Knowledge (XXG)

Spectral interferometry

Source đź“ť

905: 675:
There have been efforts to measure pulse intensity and phase in both the time and the frequency domain by combining the autocorrelation and the spectrum. This technique is called Temporal Information Via Intensity (TIVI) and it involves an iterative algorithm to find an intensity consistent with the
869: 684:
Spectral Interferometry has gained momentum in recent years. It is frequently used for measuring the linear response of materials, such as the thickness and refractive index of normal dispersive materials, the amplitude and phase of the electric field in semiconductor nanostructures and the group
648:
detector or a simple camera, the whole interferogram can be recorded simultaneously. Furthermore, the interferogram is not nullified by small fluctuations of the optical path, but reduction in the fringe contrast should be expected in cases of exposure time being bigger than the fluctuation time
927:
Self-Referenced Spectral Interferometry (SRSI) is a technique where the reference pulse is self created from the unknown pulse being. The self referencing is possible due to pulse shaping optimization and non-linear temporal filtering. It provides all the benefits associated with SI (high
1472: 915:(SPIDER) is a nonlinear self-referencing technique based on spectral shearing interferometry. For this method, the reference pulse should produce a mirror image of itself with a spectral shift, in order to provide the spectral intensity and phase of the probe pulse via a direct 1603:
Geindre, J. P.; Mysyrowicz, A.; Santos, A. Dos; Audebert, P.; Rousse, A.; Hamoniaux, G.; Antonetti, A.; Falliès, F.; Gauthier, J. C. (1994-12-01). "Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma".
935:
For SRSI, the generation of a weak mirror image of the unknown pulse is required. That image is perpendicularly polarized and delayed with respect to the input pulse. Then, in order to filter the reference pulse in the time domain, the main portion of the pulse is used for
1125: 940:(XPW) in a nonlinear crystal. The interference between the reference pulse and the mirror image is recorded and analyzed via Fourier transform spectral interferometry (FTSI). Known applications of the SRSI technique include the characterization of pulses below 15 fs. 461: 23:, with the condition that a reference pulse that was previously characterized is available. This technique provides information about the intensity and phase of the pulses. SI was first proposed by Claude Froehly and coworkers in the 1970s. 719:
In cases of relatively long pulses, one can opt for Spectral Shearing Interferometry. For this method, the reference pulse is obtained by sending its mirror image through a sinusoidal phase modulation. Hence, a spectral shift of magnitude
951:(FROG) is a technique that determines the intensity and phase of a pulse by measuring the spectrum of a particular temporal component of said pulse. This results in an intensity trace, related to the spectrogram of the pulse 748: 2323:
Trabattoni, A.; Oksenhendler, T.; Jousselin, H.; Tempea, G.; De Silvestri, S.; Sansone, G.; Calegari, F.; Nisoli, M. (November 2015). "Self-referenced spectral interferometry for single-shot measurement of sub-5-fs pulses".
555: 929: 912: 689: 265: 634: 1247: 2531:
Fluegel, B.; Peyghambarian, N.; Olbright, G.; Lindberg, M.; Koch, S. W.; Joffre, M.; Hulin, D.; Migus, A.; Antonetti, A. (1987-11-30). "Femtosecond Studies of Coherent Transients in Semiconductors".
998: 2385:
Moulet, A.; Grabielle, S.; Cornaggia, C.; Forget, N.; Oksenhendler, T. (2010-11-15). "Single-shot, high-dynamic-range measurement of sub-15 fs pulses by self-referenced spectral interferometry".
1757:
Kumar, V. Nirmal; Rao, D. Narayana (1995-09-01). "Using interference in the frequency domain for precise determination of thickness and refractive indices of normal dispersive materials".
294: 991: 161: 676:
autocorrelation, followed by another iterative algorithm to find the temporal and spectral phases consistent with the intensity and spectrum, but the results are inconclusive.
46:
between them, in order to create spectral fringes. A spectrum is produced by the sum of these two pulses and, by measuring said fringes, one can retrieve the unknown pulse. If
125: 83: 2488:
Becker, P. C.; Fork, R. L.; Brito Cruz, C. H.; Gordon, J. P.; Shank, C. V. (1988-06-13). "Optical Stark Effect in Organic Dyes Probed with Optical Pulses of 6-fs Duration".
894: 741: 2027:
Tokunaga, E.; Kobayashi, T.; Terasaki, A. (1993-03-01). "Induced phase modulation of chirped continuum pulses studied with a femtosecond frequency-domain interferometer".
1242: 2174:
Kang, Inuk; Dorrer, Christophe; Quochi, Francesco (2003-11-15). "Implementation of electro-optic spectral shearing interferometry for ultrashort pulse characterization".
1162: 1491:
Froehly, Cl; Lacourt, A; Viénot, J Ch (July 1973). "Time impulse response and time frequency response of optical pupils.:Experimental confirmations and applications".
2217:
Oksenhendler, T.; Coudreau, S.; Forget, N.; Crozatier, V.; Grabielle, S.; Herzog, R.; Gobert, O.; Kaplan, D. (April 2010). "Self-referenced spectral interferometry".
1687:
Lepetit, L.; Chériaux, G.; Joffre, M. (1995-12-01). "Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy".
1207: 670: 287: 44: 700:
This technique is not commonly used since it relies on a number of factors in order to obtain strong fringes during experimental processes. Some of them include:
2131:
Dorrer, Christophe; Kang, Inuk (2003-03-15). "Highly sensitive direct characterization of femtosecond pulses by electro-optic spectral shearing interferometry".
1827:
Kovács, A. P.; Szipöcs, R.; Osvay, K.; Bor, Zs. (1995-04-01). "Group-delay measurement on laser mirrors by spectrally resolved white-light interferometry".
864:{\displaystyle \phi (\omega )=\phi _{ref}(\omega +\delta \omega )+\omega \tau ={\frac {\partial \phi _{ref}}{\partial \omega }}\delta \omega +\omega \tau } 1244:, mainly used for femtosecond pump-probe experiments in materials with long dephasing times. It is based on the inverse Fourier transform of the signal: 1171:
But the same principle can be applied exploiting different physical process, like polarization-gated FROG (PG-FROG) or transient-grating FROG (TG-FROG).
1186:
The acquisition of the two quadratures of the interference signal resolves the issue generated by the phase differences being expressed in multiples of
919:(FFT) filtering routine. However, unlike SI, in order to produce the probe pulse phase, it requires phase integration extracted from the interferogram. 904: 468: 168: 2262:"Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping" 896:. Thus, the spectral derivative of the phase of the signal pulse which corresponds to the frequency-dependent group delay can be obtained. 743:
can be correlated to the produced linear temporal phase modulation and the spectrum of the combined pulses then has a modulation phase of:
563: 1467:{\displaystyle F.T._{SI}^{-1}(t)=E_{ref}^{\ast }(-t)\otimes E_{ref}(t)+E_{un}^{\ast }(-t)\otimes E_{un}(t)+f(t-\tau )+f(-t-\tau )^{\ast }} 1179:
There is a variety of linear techniques that are based on the main principles of spectral interferometry. Some of them are listed below.
649:
scale. However, SI produces phase measurements through its cosine only, meaning that results arise for phase differences in multiples of
1210: 948: 2428:
Kane, D.J.; Trebino, R. (Feb 1993). "Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating".
1792:
Tignon, J.; Marquezini, M.V.; Hasche, T.; Chemla, D.S. (April 1999). "Spectral interferometry of semiconductor nanostructures".
1120:{\displaystyle S_{E}(\omega ,\tau )=\left\vert \int \limits _{-\infty }^{\infty }E(t)g(t-\tau )e^{-i\omega }dt\right\vert ^{2}} 937: 2088:
Wong, Victor; Walmsley, Ian A. (1994-02-15). "Analysis of ultrashort pulse-shape measurement using linear interferometers".
127:
are the electric fields of the unknown and reference pulse respectively, the time delay can be expressed as a phase factor
1647:
Dorrer, Christophe; Joffre, Manuel (December 2001). "Characterization of the spectral phase of ultrashort light pulses".
560:
Furthermore, the spectral fringes width can provide information on the spectral phase difference between the two pulses
1872:"Temporally and spectrally resolved amplitude and phase of coherent four-wave-mixing emission from GaAs quantum wells" 1165: 2585: 456:{\displaystyle S_{SI}=S_{ref}(\omega )+S_{un}(\omega )+2{\sqrt {S_{ref}(\omega )}}{\sqrt {S_{un}(\omega )}}cos} 692:
is based, thus it is used for four-wave mixing experiments and various phase-resolved pump-probe experiments.
2580: 2590: 954: 916: 645: 130: 2464: 1870:
Chen, X.; Walecki, Wojciech J.; Buccafusca, O.; Fittinghoff, David N.; Smirl, Arthur L. (1997-10-15).
88: 2540: 2497: 2437: 2394: 2333: 2273: 2226: 2183: 2140: 2097: 2036: 1985: 1930: 1883: 1836: 1801: 1766: 1731: 1696: 1656: 1613: 1539: 1500: 644:
Compared to time-domain interferometry, SI presents some interesting advantages. Firstly, by using a
49: 876: 723: 26:
A known (acting as the reference) and an unknown pulse arrive at a spectrometer, with a time delay
1582: 1224: 2367: 2305: 2242: 1132: 1973: 1918: 1527: 2556: 2513: 2410: 2359: 2297: 2289: 2199: 2156: 2113: 2052: 2009: 2001: 1974:"Measurement of photon echoes by use of femtosecond Fourier-transform spectral interferometry" 1954: 1946: 1899: 1852: 1629: 1563: 1555: 2261: 2548: 2505: 2445: 2402: 2349: 2341: 2281: 2234: 2191: 2148: 2105: 2044: 1993: 1938: 1917:
Emde, Michel F.; de Boeij, Wim P.; Pshenichnikov, Maxim S.; Wiersma, Douwe A. (1997-09-01).
1891: 1844: 1809: 1774: 1739: 1704: 1664: 1621: 1547: 1508: 20: 1189: 932:
technique, neither shear nor harmonic generation are necessary in order to be implemented.
652: 272: 29: 1722:
Peatross, J.; Rundquist, A. (1998-01-01). "Temporal decorrelation of short laser pulses".
928:
sensitivity, precision and resolution, dynamic and large temporal range) but, unlike the
2544: 2501: 2441: 2398: 2337: 2277: 2230: 2187: 2144: 2101: 2040: 1989: 1934: 1887: 1840: 1805: 1770: 1735: 1700: 1660: 1617: 1543: 1504: 2070: 1668: 1526:
Piasecki, J.; Colombeau, B.; Vampouille, M.; Froehly, C.; Arnaud, J. A. (1980-11-15).
2574: 2246: 2309: 1871: 1512: 2371: 2552: 2509: 550:{\displaystyle \phi _{SI}=\phi _{un}(\omega )-\phi _{ref}(\omega )+\omega \tau } 269:
The average spacing between fringes is inversely proportional to the time delay
2260:
Verluise, F.; Laude, V.; Cheng, Z.; Spielmann, Ch.; Tournois, P. (2000-04-15).
2238: 19:(SI) or frequency-domain interferometry is a linear technique used to measure 2293: 2005: 1950: 1903: 1895: 1559: 1528:"Nouvelle méthode de mesure de la réponse impulsionnelle des fibres optiques" 1778: 1743: 1708: 2560: 2517: 2414: 2363: 2301: 2203: 2160: 2117: 2056: 2013: 1958: 1856: 1633: 1567: 2406: 2285: 2195: 2152: 2109: 2048: 1997: 1942: 1848: 1625: 1551: 260:{\displaystyle E_{SI}=E_{ref}(\omega )+E_{un}(\omega )e^{-i\omega \tau }} 2354: 1919:"Spectral interferometry as an alternative to time-domain heterodyning" 688:
In the realm of femtosecond spectroscopy, SI is the technique on which
636:; narrowly spaced fringes indicate rapid phase changes with frequency. 2345: 913:
Spectral Phase Interferometry for Direct Electric-field Reconstruction
900:
Spectral Phase Interferometry for Direct Electric-field Reconstruction
2449: 1813: 629:{\displaystyle \Delta \phi =\phi _{un}(\omega )-\phi _{ref}(\omega )} 672:
which can lead to solutions that degrade the signal-to-noise ratio.
903: 1164:
is a variable-delay gate pulse. FROG is commonly combined with
873:
where the approximate relation is appropriate for small enough
1972:
Likforman, J.-P.; Joffre, M.; Thierry-Mieg, V. (1997-07-15).
1221:
It is a technique created for direct determination of
1213:, with the reference beam under circular polarization. 1250: 1227: 1192: 1135: 1001: 957: 879: 751: 726: 655: 566: 471: 297: 275: 171: 163:
for the unknown pulses. Then, the combined field is:
133: 91: 52: 32: 1649:
Comptes Rendus de l'Académie des Sciences, Série IV
1209:. The acquisition should happen simultaneously via 1466: 1236: 1201: 1156: 1119: 985: 888: 863: 735: 664: 628: 549: 455: 281: 259: 155: 119: 77: 38: 8: 1759:Journal of the Optical Society of America B 1724:Journal of the Optical Society of America B 1689:Journal of the Optical Society of America B 2353: 1458: 1394: 1369: 1361: 1333: 1308: 1297: 1272: 1264: 1249: 1226: 1218:Fourier-Transform Spectral Interferometry 1191: 1134: 1111: 1088: 1048: 1040: 1006: 1000: 962: 956: 878: 823: 813: 771: 750: 725: 654: 605: 580: 565: 517: 492: 476: 470: 441: 405: 399: 376: 370: 346: 318: 302: 296: 274: 242: 220: 192: 176: 170: 138: 132: 96: 90: 57: 51: 31: 1483: 1183:Dual-Quadrature Spectral Interferometry 923:Self-Referenced Spectral Interferometry 7: 1682: 1680: 1678: 1598: 1596: 986:{\displaystyle S_{E}(\omega ,\tau )} 2465:"Frequency-resolved Optical Gating" 2430:IEEE Journal of Quantum Electronics 1794:IEEE Journal of Quantum Electronics 289:. Thus, the SI signal is given by: 1228: 1049: 1044: 837: 816: 567: 156:{\displaystyle e^{-i\omega \tau }} 14: 949:Frequency Resolved Optical Gating 944:Frequency-Resolved Optical Gating 2326:Review of Scientific Instruments 715:Spectral Shearing Interferometry 120:{\displaystyle E_{ref}(\omega )} 1583:"Spectral Phase Interferometry" 938:cross-polarized wave generation 640:Comparison with the Time Domain 78:{\displaystyle E_{un}(\omega )} 1455: 1439: 1430: 1418: 1409: 1403: 1384: 1375: 1351: 1345: 1323: 1314: 1287: 1281: 1151: 1139: 1081: 1069: 1063: 1057: 1024: 1012: 993:, versus frequency and delay: 980: 968: 889:{\displaystyle \delta \omega } 798: 783: 761: 755: 736:{\displaystyle \delta \omega } 623: 617: 595: 589: 535: 529: 507: 501: 450: 434: 420: 414: 394: 388: 361: 355: 336: 330: 235: 229: 210: 204: 114: 108: 72: 66: 1: 1669:10.1016/S1296-2147(01)01279-3 1237:{\displaystyle \Delta \phi } 2553:10.1103/PhysRevLett.59.2588 2510:10.1103/PhysRevLett.60.2462 2607: 1168:(SHG) process (SHG-FROG). 1166:Second Harmonic Generation 1157:{\displaystyle g(t-\tau )} 704:Precision in mode-matching 557:is the oscillation phase. 2239:10.1007/s00340-010-3916-y 2071:"Spectral Interferometry" 1513:10.1088/0335-7368/4/4/301 1211:polarization multiplexing 710:Perfectly collinear beams 696:Experimental Difficulties 1896:10.1103/PhysRevB.56.9738 1493:Nouvelle Revue d'Optique 685:delay on laser mirrors. 2533:Physical Review Letters 2490:Physical Review Letters 2463:Paschotta, Dr RĂĽdiger. 1779:10.1364/JOSAB.12.001559 1744:10.1364/JOSAB.15.000216 1709:10.1364/JOSAB.12.002467 1581:Paschotta, Dr RĂĽdiger. 1175:Other Linear Techniques 17:Spectral interferometry 1468: 1238: 1203: 1158: 1121: 1053: 987: 917:Fast Fourier Transform 909: 890: 865: 737: 666: 630: 551: 457: 283: 261: 157: 121: 79: 40: 1469: 1239: 1204: 1202:{\displaystyle 2\pi } 1159: 1122: 1036: 988: 907: 891: 866: 738: 667: 665:{\displaystyle 2\pi } 631: 552: 458: 284: 282:{\displaystyle \tau } 262: 158: 122: 80: 41: 39:{\displaystyle \tau } 2469:www.rp-photonics.com 2407:10.1364/OL.35.003856 2286:10.1364/OL.25.000575 2196:10.1364/OL.28.002264 2153:10.1364/OL.28.000477 2110:10.1364/OL.19.000287 2049:10.1364/OL.18.000370 1998:10.1364/OL.22.001104 1943:10.1364/OL.22.001338 1849:10.1364/OL.20.000788 1626:10.1364/OL.19.001997 1587:www.rp-photonics.com 1552:10.1364/AO.19.003749 1248: 1225: 1190: 1133: 999: 955: 877: 749: 724: 653: 564: 469: 295: 273: 169: 131: 89: 50: 30: 2545:1987PhRvL..59.2588F 2502:1988PhRvL..60.2462B 2442:1993IJQE...29..571K 2399:2010OptL...35.3856M 2338:2015RScI...86k3106T 2278:2000OptL...25..575V 2231:2010ApPhB..99....7O 2188:2003OptL...28.2264K 2145:2003OptL...28..477D 2102:1994OptL...19..287W 2041:1993OptL...18..370T 1990:1997OptL...22.1104L 1935:1997OptL...22.1338E 1888:1997PhRvB..56.9738C 1841:1995OptL...20..788K 1806:1999IJQE...35..510T 1771:1995JOSAB..12.1559K 1736:1998JOSAB..15..216P 1701:1995JOSAB..12.2467L 1661:2001CRASP...2.1415D 1618:1994OptL...19.1997G 1544:1980ApOpt..19.3749P 1505:1973NROpt...4..183F 1374: 1313: 1280: 1464: 1357: 1293: 1260: 1234: 1199: 1154: 1117: 983: 910: 886: 861: 733: 662: 626: 547: 453: 279: 257: 153: 117: 75: 36: 2539:(22): 2588–2591. 2496:(24): 2462–2464. 2393:(22): 3856–3858. 2346:10.1063/1.4936289 2219:Applied Physics B 2182:(22): 2264–2266. 1984:(14): 1104–1106. 1929:(17): 1338–1340. 1882:(15): 9738–9743. 1876:Physical Review B 1655:(10): 1415–1426. 1612:(23): 1997–1999. 1538:(22): 3749–3755. 844: 423: 397: 2598: 2586:Nonlinear optics 2565: 2564: 2528: 2522: 2521: 2485: 2479: 2478: 2476: 2475: 2460: 2454: 2453: 2450:10.1109/3.199311 2425: 2419: 2418: 2382: 2376: 2375: 2357: 2320: 2314: 2313: 2257: 2251: 2250: 2214: 2208: 2207: 2171: 2165: 2164: 2128: 2122: 2121: 2085: 2079: 2078: 2067: 2061: 2060: 2024: 2018: 2017: 1969: 1963: 1962: 1914: 1908: 1907: 1867: 1861: 1860: 1824: 1818: 1817: 1814:10.1109/3.753655 1789: 1783: 1782: 1754: 1748: 1747: 1719: 1713: 1712: 1684: 1673: 1672: 1644: 1638: 1637: 1600: 1591: 1590: 1578: 1572: 1571: 1523: 1517: 1516: 1488: 1473: 1471: 1470: 1465: 1463: 1462: 1402: 1401: 1373: 1368: 1344: 1343: 1312: 1307: 1279: 1271: 1243: 1241: 1240: 1235: 1208: 1206: 1205: 1200: 1163: 1161: 1160: 1155: 1126: 1124: 1123: 1118: 1116: 1115: 1110: 1106: 1099: 1098: 1052: 1047: 1011: 1010: 992: 990: 989: 984: 967: 966: 895: 893: 892: 887: 870: 868: 867: 862: 845: 843: 835: 834: 833: 814: 782: 781: 742: 740: 739: 734: 671: 669: 668: 663: 635: 633: 632: 627: 616: 615: 588: 587: 556: 554: 553: 548: 528: 527: 500: 499: 484: 483: 462: 460: 459: 454: 449: 448: 424: 413: 412: 400: 398: 387: 386: 371: 354: 353: 329: 328: 310: 309: 288: 286: 285: 280: 266: 264: 263: 258: 256: 255: 228: 227: 203: 202: 184: 183: 162: 160: 159: 154: 152: 151: 126: 124: 123: 118: 107: 106: 84: 82: 81: 76: 65: 64: 45: 43: 42: 37: 2606: 2605: 2601: 2600: 2599: 2597: 2596: 2595: 2571: 2570: 2569: 2568: 2530: 2529: 2525: 2487: 2486: 2482: 2473: 2471: 2462: 2461: 2457: 2427: 2426: 2422: 2384: 2383: 2379: 2322: 2321: 2317: 2259: 2258: 2254: 2216: 2215: 2211: 2173: 2172: 2168: 2130: 2129: 2125: 2087: 2086: 2082: 2075:frog.gatech.edu 2069: 2068: 2064: 2026: 2025: 2021: 1971: 1970: 1966: 1916: 1915: 1911: 1869: 1868: 1864: 1826: 1825: 1821: 1791: 1790: 1786: 1756: 1755: 1751: 1721: 1720: 1716: 1686: 1685: 1676: 1646: 1645: 1641: 1602: 1601: 1594: 1580: 1579: 1575: 1525: 1524: 1520: 1490: 1489: 1485: 1480: 1454: 1390: 1329: 1246: 1245: 1223: 1222: 1188: 1187: 1177: 1131: 1130: 1084: 1035: 1031: 1030: 1002: 997: 996: 958: 953: 952: 946: 925: 902: 875: 874: 836: 819: 815: 767: 747: 746: 722: 721: 717: 707:Phase stability 698: 682: 651: 650: 642: 601: 576: 562: 561: 513: 488: 472: 467: 466: 437: 401: 372: 342: 314: 298: 293: 292: 271: 270: 238: 216: 188: 172: 167: 166: 134: 129: 128: 92: 87: 86: 53: 48: 47: 28: 27: 12: 11: 5: 2604: 2602: 2594: 2593: 2588: 2583: 2581:Interferometry 2573: 2572: 2567: 2566: 2523: 2480: 2455: 2436:(2): 571–579. 2420: 2387:Optics Letters 2377: 2332:(11): 113106. 2315: 2272:(8): 575–577. 2266:Optics Letters 2252: 2209: 2176:Optics Letters 2166: 2139:(6): 477–479. 2133:Optics Letters 2123: 2090:Optics Letters 2080: 2062: 2035:(5): 370–372. 2029:Optics Letters 2019: 1978:Optics Letters 1964: 1923:Optics Letters 1909: 1862: 1835:(7): 788–790. 1829:Optics Letters 1819: 1800:(4): 510–522. 1784: 1749: 1714: 1674: 1639: 1606:Optics Letters 1592: 1573: 1532:Applied Optics 1518: 1499:(4): 183–196. 1482: 1481: 1479: 1476: 1475: 1474: 1461: 1457: 1453: 1450: 1447: 1444: 1441: 1438: 1435: 1432: 1429: 1426: 1423: 1420: 1417: 1414: 1411: 1408: 1405: 1400: 1397: 1393: 1389: 1386: 1383: 1380: 1377: 1372: 1367: 1364: 1360: 1356: 1353: 1350: 1347: 1342: 1339: 1336: 1332: 1328: 1325: 1322: 1319: 1316: 1311: 1306: 1303: 1300: 1296: 1292: 1289: 1286: 1283: 1278: 1275: 1270: 1267: 1263: 1259: 1256: 1253: 1233: 1230: 1219: 1215: 1214: 1198: 1195: 1184: 1176: 1173: 1153: 1150: 1147: 1144: 1141: 1138: 1114: 1109: 1105: 1102: 1097: 1094: 1091: 1087: 1083: 1080: 1077: 1074: 1071: 1068: 1065: 1062: 1059: 1056: 1051: 1046: 1043: 1039: 1034: 1029: 1026: 1023: 1020: 1017: 1014: 1009: 1005: 982: 979: 976: 973: 970: 965: 961: 945: 942: 924: 921: 901: 898: 885: 882: 860: 857: 854: 851: 848: 842: 839: 832: 829: 826: 822: 818: 812: 809: 806: 803: 800: 797: 794: 791: 788: 785: 780: 777: 774: 770: 766: 763: 760: 757: 754: 732: 729: 716: 713: 712: 711: 708: 705: 697: 694: 681: 678: 661: 658: 641: 638: 625: 622: 619: 614: 611: 608: 604: 600: 597: 594: 591: 586: 583: 579: 575: 572: 569: 546: 543: 540: 537: 534: 531: 526: 523: 520: 516: 512: 509: 506: 503: 498: 495: 491: 487: 482: 479: 475: 452: 447: 444: 440: 436: 433: 430: 427: 422: 419: 416: 411: 408: 404: 396: 393: 390: 385: 382: 379: 375: 369: 366: 363: 360: 357: 352: 349: 345: 341: 338: 335: 332: 327: 324: 321: 317: 313: 308: 305: 301: 278: 254: 251: 248: 245: 241: 237: 234: 231: 226: 223: 219: 215: 212: 209: 206: 201: 198: 195: 191: 187: 182: 179: 175: 150: 147: 144: 141: 137: 116: 113: 110: 105: 102: 99: 95: 74: 71: 68: 63: 60: 56: 35: 21:optical pulses 13: 10: 9: 6: 4: 3: 2: 2603: 2592: 2591:Laser science 2589: 2587: 2584: 2582: 2579: 2578: 2576: 2562: 2558: 2554: 2550: 2546: 2542: 2538: 2534: 2527: 2524: 2519: 2515: 2511: 2507: 2503: 2499: 2495: 2491: 2484: 2481: 2470: 2466: 2459: 2456: 2451: 2447: 2443: 2439: 2435: 2431: 2424: 2421: 2416: 2412: 2408: 2404: 2400: 2396: 2392: 2388: 2381: 2378: 2373: 2369: 2365: 2361: 2356: 2351: 2347: 2343: 2339: 2335: 2331: 2327: 2319: 2316: 2311: 2307: 2303: 2299: 2295: 2291: 2287: 2283: 2279: 2275: 2271: 2267: 2263: 2256: 2253: 2248: 2244: 2240: 2236: 2232: 2228: 2225:(1–2): 7–12. 2224: 2220: 2213: 2210: 2205: 2201: 2197: 2193: 2189: 2185: 2181: 2177: 2170: 2167: 2162: 2158: 2154: 2150: 2146: 2142: 2138: 2134: 2127: 2124: 2119: 2115: 2111: 2107: 2103: 2099: 2095: 2091: 2084: 2081: 2076: 2072: 2066: 2063: 2058: 2054: 2050: 2046: 2042: 2038: 2034: 2030: 2023: 2020: 2015: 2011: 2007: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1975: 1968: 1965: 1960: 1956: 1952: 1948: 1944: 1940: 1936: 1932: 1928: 1924: 1920: 1913: 1910: 1905: 1901: 1897: 1893: 1889: 1885: 1881: 1877: 1873: 1866: 1863: 1858: 1854: 1850: 1846: 1842: 1838: 1834: 1830: 1823: 1820: 1815: 1811: 1807: 1803: 1799: 1795: 1788: 1785: 1780: 1776: 1772: 1768: 1764: 1760: 1753: 1750: 1745: 1741: 1737: 1733: 1729: 1725: 1718: 1715: 1710: 1706: 1702: 1698: 1694: 1690: 1683: 1681: 1679: 1675: 1670: 1666: 1662: 1658: 1654: 1650: 1643: 1640: 1635: 1631: 1627: 1623: 1619: 1615: 1611: 1607: 1599: 1597: 1593: 1588: 1584: 1577: 1574: 1569: 1565: 1561: 1557: 1553: 1549: 1545: 1541: 1537: 1533: 1529: 1522: 1519: 1514: 1510: 1506: 1502: 1498: 1494: 1487: 1484: 1477: 1459: 1451: 1448: 1445: 1442: 1436: 1433: 1427: 1424: 1421: 1415: 1412: 1406: 1398: 1395: 1391: 1387: 1381: 1378: 1370: 1365: 1362: 1358: 1354: 1348: 1340: 1337: 1334: 1330: 1326: 1320: 1317: 1309: 1304: 1301: 1298: 1294: 1290: 1284: 1276: 1273: 1268: 1265: 1261: 1257: 1254: 1251: 1231: 1220: 1217: 1216: 1212: 1196: 1193: 1185: 1182: 1181: 1180: 1174: 1172: 1169: 1167: 1148: 1145: 1142: 1136: 1127: 1112: 1107: 1103: 1100: 1095: 1092: 1089: 1085: 1078: 1075: 1072: 1066: 1060: 1054: 1041: 1037: 1032: 1027: 1021: 1018: 1015: 1007: 1003: 994: 977: 974: 971: 963: 959: 950: 943: 941: 939: 933: 931: 922: 920: 918: 914: 908:SPIDER set-up 906: 899: 897: 883: 880: 871: 858: 855: 852: 849: 846: 840: 830: 827: 824: 820: 810: 807: 804: 801: 795: 792: 789: 786: 778: 775: 772: 768: 764: 758: 752: 744: 730: 727: 714: 709: 706: 703: 702: 701: 695: 693: 691: 686: 679: 677: 673: 659: 656: 647: 639: 637: 620: 612: 609: 606: 602: 598: 592: 584: 581: 577: 573: 570: 558: 544: 541: 538: 532: 524: 521: 518: 514: 510: 504: 496: 493: 489: 485: 480: 477: 473: 463: 445: 442: 438: 431: 428: 425: 417: 409: 406: 402: 391: 383: 380: 377: 373: 367: 364: 358: 350: 347: 343: 339: 333: 325: 322: 319: 315: 311: 306: 303: 299: 290: 276: 267: 252: 249: 246: 243: 239: 232: 224: 221: 217: 213: 207: 199: 196: 193: 189: 185: 180: 177: 173: 164: 148: 145: 142: 139: 135: 111: 103: 100: 97: 93: 69: 61: 58: 54: 33: 24: 22: 18: 2536: 2532: 2526: 2493: 2489: 2483: 2472:. Retrieved 2468: 2458: 2433: 2429: 2423: 2390: 2386: 2380: 2355:11311/970109 2329: 2325: 2318: 2269: 2265: 2255: 2222: 2218: 2212: 2179: 2175: 2169: 2136: 2132: 2126: 2093: 2089: 2083: 2074: 2065: 2032: 2028: 2022: 1981: 1977: 1967: 1926: 1922: 1912: 1879: 1875: 1865: 1832: 1828: 1822: 1797: 1793: 1787: 1762: 1758: 1752: 1727: 1723: 1717: 1695:(12): 2467. 1692: 1688: 1652: 1648: 1642: 1609: 1605: 1586: 1576: 1535: 1531: 1521: 1496: 1492: 1486: 1178: 1170: 1128: 995: 947: 934: 926: 911: 872: 745: 718: 699: 687: 683: 680:Applications 674: 643: 559: 464: 291: 268: 165: 25: 16: 15: 1765:(9): 1559. 2575:Categories 2474:2021-06-18 2096:(4): 287. 1730:(1): 216. 1478:References 2294:0146-9592 2247:124727290 2006:0146-9592 1951:0146-9592 1904:0163-1829 1560:0003-6935 1460:∗ 1452:τ 1449:− 1443:− 1428:τ 1425:− 1388:⊗ 1379:− 1371:∗ 1327:⊗ 1318:− 1310:∗ 1274:− 1232:ϕ 1229:Δ 1197:π 1149:τ 1146:− 1096:ω 1090:− 1079:τ 1076:− 1050:∞ 1045:∞ 1042:− 1038:∫ 1022:τ 1016:ω 978:τ 972:ω 884:ω 881:δ 859:τ 856:ω 850:ω 847:δ 841:ω 838:∂ 821:ϕ 817:∂ 808:τ 805:ω 796:ω 793:δ 787:ω 769:ϕ 759:ω 753:ϕ 731:ω 728:δ 660:π 621:ω 603:ϕ 599:− 593:ω 578:ϕ 571:ϕ 568:Δ 545:τ 542:ω 533:ω 515:ϕ 511:− 505:ω 490:ϕ 474:ϕ 439:ϕ 418:ω 392:ω 359:ω 334:ω 277:τ 253:τ 250:ω 244:− 233:ω 208:ω 149:τ 146:ω 140:− 112:ω 70:ω 34:τ 2561:10035591 2518:10038360 2415:21082020 2364:26628120 2310:12723492 2302:18064116 2204:14649962 2161:12659285 2118:19829619 2057:19802139 2014:18185765 1959:18188232 1857:19859330 1634:19855721 1568:20234691 2541:Bibcode 2498:Bibcode 2438:Bibcode 2395:Bibcode 2372:1518794 2334:Bibcode 2274:Bibcode 2227:Bibcode 2184:Bibcode 2141:Bibcode 2098:Bibcode 2037:Bibcode 1986:Bibcode 1931:Bibcode 1884:Bibcode 1837:Bibcode 1802:Bibcode 1767:Bibcode 1732:Bibcode 1697:Bibcode 1657:Bibcode 1614:Bibcode 1540:Bibcode 1501:Bibcode 2559:  2516:  2413:  2370:  2362:  2308:  2300:  2292:  2245:  2202:  2159:  2116:  2055:  2012:  2004:  1957:  1949:  1902:  1855:  1632:  1566:  1558:  1129:where 930:SPIDER 690:SPIDER 465:where 2368:S2CID 2306:S2CID 2243:S2CID 2557:PMID 2514:PMID 2411:PMID 2360:PMID 2298:PMID 2290:ISSN 2200:PMID 2157:PMID 2114:PMID 2053:PMID 2010:PMID 2002:ISSN 1955:PMID 1947:ISSN 1900:ISSN 1853:PMID 1630:PMID 1564:PMID 1556:ISSN 85:and 2549:doi 2506:doi 2446:doi 2403:doi 2350:hdl 2342:doi 2282:doi 2235:doi 2192:doi 2149:doi 2106:doi 2045:doi 1994:doi 1939:doi 1892:doi 1845:doi 1810:doi 1775:doi 1740:doi 1705:doi 1665:doi 1622:doi 1548:doi 1509:doi 646:CCD 2577:: 2555:. 2547:. 2537:59 2535:. 2512:. 2504:. 2494:60 2492:. 2467:. 2444:. 2434:29 2432:. 2409:. 2401:. 2391:35 2389:. 2366:. 2358:. 2348:. 2340:. 2330:86 2328:. 2304:. 2296:. 2288:. 2280:. 2270:25 2268:. 2264:. 2241:. 2233:. 2223:99 2221:. 2198:. 2190:. 2180:28 2178:. 2155:. 2147:. 2137:28 2135:. 2112:. 2104:. 2094:19 2092:. 2073:. 2051:. 2043:. 2033:18 2031:. 2008:. 2000:. 1992:. 1982:22 1980:. 1976:. 1953:. 1945:. 1937:. 1927:22 1925:. 1921:. 1898:. 1890:. 1880:56 1878:. 1874:. 1851:. 1843:. 1833:20 1831:. 1808:. 1798:35 1796:. 1773:. 1763:12 1761:. 1738:. 1728:15 1726:. 1703:. 1693:12 1691:. 1677:^ 1663:. 1651:. 1628:. 1620:. 1610:19 1608:. 1595:^ 1585:. 1562:. 1554:. 1546:. 1536:19 1534:. 1530:. 1507:. 1495:. 2563:. 2551:: 2543:: 2520:. 2508:: 2500:: 2477:. 2452:. 2448:: 2440:: 2417:. 2405:: 2397:: 2374:. 2352:: 2344:: 2336:: 2312:. 2284:: 2276:: 2249:. 2237:: 2229:: 2206:. 2194:: 2186:: 2163:. 2151:: 2143:: 2120:. 2108:: 2100:: 2077:. 2059:. 2047:: 2039:: 2016:. 1996:: 1988:: 1961:. 1941:: 1933:: 1906:. 1894:: 1886:: 1859:. 1847:: 1839:: 1816:. 1812:: 1804:: 1781:. 1777:: 1769:: 1746:. 1742:: 1734:: 1711:. 1707:: 1699:: 1671:. 1667:: 1659:: 1653:2 1636:. 1624:: 1616:: 1589:. 1570:. 1550:: 1542:: 1515:. 1511:: 1503:: 1497:4 1456:) 1446:t 1440:( 1437:f 1434:+ 1431:) 1422:t 1419:( 1416:f 1413:+ 1410:) 1407:t 1404:( 1399:n 1396:u 1392:E 1385:) 1382:t 1376:( 1366:n 1363:u 1359:E 1355:+ 1352:) 1349:t 1346:( 1341:f 1338:e 1335:r 1331:E 1324:) 1321:t 1315:( 1305:f 1302:e 1299:r 1295:E 1291:= 1288:) 1285:t 1282:( 1277:1 1269:I 1266:S 1262:. 1258:T 1255:. 1252:F 1194:2 1152:) 1143:t 1140:( 1137:g 1113:2 1108:| 1104:t 1101:d 1093:i 1086:e 1082:) 1073:t 1070:( 1067:g 1064:) 1061:t 1058:( 1055:E 1033:| 1028:= 1025:) 1019:, 1013:( 1008:E 1004:S 981:) 975:, 969:( 964:E 960:S 853:+ 831:f 828:e 825:r 811:= 802:+ 799:) 790:+ 784:( 779:f 776:e 773:r 765:= 762:) 756:( 657:2 624:) 618:( 613:f 610:e 607:r 596:) 590:( 585:n 582:u 574:= 539:+ 536:) 530:( 525:f 522:e 519:r 508:) 502:( 497:n 494:u 486:= 481:I 478:S 451:] 446:I 443:S 435:[ 432:s 429:o 426:c 421:) 415:( 410:n 407:u 403:S 395:) 389:( 384:f 381:e 378:r 374:S 368:2 365:+ 362:) 356:( 351:n 348:u 344:S 340:+ 337:) 331:( 326:f 323:e 320:r 316:S 312:= 307:I 304:S 300:S 247:i 240:e 236:) 230:( 225:n 222:u 218:E 214:+ 211:) 205:( 200:f 197:e 194:r 190:E 186:= 181:I 178:S 174:E 143:i 136:e 115:) 109:( 104:f 101:e 98:r 94:E 73:) 67:( 62:n 59:u 55:E

Index

optical pulses
CCD
SPIDER

Spectral Phase Interferometry for Direct Electric-field Reconstruction
Fast Fourier Transform
SPIDER
cross-polarized wave generation
Frequency Resolved Optical Gating
Second Harmonic Generation
polarization multiplexing
Bibcode
1973NROpt...4..183F
doi
10.1088/0335-7368/4/4/301
"Nouvelle méthode de mesure de la réponse impulsionnelle des fibres optiques"
Bibcode
1980ApOpt..19.3749P
doi
10.1364/AO.19.003749
ISSN
0003-6935
PMID
20234691
"Spectral Phase Interferometry"


Bibcode
1994OptL...19.1997G
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑