Knowledge (XXG)

Schottky effect

Source 📝

347: 365:
begins to contribute significant emission current. In this regime, the combined effects of field-enhanced thermionic and field emission can be modeled by the Murphy–Good equation for thermo-field (T-F) emission. At even higher fields, FN tunneling becomes the dominant electron emission mechanism, and
24: 267: 189: 373:
Thermionic emission can also be enhanced by interaction with other forms of excitation such as light. For example, excited Cs-vapours in thermionic converters form clusters of Cs-
361:. This equation is relatively accurate for electric field strengths lower than about 10 V  m. For electric field strengths higher than 10 V m, so-called 399: 195: 88: 459: 601: 557:
Svensson, R.; Holmlid, L. (1992). "Very low work function surfaces from condensed excited states: Rydber matter of cesium".
357:
Electron emission that takes place in the field-and-temperature-regime where this modified equation applies is often called
58:
at the emitter surface. Without the field, the surface barrier seen by an escaping Fermi-level electron has height
377:
which yield a decrease of collector emitting work function from 1.5 eV to 1.0–0.7 eV. Due to long-lived nature of
559: 39: 67: 407: 514: 367: 362: 381:
this low work function remains low which essentially increases the low-temperature converter’s efficiency.
606: 512:
Mal'Shukov, A. G.; Chao, K. A. (2001). "Opto-Thermionic Refrigeration in Semiconductor Heterostructures".
564: 523: 486: 475:
Murphy, E. L.; Good, G. H. (1956). "Thermionic Emission, Field Emission, and the Transition Region".
416: 351: 51: 54:
will be biased negative relative to its surroundings. This creates an electric field of magnitude
297: 43: 539: 455: 308: 62:
equal to the local work-function. The electric field lowers the surface barrier by an amount Δ
572: 531: 494: 443: 424: 477: 277: 17: 568: 527: 490: 420: 66:, and increases the emission current. It can be modeled by a simple modification of the 378: 374: 398:
Kiziroglou, M. E.; Li, X.; Zhukov, A. A.; De Groot, P. A. J.; De Groot, C. H. (2008).
595: 576: 289: 346: 319: 47: 535: 428: 23: 498: 451: 543: 262:{\displaystyle \Delta W={\sqrt {{q_{e}}^{3}F \over 4\pi \epsilon _{0}}},} 184:{\displaystyle J(F,T,W)=A_{\mathrm {G} }T^{2}e^{-(W-\Delta W) \over kT}} 400:"Thermionic field emission at electrodeposited Ni-Si Schottky barriers" 345: 22: 198: 91: 336:
multiplied by a material-specific correction factor
261: 183: 8: 46:. In electron emission devices, especially 246: 225: 218: 213: 208: 197: 145: 135: 124: 123: 90: 390: 350:Schottky-emitter electron source of an 329:is the product of a universal constant 366:the emitter operates in the so-called 7: 368:"cold field electron emission (CFE)" 448:Handbook of Charged Particle Optics 199: 160: 125: 36:field enhanced thermionic emission 14: 343:which is typically of order 0.5. 284:is the temperature of the metal, 363:Fowler–Nordheim (FN) tunneling 166: 151: 113: 95: 1: 577:10.1016/0039-6028(92)91335-9 536:10.1103/PhysRevLett.86.5570 82:). This gives the equation 52:thermionic electron emitter 623: 15: 429:10.1016/j.sse.2008.03.002 602:Condensed matter physics 499:10.1103/PhysRev.102.1464 40:condensed matter physics 16:Not to be confused with 515:Physical Review Letters 408:Solid-State Electronics 354: 263: 185: 27: 349: 264: 186: 26: 563:. 269/270: 695–699. 196: 89: 569:1992SurSc.269..695S 528:2001PhRvL..86.5570M 491:1956PhRv..102.1464M 444:"Schottky emission" 442:Orloff, J. (2008). 421:2008SSEle..52.1032K 352:Electron microscope 320:vacuum permittivity 68:Richardson equation 38:is a phenomenon in 355: 298:Boltzmann constant 259: 181: 44:Walter H. Schottky 28: 522:(24): 5570–5573. 461:978-1-4200-4554-3 359:Schottky emission 309:Elementary charge 254: 253: 178: 614: 581: 580: 554: 548: 547: 509: 503: 502: 485:(6): 1464–1473. 472: 466: 465: 454:. pp. 5–6. 450:(2nd ed.). 439: 433: 432: 415:(7): 1032–1038. 404: 395: 276:is the emission 268: 266: 265: 260: 255: 252: 251: 250: 234: 230: 229: 224: 223: 222: 210: 209: 190: 188: 187: 182: 180: 179: 177: 169: 146: 140: 139: 130: 129: 128: 622: 621: 617: 616: 615: 613: 612: 611: 592: 591: 590: 585: 584: 560:Surface Science 556: 555: 551: 511: 510: 506: 478:Physical Review 474: 473: 469: 462: 441: 440: 436: 402: 397: 396: 392: 387: 342: 335: 328: 317: 306: 278:current density 242: 235: 214: 212: 211: 194: 193: 170: 147: 141: 131: 119: 87: 86: 70:, by replacing 32:Schottky effect 21: 18:Schottky defect 12: 11: 5: 620: 618: 610: 609: 604: 594: 593: 589: 588:External links 586: 583: 582: 549: 504: 467: 460: 434: 389: 388: 386: 383: 379:Rydberg matter 375:Rydberg matter 340: 333: 326: 315: 304: 292:of the metal, 270: 269: 258: 249: 245: 241: 238: 233: 228: 221: 217: 207: 204: 201: 191: 176: 173: 168: 165: 162: 159: 156: 153: 150: 144: 138: 134: 127: 122: 118: 115: 112: 109: 106: 103: 100: 97: 94: 78: − Δ 13: 10: 9: 6: 4: 3: 2: 619: 608: 607:Electron beam 605: 603: 600: 599: 597: 587: 578: 574: 570: 566: 562: 561: 553: 550: 545: 541: 537: 533: 529: 525: 521: 517: 516: 508: 505: 500: 496: 492: 488: 484: 480: 479: 471: 468: 463: 457: 453: 449: 445: 438: 435: 430: 426: 422: 418: 414: 410: 409: 401: 394: 391: 384: 382: 380: 376: 371: 369: 364: 360: 353: 348: 344: 339: 332: 325: 321: 314: 310: 303: 299: 295: 291: 290:work function 287: 283: 279: 275: 256: 247: 243: 239: 236: 231: 226: 219: 215: 205: 202: 192: 174: 171: 163: 157: 154: 148: 142: 136: 132: 120: 116: 110: 107: 104: 101: 98: 92: 85: 84: 83: 81: 77: 73: 69: 65: 61: 57: 53: 49: 48:electron guns 45: 41: 37: 33: 25: 19: 558: 552: 519: 513: 507: 482: 476: 470: 447: 437: 412: 406: 393: 372: 358: 356: 337: 330: 323: 312: 301: 293: 285: 281: 273: 271: 79: 75: 71: 63: 59: 55: 42:named after 35: 31: 29: 596:Categories 385:References 452:CRC Press 244:ϵ 240:π 200:Δ 161:Δ 158:− 149:− 544:11415303 370:regime. 565:Bibcode 524:Bibcode 487:Bibcode 417:Bibcode 318:is the 307:is the 296:is the 288:is the 542:  458:  322:, and 272:where 50:, the 403:(PDF) 540:PMID 456:ISBN 74:by ( 30:The 573:doi 532:doi 495:doi 483:102 425:doi 300:, 34:or 598:: 571:. 538:. 530:. 520:86 518:. 493:. 481:. 446:. 423:. 413:52 411:. 405:. 311:, 280:, 579:. 575:: 567:: 546:. 534:: 526:: 501:. 497:: 489:: 464:. 431:. 427:: 419:: 341:R 338:λ 334:0 331:A 327:G 324:A 316:0 313:ε 305:e 302:q 294:k 286:W 282:T 274:J 257:, 248:0 237:4 232:F 227:3 220:e 216:q 206:= 203:W 175:T 172:k 167:) 164:W 155:W 152:( 143:e 137:2 133:T 126:G 121:A 117:= 114:) 111:W 108:, 105:T 102:, 99:F 96:( 93:J 80:W 76:W 72:W 64:W 60:W 56:F 20:.

Index

Schottky defect

condensed matter physics
Walter H. Schottky
electron guns
thermionic electron emitter
Richardson equation
current density
work function
Boltzmann constant
Elementary charge
vacuum permittivity

Electron microscope
Fowler–Nordheim (FN) tunneling
"cold field electron emission (CFE)"
Rydberg matter
Rydberg matter
"Thermionic field emission at electrodeposited Ni-Si Schottky barriers"
Solid-State Electronics
Bibcode
2008SSEle..52.1032K
doi
10.1016/j.sse.2008.03.002
"Schottky emission"
CRC Press
ISBN
978-1-4200-4554-3
Physical Review
Bibcode

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.