Knowledge (XXG)

Solid oxide electrolyzer cell

Source 📝

246:
as a cathode material. Recent studies have found that doping LSM with scandium to form LSMS promotes mobility of oxide ions in the cathode, increasing reduction kinetics at the interface with the electrolyte and thus leading to higher performance at low temperatures than traditional LSM cells. However, further development of the sintering process parameters is required to prevent precipitation of scandium oxide into the LSM lattice. These precipitate particles are problematic because they can impede electron and ion conduction. In particular, the processing temperature and concentration of scandium in the LSM lattice are being researched to optimize the properties of the LSMS cathode. New materials are being researched such as lanthanum strontium manganese chromate (LSCM), which has proven to be more stable under electrolysis conditions. LSCM has high redox stability, which is crucial especially at the interface with the electrolyte. Scandium-doped LCSM (LSCMS) is also being researched as a cathode material due to its high ionic conductivity. However, the rare-earth element introduces a significant materials cost and was found to cause a slight decrease in overall mixed conductivity. Nonetheless, LCSMS materials have demonstrated high efficiency at temperatures as low as 700 °C.
1569:. In exothermic mode, the stack temperature increases during operation due to heat accumulation, and this heat is used for inlet gas preheating. Therefore, an external heat source is not needed while the electrical energy consumption increases. In the endothermic stack operation mode, there is an increase in heat energy consumption and a reduction in electrical energy consumption and hydrogen production because the average current density also decreases. The third mode is thermoneutral in which the heat generated through irreversible losses is equal to the heat required by the reaction. As there are some thermal losses, an external heat source is needed. This mode consumes more electricity than endothermic operation mode. 237:
Despite the material similarity to solid oxide fuel cells, the operating conditions are different, leading to issues such as high steam concentrations at the fuel electrode and high oxygen partial pressures at the electrolyte/oxygen electrode interface. A recent study found that periodic cycling a cell between electrolyzer and fuel cell modes reduced the oxygen partial pressure build up and drastically increased the lifetime of the electrolyzer cell.
20: 316:
Fuel cells operated in electrolysis mode have been observed to degrade primarily due to anode delamination from the electrolyte. The delamination is a result of high oxygen partial pressure build up at the electrolyte-anode interface. Pores in the electrolyte-anode material act to confine high oxygen
183:
and oxygen ions. The hydrogen gas then diffuses back up through the cathode and is collected at its surface as hydrogen fuel, while the oxygen ions are conducted through the dense electrolyte. The electrolyte must be dense enough that the steam and hydrogen gas cannot diffuse through and lead to the
245:
The most common fuel electrode material is a Ni doped YSZ. However, high steam partial pressures and low hydrogen partial pressures at the Ni-YSZ interface causes oxidation of the nickel which results in catalyst degradation. Perovskite-type lanthanum strontium manganese (LSM) is also commonly used
236:
from the tetragonal to the monoclinic phase on rapid cooling, which can lead to cracks and decrease the conductive properties of the electrolyte by causing scattering. Some other common choices for SOEC are Scandia stabilized zirconia (ScSZ), ceria based electrolytes or lanthanum gallate materials.
263:
as an anode material provided 1.7 times the current density of typical LSM anodes when integrated into a commercial SOEC and operated at 700 °C, and approximately 4 times the current density when operated at 800 °C. The increased performance is postulated to be due to higher
254:
Lanthanum strontium manganate (LSM) is the most common oxygen electrode material. LSM offers high performance under electrolysis conditions due to generation of oxygen vacancies under anodic polarization that aid oxygen diffusion. In addition, impregnating LSM electrode with Gd-doped
1516:
Delamination of the anode from the electrolyte increases the resistance of the cell and necessitates higher operating voltages in order to maintain a stable current. Higher applied voltages increases the internal oxygen partial pressure, further exacerbating the degradation.
295:
is usually optimized for operating in one mode and may not be built in such a way that it can be operated in reverse. Fuel cells operated backwards may not make very efficient systems unless they are constructed to do so such as in the case of solid oxide electrolyzer cells,
1603:
Zheng, Yun; Wang, Jianchen; Yu, Bo; Zhang, Wenqiang; Chen, Jing; Qiao, Jinli; Zhang, Jiujun (2017). "A review of high temperature co-electrolysis of H O and CO to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology".
462:
Virkar et al. created a model to calculate the internal oxygen partial pressure from the oxygen partial pressure exposed to the electrodes and the electrolyte resistive properties. The internal pressure of oxygen at the electrolyte- anode interface was modelled as:
146:
Electrolysis of water at 298 K (25 °C) requires 285.83 kJ of energy per mole in order to occur, and the reaction is increasingly endothermic with increasing temperature. However, the energy demand may be reduced due to the
259:(GDC) nanoparticles was found to increase cell lifetime by preventing delamination at the electrode/electrolyte interface. The exact mechanism by how this happen needs to be explore further. In a 2010 study, it was found that 1552:
as a means to produce oxygen for both human sustenance and liquid oxygen rocket propellant. In April 2021, NASA claimed it has successfully produced 1 gallon of earth-equivalent oxygen (4 and 5 grams of oxygen on Mars) from
317:
partial pressures inducing stress concentration in the surrounding material. The maximum stress induced can be expressed in terms of the internal oxygen pressure using the following equation from fracture mechanics:
1949:
Chen, S.; Xie, K.; Dong, D.; Li, H.; Qin, Q.; Zhang, Y.; Wu, Y. (2015). "A composite cathode based on scandium-doped chromate for direct high-temperature steam electrolysis in a symmetric solid oxide electrolyzer".
401: 2252: 2269: 1511: 63:) and oxygen. The production of pure hydrogen is compelling because it is a clean fuel that can be stored, making it a potential alternative to batteries, methane, and other energy sources (see 1656:
Ni M, Leung MKH, Leung DYC, Sumathy K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable Sustainable Energy Rev 2007;11(3):401–25.
1895:
Yue, X.; Yan, A.; Zhang, M.; Liu, L.; Dong, Y.; Cheng, M. (2008). "Investigation on scandium-doped manganate La0.8Sr0.2Mn1-xScxO3-cathode for Intermediate Temperature Solid Oxide Fuel Cells".
676: 1434: 1525:
SOECs have possible application in fuel production, carbon dioxide recycling, and chemicals synthesis. In addition to the production of hydrogen and oxygen, an SOEC could be used to create
196:
Solid oxide electrolyzer cells follow the same construction of a solid-oxide fuel cell, consisting of a fuel electrode (cathode), an oxygen electrode (anode) and a solid-oxide electrolyte.
862: 1529:
by electrolyzing water vapor and carbon dioxide. Mega-watt scale SOEC have been installed in Rotterdam, using industrial waste heat to reach its operating temperature of 850°C .
2012:
Chen, K.; Ai, N.; Jiang, S.P. (2010). "Development of (Gd,Ce)O[sub 2]-Impregnated (La,Sr)MnO[sub 3] Anodes of High Temperature Solid Oxide Electrolysis Cells".
457: 1513:. The internal oxygen partial pressure is minimized by increasing the electronic resistance at the anode interface and decreasing the ionic resistance at anode interface. 1319: 903: 1349: 1281: 1165: 1105: 1922:
Yang, X.; Irvine, J.T.S. (2008). "(La0.75Sr0.25)0.95Mn0.5Cr0.5O3 as the cathode of solid oxide electrolysis cells for high temperature hydrogen production from steam".
1376: 1192: 1132: 967: 935: 1246: 1219: 1075: 1048: 1021: 994: 424: 1844:
Graves, C.; Ebbesen, S. D.; Jensen, S. H.; Simonsen, S. B.; Mogensen, M. B. "Eliminating degradation in solid oxide electrochemical cells by reversible operation.
2249: 1773:
Bocanegra-Bernal, M. H.; De la Torre, S. D. (2002). "Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics".
276:. Additional advantages include long-term stability, fuel flexibility, low emissions, and low operating costs. However, the greatest disadvantage is the high 2741: 2039:
Chauveau, F.; Mougin, J.; Bassat, J. M.; Mauvy, F.; Grenier, J. C. (2010). "A new anode material for solid oxide electrolyser: The neodymium nickelate".
179:. Steam is fed into the porous cathode. When a voltage is applied, the steam moves to the cathode-electrolyte interface and is reduced to form pure H 71:
from water due to high efficiency of conversion and relatively low required energy input when compared to thermochemical and photocatalytic methods.
2901: 188:
and O. At the electrolyte-anode interface, the oxygen ions are oxidized to form pure oxygen gas, which is collected at the surface of the anode.
280:, which results in long start-up times and break-in times. The high operating temperature also leads to mechanical compatibility issues such as 2688: 308:. However, current research is being conducted to investigate systems in which a solid oxide cell may be run in either direction efficiently. 1746:
Ni, M.; Leung, M. K. H.; Leung, D. Y. C. (2008). "Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)".
1666:
Ni, M.; Leung, M. K. H.; Leung, D. Y. C. (2008). "Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)".
2426: 2311: 1641: 291:
In principle, the process of any fuel cell could be reversed, due to the inherent reversibility of chemical reactions. However, a given
2077: 2464: 2371:"Design and optimization of a combined solar thermophotovoltaic power generation and solid oxide electrolyser for hydrogen production" 323: 220:
is used because of its high strength, high melting temperature (approximately 2700 °C) and excellent corrosion resistance.
2607: 301: 2562: 1439: 80: 1808:
Laguna-Bercero, M. A. (2012). "Recent advances in high temperature electrolysis using solid oxide fuel cells: A review".
2791: 2702: 2485: 2812: 2756: 2726: 459:
exceeds the theoretical strength of the material, the crack will propagate, macroscopically resulting in delamination.
264:"overstoichimoetry" of oxygen in the neodymium nickelate, making it a successful conductor of both ions and electrons. 2845: 2655: 2572: 2515: 1578: 1542: 469: 1381: 2716: 2681: 2592: 2454: 297: 2666: 204:
The most common electrolyte, again similar to solid-oxide fuel cells, is a dense ionic conductor consisting of ZrO
2582: 2500: 2459: 2587: 2495: 2419: 2337: 2270:"Hot hydrogen | World's largest solid-oxide electrolyser successfully installed at Rotterdam biofuels refinery" 2102:
Brozek, Celestyn M. (1996). "Simple and attractive demonstration of the reversibility of chemical reactions".
272:
Advantages of solid oxide-based regenerative fuel cells include high efficiencies, as they are not limited by
2784: 2577: 2510: 2490: 682: 2597: 2536: 1985:
Wan, W.; Jiang, S.P. (2006). "La0.75Sr0.25Cr0.5Mn0.5O3−δ+Cu composite anode running on H2 and CH4 fuels".
305: 40: 19: 2779: 2746: 2674: 2505: 2469: 1583: 1566: 277: 88: 84: 44: 36: 2520: 2215:
Gazzarri, J.I.; Kesler, O. (2007). "Non-destructive delamination detection in solid oxide fuel cells".
2224: 2188:
Virkar, A.V. (2010). "Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells".
2161:
Virkar, A.V. (2010). "Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells".
2111: 1959: 1716: 1546: 2927: 2731: 2541: 2412: 1134:
are the electric potentials at the anode surface and the anode electrolyte interface respectively.
429: 260: 68: 1703: 2835: 2766: 2761: 2449: 2390: 1790: 1286: 870: 221: 155:
process at high temperatures. Research is ongoing to add heat from external heat sources such as
2066:
Intermediate temperature solid oxide electrolysis cell using LaGaO3 based perovskite electrolyte
1692: 1324: 1251: 1140: 1080: 171:
The general function of the electrolyzer cell is to split water in the form of steam into pure H
1354: 1170: 1110: 940: 908: 2830: 2345: 1638: 1621: 281: 273: 217: 2065: 2891: 2870: 2796: 2642: 2637: 2632: 2627: 2382: 2232: 2197: 2170: 2119: 2048: 2021: 1994: 1967: 1931: 1904: 1875: 1867: 1825: 1817: 1782: 1755: 1728: 1675: 1613: 233: 160: 64: 1224: 1197: 1053: 1026: 999: 972: 409: 2721: 2256: 1645: 152: 60: 2081: 2228: 2115: 1963: 2771: 2751: 2137:
A Proposed Method for High Efficiency Electrical Energy Storage Using Solid Oxide Cells
2921: 2815: 2557: 2394: 1794: 148: 2698: 2567: 2386: 2236: 2201: 2174: 2052: 1971: 1908: 1871: 1821: 1759: 1732: 1679: 56: 2370: 1077:
are the overall electronic and ionic area specific resistances respectively, and
2906: 2896: 156: 92: 91:. The net cell reaction yields hydrogen and oxygen gases. The reactions for one 52: 1565:
SOEC modules can operate in three different modes: exothermic, endothermic and
2736: 1998: 1786: 2349: 2287: 2860: 2855: 2435: 292: 285: 96: 1625: 2136: 2840: 2825: 2619: 2123: 1717:"Can high temperature steam electrolysis function with geothermal heat?" 905:
is the oxygen partial pressure exposed to the oxygen electrode (anode),
2850: 2820: 1880: 1830: 1617: 108: 48: 2025: 2865: 2312:"MIT to send oxygen-creating instrument on Mars 2020 mission by NASA" 1935: 1526: 1639:
Durability of solid oxide electrolysis cells for hydrogen production
937:
is the area specific electronic resistance at the anode interface,
79:
Solid oxide electrolyzer cells operate at temperatures which allow
104: 100: 18: 2875: 2670: 2408: 1693:
A reversible planar solid oxide fuel-assisted electrolysis cell
396:{\displaystyle \sigma _{max}=2P_{O2}({\frac {c}{\rho }})^{1/2}} 1538: 969:
is the area specific ionic resistance at the anode interface,
2404: 1715:
Sigurvinsson, J; Mansilla, C; Lovera, P; Werkoff, F (2007).
67:). Electrolysis is currently the most promising method of 1506:{\displaystyle {\frac {(E_{a}-E_{N})r_{i}^{a}}{R_{i}}}} 83:
to occur, typically between 500 and 850 °C. These
151:
of an electrolysis cell, which may be utilized in the
1442: 1384: 1357: 1327: 1289: 1254: 1227: 1200: 1173: 1143: 1113: 1083: 1056: 1029: 1002: 975: 943: 911: 873: 685: 472: 432: 412: 326: 426:
is the radius of curvature of the crack or pore. If
2884: 2805: 2709: 2618: 2550: 2529: 2478: 2442: 47:(and/or carbon dioxide) by using a solid oxide, or 2338:"NASA's MOXIE Experiment Is Making Oxygen on Mars" 1505: 1428: 1370: 1343: 1313: 1275: 1240: 1213: 1186: 1159: 1126: 1099: 1069: 1042: 1015: 988: 961: 929: 897: 856: 670: 451: 418: 395: 216:(also known as YSZ, ytrium-stabilized zirconia). 2292:MIT News | Massachusetts Institute of Technology 671:{\displaystyle P_{O2}^{a}=P_{O2}^{Ox}\exp \left} 1429:{\displaystyle {\frac {E_{a}r_{e}^{a}}{R_{e}}}} 406:where c is the length of the crack or pore and 284:mismatch and chemical stability issues such as 2369:Daneshpour, Raheleh; Mehrpooya, Mehdi (2018). 2682: 2420: 8: 2689: 2675: 2667: 2427: 2413: 2405: 2250:Ceramatec Solid Oxide Co-Electrolysis Cell 1879: 1829: 1495: 1484: 1479: 1466: 1453: 1443: 1441: 1418: 1407: 1402: 1392: 1385: 1383: 1362: 1356: 1332: 1326: 1302: 1294: 1288: 1267: 1259: 1253: 1232: 1226: 1205: 1199: 1178: 1172: 1148: 1142: 1118: 1112: 1088: 1082: 1061: 1055: 1034: 1028: 1007: 1001: 980: 974: 953: 948: 942: 921: 916: 910: 886: 878: 872: 836: 825: 820: 807: 794: 784: 772: 756: 724: 701: 693: 684: 650: 639: 634: 621: 608: 598: 587: 576: 571: 561: 554: 529: 506: 498: 485: 477: 471: 437: 431: 411: 383: 379: 365: 353: 331: 325: 2902:Standard electrode potential (data page) 2190:International Journal of Hydrogen Energy 2163:International Journal of Hydrogen Energy 1748:International Journal of Hydrogen Energy 1721:International Journal of Hydrogen Energy 1668:International Journal of Hydrogen Energy 1595: 288:between layers of material in the cell 1541:successfully tested a devices used in 857:{\displaystyle =P_{O2}^{Ox}\exp \left} 157:concentrating solar thermal collectors 87:are similar to those conditions for a 7: 1858:Laguna-Bercero (2012). "A review". 2806:Materials produced by electrolysis 2465:Proton-exchange membrane fuel cell 14: 1848:2014, advance online publication. 2375:Energy Conversion and Management 2268:Collins, Leigh (11 April 2023). 2149:Mechanical Behavior of Materials 302:unitized regenerative fuel cells 2608:Unitized regenerative fuel cell 2151:. Groveland, IL: Waveland Press 99:of oxide ions occurring at the 95:of water are shown below, with 2742:Electrolysis of carbon dioxide 2387:10.1016/j.enconman.2018.09.033 2237:10.1016/j.jpowsour.2007.02.042 2202:10.1016/j.ijhydene.2010.06.058 2175:10.1016/j.ijhydene.2010.06.058 2053:10.1016/j.jpowsour.2009.08.003 1972:10.1016/j.jpowsour.2014.10.103 1909:10.1016/j.jpowsour.2008.08.038 1872:10.1016/j.jpowsour.2011.12.019 1822:10.1016/j.jpowsour.2011.12.019 1760:10.1016/j.ijhydene.2008.02.048 1733:10.1016/j.ijhydene.2006.11.026 1680:10.1016/j.ijhydene.2008.02.048 1472: 1446: 813: 787: 778: 749: 627: 601: 376: 362: 1: 2603:Solid oxide electrolyzer cell 2104:Journal of Chemical Education 452:{\displaystyle \sigma _{max}} 81:high-temperature electrolysis 29:solid oxide electrolyzer cell 2792:Electrochemical fluorination 2703:Standard electrode potential 2486:Direct borohydride fuel cell 1775:Journal of Materials Science 2846:Hydrogen evolution reaction 2573:Membrane electrode assembly 2516:Reformed methanol fuel cell 1579:Glossary of fuel cell terms 1543:Mars Oxygen ISRU Experiment 1314:{\displaystyle P_{O2}^{Ox}} 898:{\displaystyle P_{O2}^{Ox}} 298:high pressure electrolyzers 232:) is added to mitigate the 2944: 2717:Betts electrolytic process 2593:Protonic ceramic fuel cell 2563:Electro-galvanic fuel cell 2455:Molten carbonate fuel cell 1344:{\displaystyle \phi ^{Ox}} 1276:{\displaystyle P_{O2}^{a}} 1160:{\displaystyle \phi ^{Ox}} 1100:{\displaystyle \phi ^{Ox}} 107:of water occurring at the 2651: 2583:Photoelectrochemical cell 2501:Direct methanol fuel cell 2460:Phosphoric acid fuel cell 2288:"Going to the Red Planet" 1999:10.1016/j.ssi.2006.04.046 1371:{\displaystyle \phi ^{a}} 1187:{\displaystyle \phi ^{a}} 1127:{\displaystyle \phi ^{a}} 1023:is the Nernst potential, 962:{\displaystyle r_{i}^{a}} 930:{\displaystyle r_{e}^{a}} 208:doped with 8 mol-% Y 2588:Proton-exchange membrane 2496:Direct-ethanol fuel cell 2217:Journal of Power Sources 2078:"Solid oxide fuel cells" 2041:Journal of Power Sources 1952:Journal of Power Sources 1897:Journal of Power Sources 1860:Journal of Power Sources 1810:Journal of Power Sources 1557:in the Mars atmosphere. 1321:is dictated by whether ( 996:is the applied voltage, 250:Oxygen Electrode (Anode) 241:Fuel Electrode (Cathode) 2727:Castner–Kellner process 2578:Membraneless Fuel Cells 2511:Metal hydride fuel cell 2491:Direct carbon fuel cell 1787:10.1023/A:1021099308957 306:regenerative fuel cells 2710:Electrolytic processes 2598:Regenerative fuel cell 2537:Enzymatic biofuel cell 2147:Courtney, T.N. (2000) 1507: 1430: 1372: 1345: 1315: 1277: 1242: 1215: 1188: 1161: 1128: 1101: 1071: 1044: 1017: 990: 963: 931: 899: 858: 672: 453: 420: 397: 184:recombination of the H 85:operating temperatures 24: 2747:Electrolysis of water 2506:Formic acid fuel cell 2470:Solid oxide fuel cell 1704:Electrolysis of Water 1584:Hydrogen technologies 1508: 1431: 1373: 1346: 1316: 1278: 1243: 1241:{\displaystyle E_{N}} 1216: 1214:{\displaystyle E_{a}} 1189: 1162: 1137:In electrolysis mode 1129: 1102: 1072: 1070:{\displaystyle R_{i}} 1045: 1043:{\displaystyle R_{e}} 1018: 1016:{\displaystyle E_{N}} 991: 989:{\displaystyle E_{a}} 964: 932: 900: 859: 673: 454: 421: 419:{\displaystyle \rho } 398: 278:operating temperature 89:solid oxide fuel cell 45:electrolysis of water 37:solid oxide fuel cell 22: 2757:Hall–Héroult process 2697:Articles related to 1993:(13–14): 1361–1369. 1561:Operating conditions 1440: 1382: 1355: 1325: 1287: 1252: 1225: 1198: 1171: 1141: 1111: 1081: 1054: 1027: 1000: 973: 941: 909: 871: 683: 470: 430: 410: 324: 2732:Chloralkali process 2542:Microbial fuel cell 2229:2007JPS...167..430G 2124:10.1021/ed073p837.1 2116:1996JChEd..73..837B 2014:J. Electrochem. Soc 1964:2015JPS...274..718C 1489: 1412: 1310: 1272: 958: 926: 894: 830: 709: 644: 581: 514: 490: 261:neodymium nickelate 69:hydrogen production 23:SOEC 60 cell stack. 2836:Electrolysed water 2767:Kolbe electrolysis 2762:Hofmann voltameter 2450:Alkaline fuel cell 2255:2011-06-08 at the 1987:Solid State Ionics 1644:2009-07-11 at the 1618:10.1039/C6CS00403B 1503: 1475: 1426: 1398: 1368: 1341: 1311: 1290: 1273: 1255: 1238: 1211: 1184: 1157: 1124: 1097: 1067: 1040: 1013: 986: 959: 944: 927: 912: 895: 874: 854: 816: 689: 668: 630: 567: 494: 473: 449: 416: 393: 222:Yttrium(III) oxide 25: 2915: 2914: 2664: 2663: 2196:(18): 9527–9543. 2169:(18): 9527–9543. 2026:10.1149/1.3481436 1930:(20): 2349–2354. 1781:(23): 4947–4971. 1501: 1424: 842: 742: 656: 593: 547: 373: 282:thermal expansion 274:Carnot efficiency 218:Zirconium dioxide 132:Net Reaction: 2 H 41:regenerative mode 16:Type of fuel cell 2935: 2892:Electrochemistry 2871:Sodium hydroxide 2797:Wohlwill process 2691: 2684: 2677: 2668: 2521:Zinc–air battery 2429: 2422: 2415: 2406: 2399: 2398: 2366: 2360: 2359: 2357: 2356: 2333: 2327: 2326: 2324: 2323: 2308: 2302: 2301: 2299: 2298: 2284: 2278: 2277: 2274:rechargenews.com 2265: 2259: 2247: 2241: 2240: 2212: 2206: 2205: 2185: 2179: 2178: 2158: 2152: 2145: 2139: 2134: 2128: 2127: 2099: 2093: 2092: 2090: 2089: 2080:. Archived from 2074: 2068: 2063: 2057: 2056: 2036: 2030: 2029: 2009: 2003: 2002: 1982: 1976: 1975: 1946: 1940: 1939: 1936:10.1039/b800163d 1919: 1913: 1912: 1892: 1886: 1885: 1883: 1855: 1849: 1842: 1836: 1835: 1833: 1805: 1799: 1798: 1770: 1764: 1763: 1754:(9): 2337–2354. 1743: 1737: 1736: 1727:(9): 1174–1182. 1712: 1706: 1701: 1695: 1690: 1684: 1683: 1674:(9): 2337–2354. 1663: 1657: 1654: 1648: 1636: 1630: 1629: 1612:(5): 1427–1463. 1600: 1512: 1510: 1509: 1504: 1502: 1500: 1499: 1490: 1488: 1483: 1471: 1470: 1458: 1457: 1444: 1436:is greater than 1435: 1433: 1432: 1427: 1425: 1423: 1422: 1413: 1411: 1406: 1397: 1396: 1386: 1377: 1375: 1374: 1369: 1367: 1366: 1350: 1348: 1347: 1342: 1340: 1339: 1320: 1318: 1317: 1312: 1309: 1301: 1283:is greater than 1282: 1280: 1279: 1274: 1271: 1266: 1247: 1245: 1244: 1239: 1237: 1236: 1220: 1218: 1217: 1212: 1210: 1209: 1193: 1191: 1190: 1185: 1183: 1182: 1166: 1164: 1163: 1158: 1156: 1155: 1133: 1131: 1130: 1125: 1123: 1122: 1106: 1104: 1103: 1098: 1096: 1095: 1076: 1074: 1073: 1068: 1066: 1065: 1049: 1047: 1046: 1041: 1039: 1038: 1022: 1020: 1019: 1014: 1012: 1011: 995: 993: 992: 987: 985: 984: 968: 966: 965: 960: 957: 952: 936: 934: 933: 928: 925: 920: 904: 902: 901: 896: 893: 885: 863: 861: 860: 855: 853: 849: 848: 844: 843: 841: 840: 831: 829: 824: 812: 811: 799: 798: 785: 777: 776: 764: 763: 743: 741: 733: 725: 708: 700: 677: 675: 674: 669: 667: 663: 662: 658: 657: 655: 654: 645: 643: 638: 626: 625: 613: 612: 599: 594: 592: 591: 582: 580: 575: 566: 565: 555: 548: 546: 538: 530: 513: 505: 489: 484: 458: 456: 455: 450: 448: 447: 425: 423: 422: 417: 402: 400: 399: 394: 392: 391: 387: 374: 366: 361: 360: 342: 341: 234:phase transition 65:hydrogen economy 2943: 2942: 2938: 2937: 2936: 2934: 2933: 2932: 2918: 2917: 2916: 2911: 2880: 2861:Potassium metal 2856:Magnesium metal 2801: 2722:Castner process 2705: 2695: 2665: 2660: 2647: 2614: 2546: 2525: 2474: 2438: 2433: 2403: 2402: 2368: 2367: 2363: 2354: 2352: 2335: 2334: 2330: 2321: 2319: 2310: 2309: 2305: 2296: 2294: 2286: 2285: 2281: 2267: 2266: 2262: 2257:Wayback Machine 2248: 2244: 2214: 2213: 2209: 2187: 2186: 2182: 2160: 2159: 2155: 2146: 2142: 2135: 2131: 2101: 2100: 2096: 2087: 2085: 2076: 2075: 2071: 2064: 2060: 2038: 2037: 2033: 2020:(11): P89–P94. 2011: 2010: 2006: 1984: 1983: 1979: 1948: 1947: 1943: 1921: 1920: 1916: 1894: 1893: 1889: 1857: 1856: 1852: 1843: 1839: 1807: 1806: 1802: 1772: 1771: 1767: 1745: 1744: 1740: 1714: 1713: 1709: 1702: 1698: 1691: 1687: 1665: 1664: 1660: 1655: 1651: 1646:Wayback Machine 1637: 1633: 1602: 1601: 1597: 1592: 1575: 1563: 1556: 1535: 1523: 1491: 1462: 1449: 1445: 1438: 1437: 1414: 1388: 1387: 1380: 1379: 1358: 1353: 1352: 1328: 1323: 1322: 1285: 1284: 1250: 1249: 1228: 1223: 1222: 1201: 1196: 1195: 1174: 1169: 1168: 1144: 1139: 1138: 1114: 1109: 1108: 1084: 1079: 1078: 1057: 1052: 1051: 1030: 1025: 1024: 1003: 998: 997: 976: 971: 970: 939: 938: 907: 906: 869: 868: 832: 803: 790: 786: 768: 752: 748: 744: 734: 726: 720: 716: 681: 680: 646: 617: 604: 600: 583: 557: 556: 553: 549: 539: 531: 525: 521: 468: 467: 433: 428: 427: 408: 407: 375: 349: 327: 322: 321: 314: 270: 258: 252: 243: 231: 227: 215: 211: 207: 202: 194: 187: 182: 178: 174: 169: 153:water splitting 143: 139: 135: 128: 124: 117: 77: 61:carbon monoxide 43:to achieve the 17: 12: 11: 5: 2941: 2939: 2931: 2930: 2920: 2919: 2913: 2912: 2910: 2909: 2904: 2899: 2894: 2888: 2886: 2882: 2881: 2879: 2878: 2873: 2868: 2863: 2858: 2853: 2848: 2843: 2838: 2833: 2828: 2823: 2818: 2809: 2807: 2803: 2802: 2800: 2799: 2794: 2789: 2788: 2787: 2782: 2774: 2772:Hoopes process 2769: 2764: 2759: 2754: 2752:Electrowinning 2749: 2744: 2739: 2734: 2729: 2724: 2719: 2713: 2711: 2707: 2706: 2696: 2694: 2693: 2686: 2679: 2671: 2662: 2661: 2659: 2658: 2652: 2649: 2648: 2646: 2645: 2640: 2635: 2630: 2624: 2622: 2616: 2615: 2613: 2612: 2611: 2610: 2605: 2595: 2590: 2585: 2580: 2575: 2570: 2565: 2560: 2554: 2552: 2548: 2547: 2545: 2544: 2539: 2533: 2531: 2527: 2526: 2524: 2523: 2518: 2513: 2508: 2503: 2498: 2493: 2488: 2482: 2480: 2476: 2475: 2473: 2472: 2467: 2462: 2457: 2452: 2446: 2444: 2443:By electrolyte 2440: 2439: 2434: 2432: 2431: 2424: 2417: 2409: 2401: 2400: 2361: 2336:Niiler, Eric. 2328: 2303: 2279: 2260: 2242: 2223:(2): 430–441. 2207: 2180: 2153: 2140: 2129: 2094: 2069: 2058: 2047:(3): 744–749. 2031: 2004: 1977: 1941: 1924:J. Mater. Chem 1914: 1903:(2): 691–697. 1887: 1850: 1837: 1800: 1765: 1738: 1707: 1696: 1685: 1658: 1649: 1631: 1606:Chem. Soc. Rev 1594: 1593: 1591: 1588: 1587: 1586: 1581: 1574: 1571: 1562: 1559: 1554: 1534: 1531: 1522: 1519: 1498: 1494: 1487: 1482: 1478: 1474: 1469: 1465: 1461: 1456: 1452: 1448: 1421: 1417: 1410: 1405: 1401: 1395: 1391: 1365: 1361: 1338: 1335: 1331: 1308: 1305: 1300: 1297: 1293: 1270: 1265: 1262: 1258: 1235: 1231: 1208: 1204: 1181: 1177: 1154: 1151: 1147: 1121: 1117: 1094: 1091: 1087: 1064: 1060: 1037: 1033: 1010: 1006: 983: 979: 956: 951: 947: 924: 919: 915: 892: 889: 884: 881: 877: 865: 864: 852: 847: 839: 835: 828: 823: 819: 815: 810: 806: 802: 797: 793: 789: 783: 780: 775: 771: 767: 762: 759: 755: 751: 747: 740: 737: 732: 729: 723: 719: 715: 712: 707: 704: 699: 696: 692: 688: 678: 666: 661: 653: 649: 642: 637: 633: 629: 624: 620: 616: 611: 607: 603: 597: 590: 586: 579: 574: 570: 564: 560: 552: 545: 542: 537: 534: 528: 524: 520: 517: 512: 509: 504: 501: 497: 493: 488: 483: 480: 476: 446: 443: 440: 436: 415: 404: 403: 390: 386: 382: 378: 372: 369: 364: 359: 356: 352: 348: 345: 340: 337: 334: 330: 313: 310: 269: 268:Considerations 266: 256: 251: 248: 242: 239: 229: 225: 213: 209: 205: 201: 198: 193: 190: 185: 180: 176: 172: 168: 165: 141: 137: 133: 126: 122: 115: 114:Anode: 2 O → O 76: 73: 15: 13: 10: 9: 6: 4: 3: 2: 2940: 2929: 2926: 2925: 2923: 2908: 2905: 2903: 2900: 2898: 2895: 2893: 2890: 2889: 2887: 2883: 2877: 2874: 2872: 2869: 2867: 2864: 2862: 2859: 2857: 2854: 2852: 2851:Lithium metal 2849: 2847: 2844: 2842: 2839: 2837: 2834: 2832: 2829: 2827: 2824: 2822: 2821:Calcium metal 2819: 2817: 2814: 2811: 2810: 2808: 2804: 2798: 2795: 2793: 2790: 2786: 2783: 2781: 2778: 2777: 2775: 2773: 2770: 2768: 2765: 2763: 2760: 2758: 2755: 2753: 2750: 2748: 2745: 2743: 2740: 2738: 2735: 2733: 2730: 2728: 2725: 2723: 2720: 2718: 2715: 2714: 2712: 2708: 2704: 2700: 2692: 2687: 2685: 2680: 2678: 2673: 2672: 2669: 2657: 2654: 2653: 2650: 2644: 2641: 2639: 2636: 2634: 2631: 2629: 2626: 2625: 2623: 2621: 2617: 2609: 2606: 2604: 2601: 2600: 2599: 2596: 2594: 2591: 2589: 2586: 2584: 2581: 2579: 2576: 2574: 2571: 2569: 2566: 2564: 2561: 2559: 2556: 2555: 2553: 2549: 2543: 2540: 2538: 2535: 2534: 2532: 2530:Biofuel cells 2528: 2522: 2519: 2517: 2514: 2512: 2509: 2507: 2504: 2502: 2499: 2497: 2494: 2492: 2489: 2487: 2484: 2483: 2481: 2477: 2471: 2468: 2466: 2463: 2461: 2458: 2456: 2453: 2451: 2448: 2447: 2445: 2441: 2437: 2430: 2425: 2423: 2418: 2416: 2411: 2410: 2407: 2396: 2392: 2388: 2384: 2380: 2376: 2372: 2365: 2362: 2351: 2347: 2343: 2339: 2332: 2329: 2317: 2313: 2307: 2304: 2293: 2289: 2283: 2280: 2275: 2271: 2264: 2261: 2258: 2254: 2251: 2246: 2243: 2238: 2234: 2230: 2226: 2222: 2218: 2211: 2208: 2203: 2199: 2195: 2191: 2184: 2181: 2176: 2172: 2168: 2164: 2157: 2154: 2150: 2144: 2141: 2138: 2133: 2130: 2125: 2121: 2117: 2113: 2109: 2105: 2098: 2095: 2084:on 2014-11-05 2083: 2079: 2073: 2070: 2067: 2062: 2059: 2054: 2050: 2046: 2042: 2035: 2032: 2027: 2023: 2019: 2015: 2008: 2005: 2000: 1996: 1992: 1988: 1981: 1978: 1973: 1969: 1965: 1961: 1957: 1953: 1945: 1942: 1937: 1933: 1929: 1925: 1918: 1915: 1910: 1906: 1902: 1898: 1891: 1888: 1882: 1877: 1873: 1869: 1865: 1861: 1854: 1851: 1847: 1841: 1838: 1832: 1827: 1823: 1819: 1815: 1811: 1804: 1801: 1796: 1792: 1788: 1784: 1780: 1776: 1769: 1766: 1761: 1757: 1753: 1749: 1742: 1739: 1734: 1730: 1726: 1722: 1718: 1711: 1708: 1705: 1700: 1697: 1694: 1689: 1686: 1681: 1677: 1673: 1669: 1662: 1659: 1653: 1650: 1647: 1643: 1640: 1635: 1632: 1627: 1623: 1619: 1615: 1611: 1607: 1599: 1596: 1589: 1585: 1582: 1580: 1577: 1576: 1572: 1570: 1568: 1567:thermoneutral 1560: 1558: 1551: 1549: 1544: 1540: 1532: 1530: 1528: 1520: 1518: 1514: 1496: 1492: 1485: 1480: 1476: 1467: 1463: 1459: 1454: 1450: 1419: 1415: 1408: 1403: 1399: 1393: 1389: 1363: 1359: 1336: 1333: 1329: 1306: 1303: 1298: 1295: 1291: 1268: 1263: 1260: 1256: 1233: 1229: 1206: 1202: 1179: 1175: 1152: 1149: 1145: 1135: 1119: 1115: 1092: 1089: 1085: 1062: 1058: 1035: 1031: 1008: 1004: 981: 977: 954: 949: 945: 922: 917: 913: 890: 887: 882: 879: 875: 850: 845: 837: 833: 826: 821: 817: 808: 804: 800: 795: 791: 781: 773: 769: 765: 760: 757: 753: 745: 738: 735: 730: 727: 721: 717: 713: 710: 705: 702: 697: 694: 690: 686: 679: 664: 659: 651: 647: 640: 635: 631: 622: 618: 614: 609: 605: 595: 588: 584: 577: 572: 568: 562: 558: 550: 543: 540: 535: 532: 526: 522: 518: 515: 510: 507: 502: 499: 495: 491: 486: 481: 478: 474: 466: 465: 464: 460: 444: 441: 438: 434: 413: 388: 384: 380: 370: 367: 357: 354: 350: 346: 343: 338: 335: 332: 328: 320: 319: 318: 311: 309: 307: 303: 299: 294: 289: 287: 283: 279: 275: 267: 265: 262: 249: 247: 240: 238: 235: 223: 219: 199: 197: 191: 189: 166: 164: 162: 158: 154: 150: 149:Joule heating 144: 130: 119: 112: 110: 106: 102: 98: 94: 90: 86: 82: 74: 72: 70: 66: 62: 58: 54: 50: 46: 42: 39:that runs in 38: 34: 30: 21: 2866:Sodium metal 2816:(extraction) 2776:Dow process 2699:electrolysis 2602: 2568:Flow battery 2378: 2374: 2364: 2353:. Retrieved 2341: 2331: 2320:. Retrieved 2318:. 2014-08-04 2315: 2306: 2295:. Retrieved 2291: 2282: 2273: 2263: 2245: 2220: 2216: 2210: 2193: 2189: 2183: 2166: 2162: 2156: 2148: 2143: 2132: 2107: 2103: 2097: 2086:. Retrieved 2082:the original 2072: 2061: 2044: 2040: 2034: 2017: 2013: 2007: 1990: 1986: 1980: 1955: 1951: 1944: 1927: 1923: 1917: 1900: 1896: 1890: 1863: 1859: 1853: 1845: 1840: 1813: 1809: 1803: 1778: 1774: 1768: 1751: 1747: 1741: 1724: 1720: 1710: 1699: 1688: 1671: 1667: 1661: 1652: 1634: 1609: 1605: 1598: 1564: 1548:Perseverance 1547: 1536: 1524: 1521:Applications 1515: 1136: 866: 461: 405: 315: 312:Delamination 290: 271: 253: 244: 203: 195: 170: 145: 131: 120: 113: 78: 57:hydrogen gas 32: 28: 26: 2907:Electrology 2897:Gas cracker 2558:Blue energy 2381:: 274–286. 1958:: 718–729. 1881:10261/53764 1831:10261/53764 200:Electrolyte 125:O + 2 e → H 55:to produce 53:electrolyte 2928:Fuel cells 2737:Downs cell 2436:Fuel cells 2355:2021-11-26 2322:2021-11-26 2297:2021-11-26 2110:(9): 837. 2088:2011-05-27 1590:References 1248:. Whether 161:geothermal 121:Cathode: H 2813:Aluminium 2785:Magnesium 2395:105113929 2350:1059-1028 2316:Firstpost 1846:Nat Mater 1795:135220897 1460:− 1360:ϕ 1330:ϕ 1176:ϕ 1146:ϕ 1116:ϕ 1086:ϕ 801:− 782:− 770:ϕ 766:− 754:ϕ 722:− 714:⁡ 615:− 596:− 527:− 519:⁡ 435:σ 414:ρ 371:ρ 329:σ 293:fuel cell 286:diffusion 192:Materials 167:Operation 163:sources. 105:reduction 97:oxidation 75:Principle 2922:Category 2885:See also 2841:Fluorine 2826:Chlorine 2656:Glossary 2620:Hydrogen 2253:Archived 1866:: 4–16. 1816:: 4–16. 1642:Archived 1626:28165079 1573:See also 1537:In 2014 1533:Research 59:(and/or 2780:Bromine 2643:Vehicle 2638:Storage 2633:Station 2628:Economy 2479:By fuel 2225:Bibcode 2112:Bibcode 1960:Bibcode 1545:on the 136:O → 2 H 109:cathode 49:ceramic 35:) is a 2831:Copper 2551:Others 2393:  2348:  1793:  1624:  1527:syngas 867:where 118:+ 4 e 2391:S2CID 2342:Wired 1791:S2CID 1550:rover 1378:) or 175:and O 101:anode 2876:Zinc 2346:ISSN 1622:PMID 1221:> 1194:and 1167:> 1107:and 1050:and 304:and 159:and 129:+ O 103:and 93:mole 33:SOEC 2383:doi 2379:176 2233:doi 2221:167 2198:doi 2171:doi 2120:doi 2049:doi 2045:195 2022:doi 2018:157 1995:doi 1991:177 1968:doi 1956:274 1932:doi 1905:doi 1901:185 1876:hdl 1868:doi 1864:203 1826:hdl 1818:doi 1814:203 1783:doi 1756:doi 1729:doi 1676:doi 1614:doi 1539:MIT 711:exp 516:exp 255:CeO 140:+ O 2924:: 2701:/ 2389:. 2377:. 2373:. 2344:. 2340:. 2314:. 2290:. 2272:. 2231:. 2219:. 2194:35 2192:. 2167:35 2165:. 2118:. 2108:73 2106:. 2043:. 2016:. 1989:. 1966:. 1954:. 1928:18 1926:. 1899:. 1874:. 1862:. 1824:. 1812:. 1789:. 1779:37 1777:. 1752:33 1750:. 1725:32 1723:. 1719:. 1672:33 1670:. 1620:. 1610:46 1608:. 1553:CO 300:, 224:(Y 111:. 51:, 27:A 2690:e 2683:t 2676:v 2428:e 2421:t 2414:v 2397:. 2385:: 2358:. 2325:. 2300:. 2276:. 2239:. 2235:: 2227:: 2204:. 2200:: 2177:. 2173:: 2126:. 2122:: 2114:: 2091:. 2055:. 2051:: 2028:. 2024:: 2001:. 1997:: 1974:. 1970:: 1962:: 1938:. 1934:: 1911:. 1907:: 1884:. 1878:: 1870:: 1834:. 1828:: 1820:: 1797:. 1785:: 1762:. 1758:: 1735:. 1731:: 1682:. 1678:: 1628:. 1616:: 1555:2 1497:i 1493:R 1486:a 1481:i 1477:r 1473:) 1468:N 1464:E 1455:a 1451:E 1447:( 1420:e 1416:R 1409:a 1404:e 1400:r 1394:a 1390:E 1364:a 1351:- 1337:x 1334:O 1307:x 1304:O 1299:2 1296:O 1292:P 1269:a 1264:2 1261:O 1257:P 1234:N 1230:E 1207:a 1203:E 1180:a 1153:x 1150:O 1120:a 1093:x 1090:O 1063:i 1059:R 1036:e 1032:R 1009:N 1005:E 982:a 978:E 955:a 950:i 946:r 923:a 918:e 914:r 891:x 888:O 883:2 880:O 876:P 851:] 846:} 838:i 834:R 827:a 822:i 818:r 814:) 809:N 805:E 796:a 792:E 788:( 779:) 774:a 761:x 758:O 750:( 746:{ 739:T 736:R 731:F 728:4 718:[ 706:x 703:O 698:2 695:O 691:P 687:= 665:] 660:} 652:i 648:R 641:a 636:i 632:r 628:) 623:N 619:E 610:a 606:E 602:( 589:e 585:R 578:a 573:e 569:r 563:a 559:E 551:{ 544:T 541:R 536:F 533:4 523:[ 511:x 508:O 503:2 500:O 496:P 492:= 487:a 482:2 479:O 475:P 445:x 442:a 439:m 389:2 385:/ 381:1 377:) 368:c 363:( 358:2 355:O 351:P 347:2 344:= 339:x 336:a 333:m 257:2 230:3 228:O 226:2 214:3 212:O 210:2 206:2 186:2 181:2 177:2 173:2 142:2 138:2 134:2 127:2 123:2 116:2 31:(

Index


solid oxide fuel cell
regenerative mode
electrolysis of water
ceramic
electrolyte
hydrogen gas
carbon monoxide
hydrogen economy
hydrogen production
high-temperature electrolysis
operating temperatures
solid oxide fuel cell
mole
oxidation
anode
reduction
cathode
Joule heating
water splitting
concentrating solar thermal collectors
geothermal
Zirconium dioxide
Yttrium(III) oxide
phase transition
neodymium nickelate
Carnot efficiency
operating temperature
thermal expansion
diffusion

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.