Knowledge (XXG)

Spin–lattice relaxation

Source 📝

104: 2371: 2361: 528: 449:
interact with nuclei in a higher energy state, causing the energy of the higher energy state to distribute itself between the two nuclei. Therefore, the energy gained by nuclei from the RF pulse is dissipated as increased vibration and rotation within the lattice, which can slightly increase the temperature of the sample. The name
448:
Nuclei are contained within a molecular structure, and are in constant vibrational and rotational motion, creating a complex magnetic field. The magnetic field caused by thermal motion of nuclei within the lattice is called the lattice field. The lattice field of a nucleus in a lower energy state can
549:) and then the excess energy is released in the form of a minuscule amount of heat to the surroundings as the spins return to their thermal equilibrium. The magnetization of the proton ensemble goes back to its equilibrium value with an exponential curve characterized by a time constant 453:
refers to the process in which the spins give the energy they obtained from the RF pulse back to the surrounding lattice, thereby restoring their equilibrium state. The same process occurs after the spin energy has been altered by a change of the surrounding static magnetic field (e.g.
869: 441: 476:
the transition from high to low energy states. However, at extremely high mobilities, the probability decreases as the vibrational and rotational frequencies no longer correspond to the energy gap between states.
272: 445:
It is thus the time it takes for the longitudinal magnetization to recover approximately 63% of its initial value after being flipped into the magnetic transverse plane by a 90° radiofrequency pulse.
472:
of the nucleus and the mobility of the lattice. As mobility increases, the vibrational and rotational frequencies increase, making it more likely for a component of the lattice field to be able to
494:
s (1500-2000 ms), and water-based tissues are in the 400-1200 ms range, while fat based tissues are in the shorter 100-150 ms range. The presence of strongly magnetic ions or particles (e.g.,
335: 749: 1560: 1361: 1522: 339: 691:
referred to as spin-lock (SL) pulse applied to the magnetization in the transverse plane. The magnetization is effectively spin-locked around an effective
2252: 2153: 1814: 1715: 581:
sequences, while in Gradient Echo Sequences they can be obtained by using flip angles of larger than 50 while setting TE values to less than 15 ms.
133: 2040: 754: 967:
Relaxation Times and Basic Pulse Sequences in MR Imaging. in: Magnetic Resonance in Medicine. A Critical Introduction. 12th edition. pp. 65-92
975: 630:, the transverse component of the magnetization vector, exponentially decays towards its equilibrium value of zero, under the influence of a 2364: 1550: 2400: 2395: 2322: 1898: 1000: 1312:
Witschey, WR; Pilla, JJ; Ferrari, G; Koomalsingh, K; Haris, M; Hinmon, R; Zsido, G; Gorman JH, 3rd; Gorman, RC; Reddy, R (Nov 2010).
2374: 2262: 1515: 1848: 924:
MRI has been used to image tissues such as cartilage, intervertebral discs, brain, and heart, as well as certain types of cancers.
545:
uses the resonance of the protons to generate images. Protons are excited by a radio frequency pulse at an appropriate frequency (
454:
pre-polarization by or insertion into high magnetic field) or if the nonequilibrium state has been achieved by other means (e.g.,
2190: 1067:
Li, X; Benjamin Ma, C; Link, TM; Castillo, DD; Blumenkrantz, G; Lozano, J; Carballido-Gamio, J; Ries, M; Majumdar, S (Jul 2007).
2185: 1913: 1893: 1692: 612:
contrast suitable for morphological assessment of the normal or pathological anatomy, e.g., for musculoskeletal applications.
2180: 70: 1375:
Li, LZ; Zhou, R; Xu, HN; Moon, L; Zhong, T; Kim, EJ; Qiao, H; Reddy, R; Leeper, D; Chance, B; Glickson, JD (Apr 21, 2009).
2213: 2035: 1938: 1599: 130:
component of the magnetization vector recovers exponentially towards its thermodynamic equilibrium, according to equation
896:
the signal expression above as a function of the duration of the spin-lock pulse while the amplitude of spin-lock pulse (
2218: 2086: 1677: 1508: 661: 1858: 1632: 2242: 1587: 1531: 455: 42:
vector (parallel to the constant magnetic field) exponentially relaxes from a higher energy, non-equilibrium state to
1687: 1167:"T1ρ magnetic resonance imaging and discography pressure as novel biomarkers for disc degeneration and low back pain" 2114: 1986: 1883: 1759: 1594: 639: 635: 542: 277: 92: 31: 1923: 1888: 1784: 1727: 43: 2008: 1622: 938: 2096: 2069: 2045: 1799: 1732: 1667: 1652: 1545: 1434:
Cai, K; Shore, A; Singh, A; Haris, M; Hiraki, T; Waghray, P; Reddy, D; Greenberg, JH; Reddy, R (Feb 2, 2012).
1165:
Borthakur, A; Maurer, PM; Fenty, M; Wang, C; Berger, R; Yoder, J; Balderston, RA; Elliott, DM (Dec 1, 2011).
1116:
Witschey, WR; Borthakur, A; Fenty, M; Kneeland, BJ; Lonner, JH; McArdle, EL; Sochor, M; Reddy, R (May 2010).
73:, which concerns the exponential relaxation of the transverse component of the nuclear magnetization vector ( 2247: 1981: 1873: 1843: 1642: 1314:"Rotating frame spin lattice relaxation in a swine model of chronic, left ventricular myocardial infarction" 39: 103: 2317: 2081: 2074: 1821: 2237: 1789: 1754: 1436:"Blood oxygen level dependent angiography (BOLDangio) and its potential applications in cancer research" 1355: 712:, which is the time it takes for the magnetic resonance signal to reach 37% (1/e) of its initial value, 1863: 1263:
Cai, K; Haris, M; Singh, A; Kogan, F; Greenberg, JH; Hariharan, H; Detre, JA; Reddy, R (Jan 22, 2012).
970:. Offprint to download: TRTF - The Round Table Foundation / EMRF - European Magnetic Resonance Forum. 2027: 1776: 1627: 1388: 1069:"In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI" 2129: 2346: 2299: 1903: 1657: 1637: 1572: 1567: 473: 2062: 1710: 1647: 1377:"Quantitative magnetic resonance and optical imaging biomarkers of melanoma metastatic potential" 1022: 510: 469: 1908: 715: 705:
and any off-resonant component. The spin-locked magnetization will relax with a time constant
2326: 1971: 1878: 1835: 1766: 1682: 1662: 1617: 1577: 1555: 1465: 1416: 1343: 1294: 1245: 1196: 1147: 1098: 1049: 996: 971: 1993: 1943: 1720: 1455: 1447: 1406: 1396: 1333: 1325: 1284: 1276: 1235: 1227: 1186: 1178: 1137: 1129: 1088: 1080: 1039: 1031: 933: 557: 546: 2119: 2057: 1747: 1742: 688: 631: 570: 1392: 2228: 2205: 2172: 1976: 1853: 1460: 1435: 1411: 1376: 1338: 1313: 1289: 1264: 1240: 1215: 1191: 1166: 1142: 1117: 1093: 1068: 1044: 1017: 17: 2389: 2050: 1868: 1794: 1231: 893: 495: 1016:
Borthakur, A; Mellon, E; Niyogi, S; Witschey, W; Kneeland, JB; Reddy, R (Nov 2006).
2270: 2195: 1214:
Borthakur, A; Sochor, M; Davatzikos, C; Trojanowski, JQ; Clark, CM (Jul 15, 2008).
595: 499: 1018:"Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage" 1182: 2280: 2134: 1672: 944: 591: 468:(the average lifetime of nuclei in the higher energy state) is dependent on the 1381:
Proceedings of the National Academy of Sciences of the United States of America
1118:"T1rho MRI quantification of arthroscopically confirmed cartilage degeneration" 1084: 605:
contrast is present between fluid and more solid anatomical structures, making
2341: 2275: 2139: 1500: 527: 2124: 1401: 864:{\displaystyle M_{xy}(t_{\rm {SL}})=M_{xy}(0)e^{-t_{\rm {SL}}/T_{1\rho }}\,} 578: 574: 1469: 1420: 1347: 1298: 1249: 1200: 1151: 1102: 1053: 2309: 2285: 2144: 2109: 436:{\displaystyle M_{z}(t)=M_{z,\mathrm {eq} }\left(1-2e^{-t/T_{1}}\right)} 2336: 1953: 1329: 1133: 2313: 1809: 1451: 1035: 1280: 910:
MRI relaxation maps reflect the biochemical composition of tissues.
46:
with its surroundings (the "lattice"). It is characterized by the
1582: 102: 38:
is the mechanism by which the longitudinal component of the total
2331: 1804: 1737: 1504: 993:
Spin Dynamics: Basics of Nuclear Magnetic Resonance 2nd Edition
1948: 1933: 965: 267:{\displaystyle M_{z}(t)=M_{z,\mathrm {eq} }-\lefte^{-t/T_{1}}} 642:(MRI). It is characterized by the spin–lattice relaxation 77:
to the external magnetic field). Measuring the variation of
757: 718: 342: 280: 136: 2298: 2261: 2227: 2204: 2171: 2162: 2095: 2024: 1962: 1922: 1834: 1775: 1701: 1610: 1538: 598:and is used when undertaking brain scans. A strong 863: 743: 435: 329: 266: 569:weighted images can be obtained by setting short 123:characterizes the rate at which the longitudinal 698:field created by the vector sum of the applied 1516: 687:MRI by its use of a long-duration, low-power 621:Spin–lattice relaxation in the rotating frame 330:{\displaystyle M_{z}(0)=-M_{z,\mathrm {eq} }} 91:in different materials is the basis for some 8: 1360:: CS1 maint: numeric names: authors list ( 113:relaxation or longitudinal relaxation curve 2168: 1772: 1523: 1509: 1501: 1459: 1410: 1400: 1337: 1288: 1265:"Magnetic resonance imaging of glutamate" 1239: 1190: 1141: 1092: 1043: 860: 849: 840: 830: 829: 821: 799: 779: 778: 762: 756: 723: 717: 420: 411: 404: 376: 369: 347: 341: 317: 310: 285: 279: 256: 247: 240: 216: 199: 192: 170: 163: 141: 135: 577:(TE) such as < 40 ms in conventional 526: 2041:Continuous-variable quantum information 956: 1353: 673:MRI is an alternative to conventional 487:values. For example, fluids have long 903:~0.1-few kHz) is fixed. Quantitative 7: 892:can be quantified (relaxometry) by 590:is significantly different between 1216:"T1rho MRI of Alzheimer's disease" 834: 831: 783: 780: 380: 377: 321: 318: 203: 200: 174: 171: 25: 878:is the duration of the RF field. 480:Different tissues have different 2370: 2369: 2360: 2359: 1232:10.1016/j.neuroimage.2008.03.030 62:There is a different parameter, 274:Or, for the specific case that 1318:Magnetic Resonance in Medicine 1122:Magnetic Resonance in Medicine 814: 808: 789: 771: 738: 732: 509:values and are widely used as 359: 353: 297: 291: 228: 222: 153: 147: 1: 2036:Adiabatic quantum computation 653:. It is named in contrast to 573:(TR) such as < 750 ms and 2087:Topological quantum computer 1488:MRI, From picture to proton. 1183:10.1097/BRS.0b013e31820287bf 1073:Osteoarthritis and Cartilage 662:spin-lattice relaxation time 48:spin–lattice relaxation time 2365:Quantum information science 1532:Quantum information science 991:Levitt, Malcolm H. (2016). 538:weighted image of the head. 50:, a time constant known as 2417: 2401:Nuclear magnetic resonance 2396:Magnetic resonance imaging 1760:quantum gate teleportation 1085:10.1016/j.joca.2007.01.011 640:magnetic resonance imaging 636:nuclear magnetic resonance 623:is the mechanism by which 543:Magnetic resonance imaging 93:magnetic resonance imaging 32:nuclear magnetic resonance 2355: 1889:Quantum Fourier transform 1785:Post-quantum cryptography 1728:Entanglement distillation 744:{\displaystyle M_{xy}(0)} 71:spin–spin relaxation time 44:thermodynamic equilibrium 2375:Quantum mechanics topics 2070:Quantum machine learning 2046:One-way quantum computer 1899:Quantum phase estimation 1800:Quantum key distribution 1733:Monogamy of entanglement 964:Rinck, Peter A. (2022). 1982:Randomized benchmarking 1844:Amplitude amplification 1402:10.1073/pnas.0901807106 751:. Hence the relation: 646:in the rotating frame, 451:spin–lattice relaxation 40:nuclear magnetic moment 36:spin–lattice relaxation 18:Spin-lattice relaxation 2082:Quantum Turing machine 2075:quantum neural network 1822:Quantum secret sharing 865: 745: 539: 502:) also strongly alter 437: 331: 268: 114: 2154:Entanglement-assisted 2115:quantum convolutional 1790:Quantum coin flipping 1755:Quantum teleportation 1716:entanglement-assisted 1546:DiVincenzo's criteria 866: 746: 616:In the rotating frame 530: 461:The relaxation time, 458:by optical pumping). 438: 332: 269: 106: 1965:processor benchmarks 1894:Quantum optimization 1777:Quantum cryptography 1588:physical vs. logical 1493:Hashemi Ray, et al. 1486:McRobbie D., et al. 939:Spin–spin relaxation 755: 716: 340: 278: 134: 1678:Quantum speed limit 1573:Quantum programming 1568:Quantum information 1393:2009PNAS..106.6608L 511:MRI contrast agents 27:Physical phenomenon 2327:Forest/Rigetti QCS 2063:quantum logic gate 1849:Bernstein–Vazirani 1836:Quantum algorithms 1711:Classical capacity 1595:Quantum processors 1578:Quantum simulation 1440:NMR in Biomedicine 1023:NMR in Biomedicine 861: 741: 540: 470:gyromagnetic ratio 433: 327: 264: 115: 2383: 2382: 2294: 2293: 2191:Linear optical QC 1972:Quantum supremacy 1926:complexity theory 1879:Quantum annealing 1830: 1829: 1767:Superdense coding 1556:Quantum computing 1446:(10): 1125–1132. 1330:10.1002/mrm.22543 1134:10.1002/mrm.22272 977:978-3-7460-9518-9 456:hyperpolarization 16:(Redirected from 2408: 2373: 2372: 2363: 2362: 2169: 2099:error correction 2028:computing models 1994:Relaxation times 1884:Quantum counting 1773: 1721:quantum capacity 1668:No-teleportation 1653:No-communication 1525: 1518: 1511: 1502: 1474: 1473: 1463: 1452:10.1002/nbm.2780 1431: 1425: 1424: 1414: 1404: 1372: 1366: 1365: 1359: 1351: 1341: 1309: 1303: 1302: 1292: 1260: 1254: 1253: 1243: 1211: 1205: 1204: 1194: 1162: 1156: 1155: 1145: 1113: 1107: 1106: 1096: 1064: 1058: 1057: 1047: 1036:10.1002/nbm.1102 1013: 1007: 1006: 988: 982: 981: 961: 934:Relaxation (NMR) 870: 868: 867: 862: 859: 858: 857: 856: 844: 839: 838: 837: 807: 806: 788: 787: 786: 770: 769: 750: 748: 747: 742: 731: 730: 558:Relaxation (NMR) 547:Larmor frequency 442: 440: 439: 434: 432: 428: 427: 426: 425: 424: 415: 385: 384: 383: 352: 351: 336: 334: 333: 328: 326: 325: 324: 290: 289: 273: 271: 270: 265: 263: 262: 261: 260: 251: 235: 231: 221: 220: 208: 207: 206: 179: 178: 177: 146: 145: 21: 2416: 2415: 2411: 2410: 2409: 2407: 2406: 2405: 2386: 2385: 2384: 2379: 2351: 2301: 2290: 2263:Superconducting 2257: 2223: 2214:Neutral atom QC 2206:Ultracold atoms 2200: 2165:implementations 2164: 2158: 2098: 2091: 2058:Quantum circuit 2026: 2020: 2014: 2004: 1964: 1958: 1925: 1918: 1874:Hidden subgroup 1826: 1815:other protocols 1771: 1748:quantum network 1743:Quantum channel 1703: 1697: 1643:No-broadcasting 1633:Gottesman–Knill 1606: 1534: 1529: 1495:MRI, The Basics 1483: 1481:Further reading 1478: 1477: 1433: 1432: 1428: 1387:(16): 6608–13. 1374: 1373: 1369: 1352: 1311: 1310: 1306: 1281:10.1038/nm.2615 1269:Nature Medicine 1262: 1261: 1257: 1226:(4): 1199–205. 1213: 1212: 1208: 1164: 1163: 1159: 1115: 1114: 1110: 1066: 1065: 1061: 1015: 1014: 1010: 1003: 990: 989: 985: 978: 963: 962: 958: 953: 930: 923: 916: 909: 902: 891: 884: 877: 845: 825: 817: 795: 774: 758: 753: 752: 719: 714: 713: 711: 704: 697: 689:radio frequency 686: 679: 672: 659: 652: 632:radio frequency 628: 618: 610: 603: 588: 571:repetition time 567: 554: 536: 525: 523:weighted images 522: 507: 492: 485: 466: 416: 400: 390: 386: 365: 343: 338: 337: 306: 281: 276: 275: 252: 236: 212: 188: 187: 183: 159: 137: 132: 131: 128: 121: 111: 101: 99:Nuclear physics 89: 82: 67: 56: 28: 23: 22: 15: 12: 11: 5: 2414: 2412: 2404: 2403: 2398: 2388: 2387: 2381: 2380: 2378: 2377: 2367: 2356: 2353: 2352: 2350: 2349: 2347:many others... 2344: 2339: 2334: 2329: 2320: 2306: 2304: 2296: 2295: 2292: 2291: 2289: 2288: 2283: 2278: 2273: 2267: 2265: 2259: 2258: 2256: 2255: 2250: 2245: 2240: 2234: 2232: 2225: 2224: 2222: 2221: 2219:Trapped-ion QC 2216: 2210: 2208: 2202: 2201: 2199: 2198: 2193: 2188: 2183: 2177: 2175: 2173:Quantum optics 2166: 2160: 2159: 2157: 2156: 2151: 2150: 2149: 2142: 2137: 2132: 2127: 2122: 2117: 2112: 2103: 2101: 2093: 2092: 2090: 2089: 2084: 2079: 2078: 2077: 2067: 2066: 2065: 2055: 2054: 2053: 2043: 2038: 2032: 2030: 2022: 2021: 2019: 2018: 2017: 2016: 2012: 2006: 2002: 1991: 1990: 1989: 1979: 1977:Quantum volume 1974: 1968: 1966: 1960: 1959: 1957: 1956: 1951: 1946: 1941: 1936: 1930: 1928: 1920: 1919: 1917: 1916: 1911: 1906: 1901: 1896: 1891: 1886: 1881: 1876: 1871: 1866: 1861: 1856: 1854:Boson sampling 1851: 1846: 1840: 1838: 1832: 1831: 1828: 1827: 1825: 1824: 1819: 1818: 1817: 1812: 1807: 1797: 1792: 1787: 1781: 1779: 1770: 1769: 1764: 1763: 1762: 1752: 1751: 1750: 1740: 1735: 1730: 1725: 1724: 1723: 1718: 1707: 1705: 1699: 1698: 1696: 1695: 1690: 1688:Solovay–Kitaev 1685: 1680: 1675: 1670: 1665: 1660: 1655: 1650: 1645: 1640: 1635: 1630: 1625: 1620: 1614: 1612: 1608: 1607: 1605: 1604: 1603: 1602: 1592: 1591: 1590: 1580: 1575: 1570: 1565: 1564: 1563: 1553: 1548: 1542: 1540: 1536: 1535: 1530: 1528: 1527: 1520: 1513: 1505: 1499: 1498: 1491: 1482: 1479: 1476: 1475: 1426: 1367: 1324:(5): 1453–60. 1304: 1255: 1206: 1177:(25): 2190–6. 1157: 1128:(5): 1376–82. 1108: 1059: 1030:(7): 781–821. 1008: 1002:978-0470511176 1001: 983: 976: 955: 954: 952: 949: 948: 947: 942: 936: 929: 926: 921: 915: 912: 907: 900: 889: 883: 880: 875: 855: 852: 848: 843: 836: 833: 828: 824: 820: 816: 813: 810: 805: 802: 798: 794: 791: 785: 782: 777: 773: 768: 765: 761: 740: 737: 734: 729: 726: 722: 709: 702: 695: 684: 677: 670: 657: 650: 634:(RF) field in 626: 617: 614: 608: 601: 586: 565: 552: 534: 524: 520: 515: 505: 490: 483: 464: 431: 423: 419: 414: 410: 407: 403: 399: 396: 393: 389: 382: 379: 375: 372: 368: 364: 361: 358: 355: 350: 346: 323: 320: 316: 313: 309: 305: 302: 299: 296: 293: 288: 284: 259: 255: 250: 246: 243: 239: 234: 230: 227: 224: 219: 215: 211: 205: 202: 198: 195: 191: 186: 182: 176: 173: 169: 166: 162: 158: 155: 152: 149: 144: 140: 126: 119: 109: 100: 97: 87: 80: 76: 65: 54: 34:observations, 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2413: 2402: 2399: 2397: 2394: 2393: 2391: 2376: 2368: 2366: 2358: 2357: 2354: 2348: 2345: 2343: 2340: 2338: 2335: 2333: 2330: 2328: 2324: 2321: 2319: 2315: 2311: 2308: 2307: 2305: 2303: 2297: 2287: 2284: 2282: 2279: 2277: 2274: 2272: 2269: 2268: 2266: 2264: 2260: 2254: 2251: 2249: 2246: 2244: 2243:Spin qubit QC 2241: 2239: 2236: 2235: 2233: 2230: 2226: 2220: 2217: 2215: 2212: 2211: 2209: 2207: 2203: 2197: 2194: 2192: 2189: 2187: 2184: 2182: 2179: 2178: 2176: 2174: 2170: 2167: 2161: 2155: 2152: 2148: 2147: 2143: 2141: 2138: 2136: 2133: 2131: 2128: 2126: 2123: 2121: 2118: 2116: 2113: 2111: 2108: 2107: 2105: 2104: 2102: 2100: 2094: 2088: 2085: 2083: 2080: 2076: 2073: 2072: 2071: 2068: 2064: 2061: 2060: 2059: 2056: 2052: 2051:cluster state 2049: 2048: 2047: 2044: 2042: 2039: 2037: 2034: 2033: 2031: 2029: 2023: 2015: 2011: 2007: 2005: 2001: 1997: 1996: 1995: 1992: 1988: 1985: 1984: 1983: 1980: 1978: 1975: 1973: 1970: 1969: 1967: 1961: 1955: 1952: 1950: 1947: 1945: 1942: 1940: 1937: 1935: 1932: 1931: 1929: 1927: 1921: 1915: 1912: 1910: 1907: 1905: 1902: 1900: 1897: 1895: 1892: 1890: 1887: 1885: 1882: 1880: 1877: 1875: 1872: 1870: 1867: 1865: 1862: 1860: 1859:Deutsch–Jozsa 1857: 1855: 1852: 1850: 1847: 1845: 1842: 1841: 1839: 1837: 1833: 1823: 1820: 1816: 1813: 1811: 1808: 1806: 1803: 1802: 1801: 1798: 1796: 1795:Quantum money 1793: 1791: 1788: 1786: 1783: 1782: 1780: 1778: 1774: 1768: 1765: 1761: 1758: 1757: 1756: 1753: 1749: 1746: 1745: 1744: 1741: 1739: 1736: 1734: 1731: 1729: 1726: 1722: 1719: 1717: 1714: 1713: 1712: 1709: 1708: 1706: 1704:communication 1700: 1694: 1691: 1689: 1686: 1684: 1681: 1679: 1676: 1674: 1671: 1669: 1666: 1664: 1661: 1659: 1656: 1654: 1651: 1649: 1646: 1644: 1641: 1639: 1636: 1634: 1631: 1629: 1626: 1624: 1621: 1619: 1616: 1615: 1613: 1609: 1601: 1598: 1597: 1596: 1593: 1589: 1586: 1585: 1584: 1581: 1579: 1576: 1574: 1571: 1569: 1566: 1562: 1559: 1558: 1557: 1554: 1552: 1549: 1547: 1544: 1543: 1541: 1537: 1533: 1526: 1521: 1519: 1514: 1512: 1507: 1506: 1503: 1496: 1492: 1489: 1485: 1484: 1480: 1471: 1467: 1462: 1457: 1453: 1449: 1445: 1441: 1437: 1430: 1427: 1422: 1418: 1413: 1408: 1403: 1398: 1394: 1390: 1386: 1382: 1378: 1371: 1368: 1363: 1357: 1349: 1345: 1340: 1335: 1331: 1327: 1323: 1319: 1315: 1308: 1305: 1300: 1296: 1291: 1286: 1282: 1278: 1274: 1270: 1266: 1259: 1256: 1251: 1247: 1242: 1237: 1233: 1229: 1225: 1221: 1217: 1210: 1207: 1202: 1198: 1193: 1188: 1184: 1180: 1176: 1172: 1168: 1161: 1158: 1153: 1149: 1144: 1139: 1135: 1131: 1127: 1123: 1119: 1112: 1109: 1104: 1100: 1095: 1090: 1086: 1082: 1079:(7): 789–97. 1078: 1074: 1070: 1063: 1060: 1055: 1051: 1046: 1041: 1037: 1033: 1029: 1025: 1024: 1019: 1012: 1009: 1004: 998: 994: 987: 984: 979: 973: 969: 968: 960: 957: 950: 946: 943: 940: 937: 935: 932: 931: 927: 925: 920: 913: 911: 906: 899: 895: 894:curve fitting 888: 881: 879: 874: 853: 850: 846: 841: 826: 822: 818: 811: 803: 800: 796: 792: 775: 766: 763: 759: 735: 727: 724: 720: 708: 701: 694: 690: 683: 676: 669: 665: 663: 656: 649: 645: 644:time constant 641: 637: 633: 629: 622: 615: 613: 611: 604: 597: 593: 589: 582: 580: 576: 572: 568: 561: 559: 555: 548: 544: 537: 529: 519: 516: 514: 512: 508: 501: 497: 496:ferromagnetic 493: 486: 478: 475: 471: 467: 459: 457: 452: 446: 443: 429: 421: 417: 412: 408: 405: 401: 397: 394: 391: 387: 373: 370: 366: 362: 356: 348: 344: 314: 311: 307: 303: 300: 294: 286: 282: 257: 253: 248: 244: 241: 237: 232: 225: 217: 213: 209: 196: 193: 189: 184: 180: 167: 164: 160: 156: 150: 142: 138: 129: 122: 112: 105: 98: 96: 94: 90: 83: 75:perpendicular 74: 72: 68: 60: 58: 57: 49: 45: 41: 37: 33: 19: 2271:Charge qubit 2196:KLM protocol 2145: 2009: 1999: 1998: 1693:Purification 1623:Eastin–Knill 1494: 1487: 1443: 1439: 1429: 1384: 1380: 1370: 1356:cite journal 1321: 1317: 1307: 1275:(2): 302–6. 1272: 1268: 1258: 1223: 1219: 1209: 1174: 1170: 1160: 1125: 1121: 1111: 1076: 1072: 1062: 1027: 1021: 1011: 992: 986: 966: 959: 918: 917: 904: 897: 886: 885: 872: 706: 699: 692: 681: 674: 667: 666: 654: 647: 643: 624: 620: 619: 606: 599: 596:white matter 584: 583: 563: 562: 550: 541: 532: 517: 503: 500:paramagnetic 488: 481: 479: 462: 460: 450: 447: 444: 124: 117: 116: 107: 95:techniques. 85: 78: 63: 61: 52: 51: 47: 35: 29: 2302:programming 2281:Phase qubit 2186:Circuit QED 1658:No-deleting 1600:cloud-based 945:Ernst angle 882:Measurement 592:grey matter 2390:Categories 2342:libquantum 2276:Flux qubit 2181:Cavity QED 2130:Bacon–Shor 2120:stabilizer 1648:No-cloning 1220:NeuroImage 951:References 638:(NMR) and 2248:NV center 1683:Threshold 1663:No-hiding 1628:Gleason's 1497:2ED. 2004 995:. Wiley. 854:ρ 823:− 579:spin echo 575:echo time 474:stimulate 406:− 395:− 304:− 242:− 210:− 181:− 2310:OpenQASM 2286:Transmon 2163:Physical 1963:Quantum 1864:Grover's 1638:Holevo's 1611:Theorems 1561:timeline 1551:NISQ era 1470:22302557 1421:19366661 1348:20677236 1299:22270722 1250:18479942 1201:21358489 1152:20432308 1103:17307365 1054:17075961 928:See also 871:, where 2300:Quantum 2238:Kane QC 2097:Quantum 2025:Quantum 1954:PostBQP 1924:Quantum 1909:Simon's 1702:Quantum 1539:General 1461:3390450 1412:2672511 1389:Bibcode 1339:2965811 1290:3274604 1241:2473861 1192:4002043 1143:2933515 1094:2040334 1045:2896046 914:Imaging 30:During 2318:IBM QX 2314:Qiskit 2253:NMR QC 2231:-based 2135:Steane 2106:Codes 1904:Shor's 1810:SARG04 1618:Bell's 1468:  1458:  1419:  1409:  1346:  1336:  1297:  1287:  1248:  1238:  1199:  1189:  1150:  1140:  1101:  1091:  1052:  1042:  999:  974:  660:, the 69:, the 2140:Toric 1583:Qubit 1171:Spine 556:(see 2332:Cirq 2323:Quil 2229:Spin 2125:Shor 1805:BB84 1738:LOCC 1490:2003 1466:PMID 1417:PMID 1362:link 1344:PMID 1295:PMID 1246:PMID 1197:PMID 1148:PMID 1099:PMID 1050:PMID 997:ISBN 972:ISBN 941:time 680:and 594:and 84:and 2146:gnu 2110:CSS 1987:XEB 1949:QMA 1944:QIP 1939:EQP 1934:BQP 1914:VQE 1869:HHL 1673:PBR 1456:PMC 1448:doi 1407:PMC 1397:doi 1385:106 1334:PMC 1326:doi 1285:PMC 1277:doi 1236:PMC 1228:doi 1187:PMC 1179:doi 1138:PMC 1130:doi 1089:PMC 1081:doi 1040:PMC 1032:doi 560:). 498:or 2392:: 2337:Q# 1464:. 1454:. 1444:25 1442:. 1438:. 1415:. 1405:. 1395:. 1383:. 1379:. 1358:}} 1354:{{ 1342:. 1332:. 1322:64 1320:. 1316:. 1293:. 1283:. 1273:18 1271:. 1267:. 1244:. 1234:. 1224:41 1222:. 1218:. 1195:. 1185:. 1175:36 1173:. 1169:. 1146:. 1136:. 1126:63 1124:. 1120:. 1097:. 1087:. 1077:15 1075:. 1071:. 1048:. 1038:. 1028:19 1026:. 1020:. 922:1ρ 908:1ρ 898:γB 890:1ρ 876:SL 710:1ρ 671:1ρ 664:. 651:1ρ 627:xy 531:A 513:. 59:. 2325:– 2316:– 2312:– 2013:2 2010:T 2003:1 2000:T 1524:e 1517:t 1510:v 1472:. 1450:: 1423:. 1399:: 1391:: 1364:) 1350:. 1328:: 1301:. 1279:: 1252:. 1230:: 1203:. 1181:: 1154:. 1132:: 1105:. 1083:: 1056:. 1034:: 1005:. 980:. 919:T 905:T 901:1 887:T 873:t 851:1 847:T 842:/ 835:L 832:S 827:t 819:e 815:) 812:0 809:( 804:y 801:x 797:M 793:= 790:) 784:L 781:S 776:t 772:( 767:y 764:x 760:M 739:) 736:0 733:( 728:y 725:x 721:M 707:T 703:1 700:B 696:1 693:B 685:2 682:T 678:1 675:T 668:T 658:1 655:T 648:T 625:M 609:1 607:T 602:1 600:T 587:1 585:T 566:1 564:T 553:1 551:T 535:1 533:T 521:1 518:T 506:1 504:T 491:1 489:T 484:1 482:T 465:1 463:T 430:) 422:1 418:T 413:/ 409:t 402:e 398:2 392:1 388:( 381:q 378:e 374:, 371:z 367:M 363:= 360:) 357:t 354:( 349:z 345:M 322:q 319:e 315:, 312:z 308:M 301:= 298:) 295:0 292:( 287:z 283:M 258:1 254:T 249:/ 245:t 238:e 233:] 229:) 226:0 223:( 218:z 214:M 204:q 201:e 197:, 194:z 190:M 185:[ 175:q 172:e 168:, 165:z 161:M 157:= 154:) 151:t 148:( 143:z 139:M 127:z 125:M 120:1 118:T 110:1 108:T 88:2 86:T 81:1 79:T 66:2 64:T 55:1 53:T 20:)

Index

Spin-lattice relaxation
nuclear magnetic resonance
nuclear magnetic moment
thermodynamic equilibrium
spin–spin relaxation time
magnetic resonance imaging

hyperpolarization
gyromagnetic ratio
stimulate
ferromagnetic
paramagnetic
MRI contrast agents

Magnetic resonance imaging
Larmor frequency
Relaxation (NMR)
repetition time
echo time
spin echo
grey matter
white matter
radio frequency
nuclear magnetic resonance
magnetic resonance imaging
spin-lattice relaxation time
radio frequency
curve fitting
Relaxation (NMR)
Spin–spin relaxation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.