Knowledge (XXG)

Spark plasma sintering

Source 📝

83:. This facilitates a very high heating or cooling rate (up to 1000 K/min), hence the sintering process generally is very fast (within a few minutes). The general speed of the process ensures it has the potential of densifying powders with nanosize or nanostructure while avoiding coarsening which accompanies standard densification routes. This has made SPS a good method for preparation of a range of materials with enhanced 112: 108:
the use of a current. SPS can be used as a tool for the creation of functionally graded soft-magnetic materials and it is useful in accelerating the development of magnetic materials. It has been found that this process improves the oxidation resistance and wear resistance of sintered tungsten carbide composites compared to conventional consolidation methods.
107:
electrodes. Functioning of SPS systems is schematically explained in a video link. While the term "spark plasma sintering" is commonly used, the term is misleading since neither a spark nor a plasma is present in the process. It has been experimentally verified that densification is facilitated by
135:
Spark plasma sintering, also known as plasma pressure compaction (P2C) sintering, equipment are commercially available now and are no longer limited to laboratory research work. Products like body armor, rocket nozzles, carbon fiber composites and several other hybrid materials can be produced in
124:
By means of a combination of the FAST/SPS method with one or several additional heating systems acting from the outside of the pressing tool systems it's possible to minimize the thermal gradients thus allowing the enhancement of the heating rates at simultaneously optimized homogeneity.
74:
has been found to play a dominant role in the densification of powder compacts, which results in achieving near theoretical density at lower sintering temperature compared to conventional sintering techniques. The heat generation is internal, in contrast to the conventional
513:
V. Chaudhary, L. P. Tan, V. K. Sharma, R. V. Ramanujan, Accelerated study of magnetic Fe-Co-Ni alloys through compositionally graded spark plasma sintered samples, Journal of Alloys and Compounds, 869, 159318 (2021),
128:
In 2012 the world's largest hybrid SPS-hot press sintering system was set up in Spain and the fabrication of fully dense large ceramic blanks of up to 400mm with this system is in progress within the frame of the
325:
Li et al, Ferroelectric and Piezoelectric Properties of Fine-Grained Na0.5K0.5NbO3 Lead-Free Piezoelectric Ceramics Prepared by Spark Plasma Sintering, Journal of the American Ceramic Society, 89, 2, 706–709,
200:
Sairam, K.; Sonber, J.K.; Subramanian, C.; Fotedar, R.K.; Nanekar, P.; Hubli, R.C. (January 2014). "Influence of spark plasma sintering parameters on densification and mechanical properties of boron carbide".
165:"Field-Assisted Sintering Technology / Spark Plasma Sintering: Mechanisms,Materials, and Technology Developments", By O. Guillon et al., Advanced Engineering Materials 2014, DOI: 10.1002/adem.201300409, 463:
Hulbert, D. M.; Anders, A.; Dudina, D. V.; Andersson, J.; Jiang, D.; Unuvar, C.; Anselmi-Tamburini, U.; Lavernia, E. J.; Mukherjee, A. K. (2008).
336:
Wang; et al. (2006). "High-performance AgPbSbTe thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering".
649: 279:"Enhancement of the Magnetoelectric Effect in Multiferroic CoFe2O4/PZT Bilayer by Induced Uniaxial Magnetic Anisotropy" 659: 230:"Uniaxial anisotropy and enhanced magnetostriction of CoFe2O4 induced by reaction under uniaxial pressure with SPS" 620: 104: 67: 76: 654: 527:
Karimi, Hadi; Hadi, Morteza; Ebrahimzadeh, Iman; Farhang, Mohammad Reza; Sadeghi, Mohsen (2018-10-01).
575: 528: 480: 425:
Talemi; et al. (2012). "Fusion of carbon nanotubes for fabrication of field emission cathodes".
576:"Effect of sintering techniques on the structure and dry sliding wear behavior of WC-FeAl composite" 59: 603: 556: 496: 308: 290: 259: 241: 166: 529:"High-temperature oxidation behaviour of WC-FeAl composite fabricated by spark plasma sintering" 595: 548: 407: 587: 540: 488: 434: 399: 372: 345: 300: 251: 210: 131:
FP7 European Project HYMACER - Hybrid sintering and advanced machining of technical ceramics
100: 88: 80: 484: 255: 111: 96: 55: 403: 643: 607: 560: 376: 263: 177: 92: 71: 500: 312: 591: 544: 438: 214: 515: 278: 229: 464: 304: 599: 552: 390:
Gu; et al. (2002). "Spark plasma sintering of hydroxyapatite powders".
145: 48: 411: 363:
Kim; et al. (2007). "Spark plasma sintering of transparent alumina".
84: 63: 492: 349: 99:, optical or biomedical properties. SPS is also used for sintering of 295: 246: 148: – Process of forming and bonding material by heat or pressure 110: 451: 115:
A kind of sintering that involves both temperature and pressure
167:
http://onlinelibrary.wiley.com/doi/10.1002/adem.201300409/epdf
54:
The main characteristic of SPS is that the pulsed or unpulsed
203:
International Journal of Refractory Metals and Hard Materials
277:
Aubert, A.; Loyau, V.; Mazaleyrat, F.; LoBue, M. (2017).
228:
Aubert, A.; Loyau, V.; Mazaleyrat, F.; LoBue, M. (2017).
188: 130: 631: 66:die, as well as the powder compact, in case of 516:https://doi.org/10.1016/j.jallcom.2021.159318 8: 574:Karimi, Hadi; Hadi, Morteza (2020-08-01). 294: 245: 79:, where the heat is provided by external 621:CINN-CSIC: Hybrid SPS-HP - Photo Gallery 136:commercial scale using these equipment. 234:Journal of the European Ceramic Society 158: 7: 62:current directly passes through the 146:Electric current assisted sintering 256:10.1016/j.jeurceramsoc.2017.03.036 25:field assisted sintering technique 14: 33:pulsed electric current sintering 377:10.1016/j.scriptamat.2007.06.009 178:KU Leuven - SPS process modeling 592:10.1016/j.ceramint.2020.04.154 545:10.1016/j.ceramint.2018.06.168 283:IEEE Transactions on Magnetics 1: 404:10.1016/S0142-9612(01)00076-X 439:10.1016/j.carbon.2011.07.058 215:10.1016/j.ijrmhm.2013.09.004 586:(11, Part B): 18487–18497. 676: 632:plasma pressure compaction 41:plasma pressure compaction 467:The absence of plasma in 305:10.1109/TMAG.2017.2696162 469:spark plasma sintering" 338:Applied Physics Letters 105:field electron emission 580:Ceramics International 533:Ceramics International 116: 17:Spark plasma sintering 114: 650:Industrial processes 539:(14): 17147–17153. 485:2008JAP...104c3305H 103:for development of 452:'SPS-How it Works? 365:Scripta Materialia 117: 23:), also known as 660:Plasma processing 493:10.1063/1.2963701 350:10.1063/1.2181197 667: 634: 629: 623: 618: 612: 611: 571: 565: 564: 524: 518: 511: 505: 504: 460: 454: 449: 443: 442: 422: 416: 415: 387: 381: 380: 360: 354: 353: 333: 327: 323: 317: 316: 298: 274: 268: 267: 249: 240:(9): 3101–3105. 225: 219: 218: 197: 191: 186: 180: 175: 169: 163: 101:carbon nanotubes 81:heating elements 675: 674: 670: 669: 668: 666: 665: 664: 640: 639: 638: 637: 630: 626: 619: 615: 573: 572: 568: 526: 525: 521: 512: 508: 479:(3): 033305–7. 462: 461: 457: 450: 446: 424: 423: 419: 389: 388: 384: 362: 361: 357: 335: 334: 330: 324: 320: 276: 275: 271: 227: 226: 222: 199: 198: 194: 187: 183: 176: 172: 164: 160: 155: 142: 122: 89:magnetoelectric 12: 11: 5: 673: 671: 663: 662: 657: 652: 642: 641: 636: 635: 624: 613: 566: 519: 506: 455: 444: 433:(2): 356–361. 417: 382: 371:(7): 607–610. 355: 328: 318: 269: 220: 192: 181: 170: 157: 156: 154: 151: 150: 149: 141: 138: 121: 120:Hybrid heating 118: 97:thermoelectric 13: 10: 9: 6: 4: 3: 2: 672: 661: 658: 656: 653: 651: 648: 647: 645: 633: 628: 625: 622: 617: 614: 609: 605: 601: 597: 593: 589: 585: 581: 577: 570: 567: 562: 558: 554: 550: 546: 542: 538: 534: 530: 523: 520: 517: 510: 507: 502: 498: 494: 490: 486: 482: 478: 474: 473:J. Appl. Phys 470: 468: 459: 456: 453: 448: 445: 440: 436: 432: 428: 421: 418: 413: 409: 405: 401: 397: 393: 386: 383: 378: 374: 370: 366: 359: 356: 351: 347: 344:(9): 092104. 343: 339: 332: 329: 322: 319: 314: 310: 306: 302: 297: 292: 288: 284: 280: 273: 270: 265: 261: 257: 253: 248: 243: 239: 235: 231: 224: 221: 216: 212: 208: 204: 196: 193: 190: 185: 182: 179: 174: 171: 168: 162: 159: 152: 147: 144: 143: 139: 137: 133: 132: 126: 119: 113: 109: 106: 102: 98: 94: 93:piezoelectric 90: 86: 82: 78: 73: 72:Joule heating 69: 65: 61: 57: 52: 50: 46: 42: 38: 34: 30: 26: 22: 18: 655:Metalworking 627: 616: 583: 579: 569: 536: 532: 522: 509: 476: 472: 466: 458: 447: 430: 426: 420: 398:(1): 37–43. 395: 392:Biomaterials 391: 385: 368: 364: 358: 341: 337: 331: 321: 286: 282: 272: 237: 233: 223: 206: 202: 195: 184: 173: 161: 134: 127: 123: 77:hot pressing 53: 44: 40: 36: 32: 28: 24: 20: 16: 15: 289:(11): 1–5. 209:: 185–192. 51:technique. 644:Categories 296:1803.09677 247:1803.09656 153:References 68:conductive 608:219077175 600:0272-8842 561:140057751 553:0272-8842 264:118914808 70:samples. 49:sintering 501:54726651 412:11762852 313:25427820 189:'sps-p2c 140:See also 85:magnetic 64:graphite 481:Bibcode 47:) is a 606:  598:  559:  551:  499:  427:Carbon 410:  326:(2006) 311:  262:  39:), or 604:S2CID 557:S2CID 497:S2CID 309:S2CID 291:arXiv 260:S2CID 242:arXiv 31:) or 596:ISSN 549:ISSN 408:PMID 37:PECS 29:FAST 588:doi 541:doi 489:doi 477:104 435:doi 400:doi 373:doi 346:doi 301:doi 252:doi 211:doi 58:or 45:P2C 21:SPS 646:: 602:. 594:. 584:46 582:. 578:. 555:. 547:. 537:44 535:. 531:. 495:. 487:. 475:. 471:. 431:50 429:. 406:. 396:23 394:. 369:57 367:. 342:88 340:. 307:. 299:. 287:53 285:. 281:. 258:. 250:. 238:37 236:. 232:. 207:42 205:. 95:, 91:, 87:, 60:AC 56:DC 610:. 590:: 563:. 543:: 503:. 491:: 483:: 465:" 441:. 437:: 414:. 402:: 379:. 375:: 352:. 348:: 315:. 303:: 293:: 266:. 254:: 244:: 217:. 213:: 43:( 35:( 27:( 19:(

Index

sintering
DC
AC
graphite
conductive
Joule heating
hot pressing
heating elements
magnetic
magnetoelectric
piezoelectric
thermoelectric
carbon nanotubes
field electron emission

FP7 European Project HYMACER - Hybrid sintering and advanced machining of technical ceramics
Electric current assisted sintering
http://onlinelibrary.wiley.com/doi/10.1002/adem.201300409/epdf
KU Leuven - SPS process modeling
'sps-p2c
doi
10.1016/j.ijrmhm.2013.09.004
"Uniaxial anisotropy and enhanced magnetostriction of CoFe2O4 induced by reaction under uniaxial pressure with SPS"
arXiv
1803.09656
doi
10.1016/j.jeurceramsoc.2017.03.036
S2CID
118914808
"Enhancement of the Magnetoelectric Effect in Multiferroic CoFe2O4/PZT Bilayer by Induced Uniaxial Magnetic Anisotropy"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.