1073/pnas.57.5.1275 228: 209:toxin-antitoxin system 44: 28: 226: 176:Antibiotic resistance 41:antibiotic resistance 34: 22: 1522:core protein complex 1197:Base excision repair 219:Genotoxicity testing 55:damage in which the 39:of certain types of 1294:DNA mismatch repair 702:2019EnvMM..60..368M 642:Basic Life Sciences 543:1967PNAS...57.1275W 37:bacterial evolution 310:SOS genes such as 302:appear to have an 229: 45: 29: 1615: 1614: 1490:Adaptive response 902:10.1021/jm050113z 896:(17): 5408–5411. 752:978-0-7167-4339-2 324:Additional images 245:spectrophotometry 1640: 1605: 1604: 1174: 1167: 1160: 1151: 1139: 1138: 1128: 1118: 1094: 1088: 1087: 1077: 1045: 1039: 1038: 1010: 1004: 1003: 975: 969: 968: 958: 948: 927:Escherichia coli 920: 914: 913: 886:Escherichia coli 881: 875: 874: 864: 832: 826: 825: 824: 818: 808: 798: 774: 765: 764: 738: 732: 731: 721: 710:10.1002/em.22267 681: 666: 665: 638:Escherichia coli 633: 627: 626: 616: 581: 575: 574: 564: 554: 522: 516: 515: 513: 511: 498: 466: 457: 456: 446: 436: 412: 406: 405: 369: 334: 233:Escherichia coli 59:is arrested and 1648: 1647: 1643: 1642: 1641: 1639: 1638: 1637: 1628:1975 in science 1618: 1617: 1616: 1611: 1593: 1463:Other/ungrouped 1458: 1437: 1365: 1310: 1206:DNA glycosylase 1189:Excision repair 1183: 1178: 1148: 1143: 1142: 1096: 1095: 1091: 1047: 1046: 1042: 1012: 1011: 1007: 977: 976: 972: 939:(2): e1000317. 922: 921: 917: 883: 882: 878: 847:(16): 2309–18. 834: 833: 829: 819: 776: 775: 768: 753: 740: 739: 735: 683: 682: 669: 635: 634: 630: 583: 582: 578: 524: 523: 519: 509: 507: 468: 467: 460: 414: 413: 409: 371: 370: 366: 361: 349: 342: 335: 326: 293:Prochlorococcus 277: 221: 186:DNA polymerases 178: 105: 97:Miroslav Radman 85: 17: 12: 11: 5: 1646: 1644: 1636: 1635: 1630: 1620: 1619: 1613: 1612: 1610: 1609: 1598: 1595: 1594: 1592: 1591: 1586: 1581: 1576: 1571: 1566: 1565: 1564: 1559: 1554: 1549: 1544: 1539: 1534: 1529: 1514: 1513: 1508: 1498: 1497: 1492: 1487: 1482: 1477: 1472: 1466: 1464: 1460: 1459: 1457: 1456: 1451: 1445: 1443: 1439: 1438: 1436: 1435: 1434: 1433: 1428: 1418: 1413: 1408: 1407: 1406: 1396: 1391: 1390: 1389: 1384: 1373: 1371: 1370:Other pathways 1367: 1366: 1364: 1363: 1358: 1353: 1348: 1343: 1342: 1341: 1331: 1326: 1320: 1318: 1312: 1311: 1309: 1308: 1307: 1306: 1301: 1291: 1290: 1289: 1284: 1279: 1274: 1269: 1264: 1259: 1254: 1249: 1244: 1239: 1234: 1220: 1219: 1218: 1213: 1208: 1193: 1191: 1185: 1184: 1179: 1177: 1176: 1169: 1162: 1154: 1147: 1146:External links 1144: 1141: 1140: 1089: 1060:(2): 325–340. 1040: 1005: 986:(3): 235–279. 970: 915: 876: 827: 766: 751: 733: 696:(4): 368–384. 667: 628: 599:(4): 869–907. 576: 517: 481:(1): 119–140. 458: 407: 363: 362: 360: 357: 356: 355: 348: 345: 344: 343: 336: 329: 325: 322: 288:photosynthesis 276: 273: 220: 217: 213:persister cell 177: 174: 164:by binding to 117:DNA polymerase 109:LexA repressor 104: 101: 84: 81: 15: 13: 10: 9: 6: 4: 3: 2: 1645: 1634: 1631: 1629: 1626: 1625: 1623: 1608: 1600: 1599: 1596: 1590: 1587: 1585: 1582: 1580: 1577: 1575: 1572: 1570: 1567: 1563: 1560: 1558: 1555: 1553: 1550: 1548: 1545: 1543: 1540: 1538: 1535: 1533: 1530: 1528: 1525: 1524: 1523: 1519: 1518:FANC proteins 1516: 1515: 1512: 1509: 1507: 1503: 1500: 1499: 1496: 1493: 1491: 1488: 1486: 1483: 1481: 1478: 1476: 1473: 1471: 1468: 1467: 1465: 1461: 1455: 1452: 1450: 1447: 1446: 1444: 1440: 1432: 1429: 1427: 1424: 1423: 1422: 1419: 1417: 1414: 1412: 1409: 1405: 1402: 1401: 1400: 1397: 1395: 1392: 1388: 1385: 1383: 1380: 1379: 1378: 1375: 1374: 1372: 1368: 1362: 1359: 1357: 1354: 1352: 1349: 1347: 1344: 1340: 1339:RecQ helicase 1337: 1336: 1335: 1332: 1330: 1327: 1325: 1322: 1321: 1319: 1317: 1313: 1305: 1302: 1300: 1297: 1296: 1295: 1292: 1288: 1285: 1283: 1280: 1278: 1275: 1273: 1270: 1268: 1265: 1263: 1260: 1258: 1255: 1253: 1250: 1248: 1245: 1243: 1240: 1238: 1235: 1233: 1230: 1229: 1228: 1224: 1221: 1217: 1214: 1212: 1209: 1207: 1204: 1203: 1202: 1198: 1195: 1194: 1192: 1190: 1186: 1182: 1175: 1170: 1168: 1163: 1161: 1156: 1155: 1152: 1145: 1136: 1132: 1127: 1122: 1117: 1112: 1108: 1104: 1100: 1093: 1090: 1085: 1081: 1076: 1071: 1067: 1063: 1059: 1055: 1051: 1044: 1041: 1036: 1032: 1028: 1024: 1020: 1016: 1009: 1006: 1001: 997: 993: 989: 985: 981: 974: 971: 966: 962: 957: 952: 947: 942: 938: 934: 930: 928: 919: 916: 911: 907: 903: 899: 895: 891: 887: 880: 877: 872: 868: 863: 858: 854: 850: 846: 842: 838: 831: 828: 823: 816: 812: 807: 802: 797: 792: 788: 784: 780: 773: 771: 767: 762: 758: 754: 748: 744: 737: 734: 729: 725: 720: 715: 711: 707: 703: 699: 695: 691: 687: 680: 678: 676: 674: 672: 668: 663: 659: 655: 651: 647: 643: 639: 632: 629: 624: 620: 615: 610: 606: 602: 598: 594: 590: 586: 585:Witkin, E. M. 580: 577: 572: 568: 563: 558: 553: 548: 544: 540: 537:(5): 1275–9. 536: 532: 528: 521: 518: 506: 502: 497: 492: 488: 484: 480: 476: 472: 465: 463: 459: 454: 450: 445: 440: 435: 430: 426: 422: 418: 411: 408: 403: 399: 395: 391: 387: 383: 379: 375: 368: 365: 358: 354: 351: 350: 346: 340: 339:filamentation 333: 328: 323: 321: 319: 315: 314: 309: 305: 301: 300: 299:Synechococcus 295: 294: 289: 285: 281: 280:Cyanobacteria 275:Cyanobacteria 274: 272: 270: 266: 261: 257: 253: 248: 246: 242: 238: 234: 225: 218: 216: 214: 210: 207: 201: 199: 195: 191: 187: 183: 175: 173: 171: 170:filamentation 167: 163: 162:cell division 159: 155: 151: 147: 143: 139: 135: 131: 127: 121: 118: 114: 110: 102: 100: 98: 94: 90: 89:Evelyn Witkin 82: 80: 78: 74: 70: 66: 62: 58: 54: 50: 42: 38: 33: 25: 21: 1521: 1502:DNA helicase 1485:8-Oxoguanine 1454:SOS response 1453: 1334:RecF pathway 1287:Excinuclease 1106: 1102: 1092: 1057: 1053: 1043: 1021:(3): 79–95. 1018: 1014: 1008: 983: 979: 973: 936: 933:PLOS Biology 932: 926: 918: 893: 889: 885: 879: 844: 841:Biochemistry 840: 830: 786: 783:PLOS Biology 782: 742: 736: 693: 689: 645: 641: 637: 631: 596: 592: 579: 534: 530: 520: 508:. Retrieved 478: 474: 424: 421:PLoS Biology 420: 410: 380:(1): 11–22. 377: 373: 367: 317: 311: 307: 303: 297: 291: 278: 264: 259: 255: 251: 249: 241:genotoxicity 232: 230: 202: 179: 157: 153: 149: 141: 137: 133: 129: 125: 122: 106: 92: 86: 49:SOS response 48: 46: 23: 789:(6): e176. 648:: 355–367. 427:(7): e255. 284:prokaryotes 282:, the only 215:induction. 65:mutagenesis 1633:DNA repair 1622:Categories 1442:Regulation 1421:Photolyase 1181:DNA repair 359:References 237:lac operon 182:resistance 61:DNA repair 57:cell cycle 1262:XPG/ERCC5 1247:XPD/ERCC2 269:Ames Test 206:tisB-istR 124:(such as 103:Mechanism 83:Discovery 71:protein ( 1607:Category 1257:XPF/DDB1 1252:XPE/DDB1 1135:27881980 1084:26549614 965:20186264 910:16107138 871:27043933 815:15869329 761:55476414 728:30447030 587:(1976). 505:29399660 453:16000023 402:12476812 347:See also 1449:SOS box 1201:AP site 1126:5101192 1075:5019231 1035:3923333 1000:7692273 956:2826370 862:4846499 806:1088971 719:6590174 698:Bibcode 662:1103845 571:5341236 539:Bibcode 510:6 March 496:5794033 444:1174825 394:7049397 308:E. coli 304:E. coli 265:E. coli 252:E. coli 113:SOS box 93:E. coli 24:E. coli 1574:FANCD2 1569:FANCD1 1329:RecBCD 1282:RAD23B 1277:RAD23A 1133:  1123:  1082:  1072:  1033:  998:  963:  953:  908:  869:  859:  813:  803:  759:  749:  726:  716:  660:  623:795416 621:  614:413988 611:  569:  562:224468 559:  503:  493:  451:  441:  400:  392:  194:Pol IV 190:Pol II 140:, and 1589:FANCN 1584:FANCJ 1579:FANCI 1562:FANCM 1557:FANCL 1552:FANCG 1547:FANCF 1542:FANCE 1537:FANCC 1532:FANCB 1527:FANCA 1387:ERCC8 1382:ERCC6 1346:RAD51 1267:ERCC1 398:S2CID 198:Pol V 73:Rad51 1475:PcrA 1431:CRY2 1426:CRY1 1361:LexA 1356:Slx4 1351:Sgs1 1324:RecA 1304:MSH2 1299:MLH1 1227:ERCC 1131:PMID 1080:PMID 1031:PMID 996:PMID 961:PMID 906:PMID 867:PMID 811:PMID 757:OCLC 747:ISBN 724:PMID 658:PMID 619:PMID 567:PMID 512:2023 501:PMID 449:PMID 390:PMID 374:Cell 318:sulA 316:and 313:lexA 296:and 256:uvrA 250:The 196:and 166:FtsZ 158:umuC 154:umuD 150:sulA 142:uvrD 138:uvrB 134:uvrA 130:recA 126:lexA 77:LexA 69:RecA 63:and 47:The 1511:WRN 1506:BLM 1470:Ogt 1272:RPA 1242:XPC 1237:XPB 1232:XPA 1121:PMC 1111:doi 1070:PMC 1062:doi 1023:doi 1019:147 988:doi 984:297 951:PMC 941:doi 898:doi 857:PMC 849:doi 801:PMC 791:doi 714:PMC 706:doi 650:doi 609:PMC 601:doi 557:PMC 547:doi 491:PMC 483:doi 439:PMC 429:doi 382:doi 260:rfa 231:In 53:DNA 1624:: 1520:: 1504:: 1404:Ku 1129:. 1119:. 1109:. 1105:. 1101:. 1078:. 1068:. 1058:18 1056:. 1052:. 1029:. 1017:. 994:. 982:. 959:. 949:. 935:. 931:. 904:. 894:48 892:. 865:. 855:. 845:55 843:. 839:. 809:. 799:. 785:. 781:. 769:^ 755:. 722:. 712:. 704:. 694:60 692:. 688:. 670:^ 656:. 646:5A 644:. 617:. 607:. 597:40 595:. 591:. 565:. 555:. 545:. 535:57 533:. 529:. 499:. 489:. 477:. 473:. 461:^ 447:. 437:. 423:. 419:. 396:. 388:. 378:29 376:. 320:. 192:, 188:: 156:, 152:, 136:, 132:, 128:, 1225:/ 1199:/ 1173:e 1166:t 1159:v 1137:. 1113:: 1107:7 1086:. 1064:: 1037:. 1025:: 1002:. 990:: 967:. 943:: 937:8 929:" 912:. 900:: 873:. 851:: 817:. 793:: 787:3 763:. 730:. 708:: 700:: 664:. 652:: 625:. 603:: 573:. 549:: 541:: 514:. 485:: 479:1 455:. 431:: 425:3 404:. 384:: 43:.

Index



bacterial evolution
antibiotic resistance
DNA
cell cycle
DNA repair
mutagenesis
RecA
Rad51
LexA
Evelyn Witkin
Miroslav Radman
LexA repressor
SOS box
DNA polymerase
nucleotide excision repair
cell division
FtsZ
filamentation
resistance
DNA polymerases
Pol II
Pol IV
Pol V
tisB-istR
toxin-antitoxin system
persister cell

lac operon

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.