Knowledge (XXG)

Split-step method

Source đź“ť

1393:
The above shows how to use the method to propagate a solution forward in space; however, many physics applications, such as studying the evolution of a wave packet describing a particle, require one to propagate the solution forward in time rather than in space. The non-linear Schrödinger equation,
1573: 59:
An example of usage of this method is in the field of light pulse propagation in optical fibers, where the interaction of linear and nonlinear mechanisms makes it difficult to find general analytical solutions. However, the split-step method provides a numerical solution to the problem. Another
2858:
A variation on this method is the symmetrized split-step Fourier method, which takes half a time step using one operator, then takes a full-time step with only the other, and then takes a second half time step again with only the first. This method is an improvement upon the generic split-step
2383:
is the frequency (or more properly, wave number, as we are dealing with a spatial variable and thus transforming to a space of spatial frequencies—i.e. wave numbers) associated with the Fourier transform of whatever is being operated on. Thus, we take the Fourier transform of
261: 469: 2226: 1742: 1025: 1400: 1223: 572: 1961: 44:. The name arises for two reasons. First, the method relies on computing the solution in small steps, and treating the linear and the nonlinear steps separately (see below). Second, it is necessary to 93: 2459: 347: 757: 1797: 2361: 817: 1280: 845: 2852: 1325: 3246: 2950:; Sylvestre, Thibaut; Randle, Hamish G.; Coen, Stéphane (2013-01-01). "Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model". 2675: 2509: 1056: 2571: 2542: 2308: 2259: 2023: 1994: 1611: 2088: 2887: 2057: 1837: 299: 879: 3147:
T. R. Taha and M. J. Ablowitz (1984). "Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation".
2910: 2331: 2080: 1388: 2699: 2381: 2279: 1817: 1651: 1631: 1365: 1345: 622: 602: 339: 319: 1659: 887: 1568:{\displaystyle i\hbar {\partial \psi \over \partial t}=-{{\hbar }^{2} \over {2m}}{\partial ^{2}\psi \over \partial x^{2}}+\gamma |\psi |^{2}\psi =\psi ,} 2701:
denotes a Fourier transform. We then inverse Fourier transform this expression to find the final result in physical space, yielding the final expression
2026: 3711: 3337: 1068: 480: 3287: 3263: 3237: 1853: 3561: 3331: 3631: 3488: 3343: 624:, then the two parts can be treated separately with only a 'small' numerical error. One can therefore first take a small nonlinear step, 3019:
Maleki, L.; Seidel, D.; Ilchenko, V. S.; Liang, W.; Savchenkov, A. A.; Matsko, A. B. (2011-08-01). "Mode-locked Kerr frequency combs".
3131: 578: 85: 41: 3556: 3539: 3690: 3476: 3457: 3446: 3423: 256:{\displaystyle {\partial A \over \partial z}=-{i\beta _{2} \over 2}{\partial ^{2}A \over \partial t^{2}}+i\gamma |A|^{2}A=A,} 3429: 464:{\displaystyle {\partial A_{D} \over \partial z}=-{i\beta _{2} \over 2}{\partial ^{2}A \over \partial t^{2}}={\hat {D}}A,} 37: 3546: 2390: 69: 3511: 2310:
we use the fact that in frequency space, the partial derivative operator can be converted into a number by substituting
3551: 3198: 3230: 3668: 1062:, the analytical solution to the linear step, commuted with the frequency domain solution for the nonlinear step, is 630: 3653: 3529: 1747: 3295: 3277: 60:
application of the split-step method that has been gaining a lot of traction since the 2010s is the simulation of
3315: 1229: 72:
with reasonable numerical cost, along with its success in reproducing experimental spectra as well as predicting
2336: 765: 3638: 3524: 3254: 2927: 1235: 3300: 822: 3680: 3658: 3643: 3626: 3534: 3519: 3435: 1840: 65: 2707: 3600: 3371: 3223: 2922: 33: 1285: 3716: 3648: 3494: 3410: 3215: 3071: 3685: 3358: 3156: 3086: 3028: 2969: 3452: 3366: 2579: 61: 2471: 3675: 3616: 3001: 2959: 2221:{\displaystyle \psi (x,t+dt)\approx e^{-idt{\hat {D}}/\hbar }e^{-idt{\hat {N}}/\hbar }\psi (x,t)} 1034: 17: 2547: 2518: 2284: 2235: 1999: 1970: 1581: 3305: 3127: 3104: 3052: 3044: 2993: 2985: 2913: 1059: 45: 1058:
is the center frequency of the pulse. It can be shown that using the above definition of the
3621: 3611: 3500: 3468: 3210: 3164: 3094: 3036: 2977: 2862: 2032: 1822: 851: 269: 49: 857: 3663: 3606: 3595: 1737:{\displaystyle {\hat {D}}=-{{\hbar }^{2} \over {2m}}{\partial ^{2} \over \partial x^{2}}} 3160: 3090: 3032: 2973: 2892: 2313: 2062: 2029:
can be applied to show that the error from treating them as if they do will be of order
1370: 3441: 3388: 2947: 2684: 2366: 2264: 1802: 1636: 1616: 1350: 1330: 607: 587: 324: 304: 1020:{\displaystyle {\tilde {A}}_{N}(\omega ,z)=\int _{-\infty }^{\infty }A_{N}(t,z)\expdt} 3705: 3310: 3168: 3199:
http://www.optics.rochester.edu/workgroups/agrawal/grouphomepage.php?pageid=software
3482: 3399: 3376: 3005: 3393: 3271: 3186: 1218:{\displaystyle {\tilde {A}}(\omega ,z+h)=\exp \left{\tilde {A}}_{N}(\omega ,z).} 53: 1847:
The formal solution to this equation is a complex exponential, so we have that
567:{\displaystyle {\partial A_{N} \over \partial z}=i\gamma |A|^{2}A={\hat {N}}A.} 3108: 3099: 3048: 2989: 3072:"Dynamics of microresonator frequency comb generation: models and stability" 2917: 3056: 2997: 577:
Both the linear and the nonlinear parts have analytical solutions, but the
2926:. The split-step Fourier method can therefore be much faster than typical 1956:{\displaystyle \psi (x,t)=e^{-it({\hat {D}}+{\hat {N}})/\hbar }\psi (x,0)} 1394:
when used to govern the time evolution of a wave function, takes the form
3040: 2981: 3579: 73: 3418: 2515:
and use it to find the product of the complex exponentials involving
76:
behavior in these microresonators has made the method very popular.
3192: 581:
containing both parts does not have a general analytical solution.
2964: 3573: 3567: 3382: 3219: 762:
using the analytical solution. Note that this ansatz imposes
2025:
are operators, they do not in general commute. However, the
3204: 3211:
http://www.mathworks.com/matlabcentral/fileexchange/24016
2465:
recover the associated wave number, compute the quantity
2261:
can be computed directly using the wave function at time
850:
The dispersion step has an analytical solution in the
48:
back and forth because the linear step is made in the
2895: 2865: 2710: 2687: 2582: 2550: 2521: 2474: 2393: 2369: 2340: 2316: 2287: 2267: 2238: 2091: 2065: 2035: 2002: 1973: 1856: 1825: 1805: 1750: 1662: 1639: 1619: 1584: 1403: 1373: 1353: 1333: 1288: 1238: 1071: 1037: 890: 860: 825: 768: 633: 610: 590: 483: 350: 327: 307: 272: 96: 3247:
Numerical methods for partial differential equations
3126:(3rd ed.). San Diego, CA, USA: Academic Press. 1367:
times, the pulse can be propagated over a length of
3588: 3510: 3467: 3409: 3357: 3324: 3286: 3262: 3253: 2454:{\displaystyle e^{-idt{\hat {N}}/\hbar }\psi (x,t)} 2904: 2881: 2846: 2693: 2669: 2565: 2536: 2503: 2453: 2375: 2355: 2325: 2302: 2273: 2253: 2220: 2074: 2051: 2017: 1988: 1955: 1831: 1811: 1791: 1736: 1645: 1625: 1605: 1567: 1382: 1359: 1339: 1327:; the pulse has thus been propagated a small step 1319: 1274: 1217: 1050: 1019: 873: 839: 811: 751: 616: 596: 566: 463: 333: 313: 293: 255: 854:, so it is first necessary to Fourier transform 341:. The equation can be split into a linear part, 2059:if we are taking a small but finite time step 752:{\displaystyle A_{N}(t,z+h)=\exp \leftA(t,z),} 3231: 3187:http://www.photonics.umd.edu/software/ssprop/ 2859:Fourier method because its error is of order 1792:{\displaystyle {\hat {N}}=\gamma |\psi |^{2}} 68:. The relative ease of implementation of the 8: 2281:, but to compute the exponential involving 3259: 3238: 3224: 3216: 2920:can be computed relatively fast using the 2356:{\displaystyle \partial \over \partial x} 812:{\displaystyle |A(z)|^{2}={\text{const}}.} 3098: 3070:Hansson, Tobias; Wabnitz, Stefan (2016). 2963: 2894: 2873: 2864: 2807: 2806: 2793: 2775: 2761: 2745: 2709: 2686: 2633: 2632: 2619: 2601: 2587: 2581: 2552: 2551: 2549: 2523: 2522: 2520: 2493: 2479: 2473: 2423: 2412: 2411: 2398: 2392: 2368: 2338: 2315: 2289: 2288: 2286: 2266: 2240: 2239: 2237: 2190: 2179: 2178: 2165: 2151: 2140: 2139: 2126: 2090: 2064: 2043: 2034: 2004: 2003: 2001: 1975: 1974: 1972: 1925: 1911: 1910: 1896: 1895: 1882: 1855: 1824: 1804: 1783: 1778: 1769: 1752: 1751: 1749: 1725: 1711: 1705: 1695: 1689: 1684: 1681: 1664: 1663: 1661: 1638: 1618: 1583: 1545: 1544: 1530: 1529: 1514: 1509: 1500: 1485: 1467: 1460: 1450: 1444: 1439: 1436: 1410: 1402: 1372: 1352: 1332: 1287: 1275:{\displaystyle {\tilde {A}}(\omega ,z+h)} 1240: 1239: 1237: 1191: 1180: 1179: 1164: 1154: 1129: 1119: 1073: 1072: 1070: 1042: 1036: 996: 950: 940: 932: 904: 893: 892: 889: 865: 859: 833: 832: 824: 801: 792: 787: 769: 767: 714: 709: 685: 638: 632: 609: 589: 547: 546: 534: 529: 520: 494: 484: 482: 444: 443: 431: 413: 406: 394: 384: 361: 351: 349: 326: 306: 271: 233: 232: 218: 217: 202: 197: 188: 170: 152: 145: 133: 123: 97: 95: 36:numerical method used to solve nonlinear 1613:describes the wave function at position 52:while the nonlinear step is made in the 2939: 2428: 2195: 2156: 1930: 1826: 1685: 1440: 1407: 840:{\displaystyle \gamma \in \mathbb {R} } 2847:{\displaystyle \psi (x,t+dt)=F^{-1}]} 301:describes the pulse envelope in time 7: 3489:Moving particle semi-implicit method 3400:Weighted essentially non-oscillatory 2232:The part of this equation involving 1320:{\displaystyle A\left(t,z+h\right)} 3338:Finite-difference frequency-domain 2346: 2341: 1718: 1708: 1478: 1464: 1421: 1413: 941: 936: 502: 487: 424: 410: 369: 354: 163: 149: 108: 100: 14: 3712:Numerical differential equations 3193:http://www.freeopticsproject.org 2027:Baker-Campbell-Hausdorff formula 1819:is the mass of the particle and 584:However, if only a 'small' step 3691:Method of fundamental solutions 3477:Smoothed-particle hydrodynamics 3332:Alternating direction-implicit 2841: 2838: 2835: 2823: 2812: 2786: 2754: 2735: 2714: 2664: 2661: 2649: 2638: 2612: 2557: 2528: 2448: 2436: 2417: 2294: 2245: 2215: 2203: 2184: 2145: 2116: 2095: 2009: 1980: 1950: 1938: 1922: 1916: 1901: 1892: 1872: 1860: 1779: 1770: 1757: 1669: 1600: 1588: 1556: 1550: 1535: 1526: 1510: 1501: 1269: 1251: 1245: 1209: 1197: 1185: 1161: 1141: 1102: 1084: 1078: 1008: 1002: 983: 977: 968: 956: 922: 910: 898: 788: 783: 777: 770: 743: 731: 710: 705: 693: 686: 662: 644: 579:nonlinear Schrödinger equation 552: 530: 521: 449: 288: 276: 244: 238: 223: 214: 198: 189: 86:nonlinear Schrödinger equation 42:nonlinear Schrödinger equation 38:partial differential equations 1: 3344:Finite-difference time-domain 3191:AndrĂ©s A. Rieznik, Software, 2670:{\displaystyle e^{idtk^{2}}F} 2573:in frequency space as below: 3383:Advection upstream-splitting 3203:Thomas Schreiber, Software, 3197:Prof. G. Agrawal, Software, 3185:Thomas E. Murphy, Software, 3169:10.1016/0021-9991(84)90003-2 2923:fast Fourier transform (FFT) 2504:{\displaystyle e^{idtk^{2}}} 3394:Essentially non-oscillatory 3377:Monotonic upstream-centered 3209:Edward J. Grace, Software, 3122:Agrawal, Govind P. (2001). 1051:{\displaystyle \omega _{0}} 84:Consider, for example, the 3733: 3654:Infinite difference method 3272:Forward-time central-space 2566:{\displaystyle {\hat {D}}} 2537:{\displaystyle {\hat {N}}} 2303:{\displaystyle {\hat {D}}} 2254:{\displaystyle {\hat {N}}} 2018:{\displaystyle {\hat {N}}} 1989:{\displaystyle {\hat {D}}} 1606:{\displaystyle \psi (x,t)} 3557:Poincaré–Steklov operator 3316:Method of characteristics 2928:finite difference methods 2082:. We therefore can write 1347:. By repeating the above 1230:inverse Fourier transform 80:Description of the method 3574:Tearing and interconnect 3568:Balancing by constraints 3205:http://www.fiberdesk.com 3100:10.1515/nanoph-2016-0012 321:at the spatial position 70:Lugiato–Lefever equation 3681:Computer-assisted proof 3659:Infinite element method 3447:Gradient discretisation 1841:reduced Planck constant 66:optical microresonators 3669:Petrov–Galerkin method 3430:Discontinuous Galerkin 3124:Nonlinear Fiber Optics 2906: 2883: 2882:{\displaystyle dt^{3}} 2848: 2695: 2671: 2567: 2538: 2505: 2455: 2377: 2357: 2327: 2304: 2275: 2255: 2222: 2076: 2053: 2052:{\displaystyle dt^{2}} 2019: 1990: 1957: 1833: 1832:{\displaystyle \hbar } 1813: 1793: 1738: 1647: 1627: 1607: 1569: 1384: 1361: 1341: 1321: 1276: 1219: 1052: 1021: 875: 841: 813: 753: 618: 598: 568: 474:and a nonlinear part, 465: 335: 315: 295: 294:{\displaystyle A(t,z)} 257: 3649:Isogeometric analysis 3495:Material point method 2907: 2884: 2849: 2696: 2672: 2568: 2539: 2506: 2456: 2378: 2358: 2328: 2305: 2276: 2256: 2223: 2077: 2054: 2020: 1991: 1958: 1834: 1814: 1794: 1739: 1648: 1628: 1608: 1570: 1385: 1362: 1342: 1322: 1277: 1220: 1053: 1022: 876: 874:{\displaystyle A_{N}} 842: 814: 754: 619: 599: 569: 466: 336: 316: 296: 258: 3686:Integrable algorithm 3512:Domain decomposition 3041:10.1364/OL.36.002845 2982:10.1364/OL.38.000037 2893: 2863: 2708: 2685: 2580: 2548: 2519: 2472: 2391: 2367: 2337: 2314: 2285: 2265: 2236: 2089: 2063: 2033: 2000: 1971: 1854: 1823: 1803: 1748: 1660: 1637: 1617: 1582: 1401: 1371: 1351: 1331: 1286: 1236: 1069: 1035: 888: 858: 823: 766: 631: 608: 588: 481: 348: 325: 305: 270: 94: 3530:Schwarz alternating 3453:Loubignac iteration 3180:External references 3161:1984JCoPh..55..203T 3091:2016Nanop...5...12H 3033:2011OptL...36.2845M 2974:2013OptL...38...37C 945: 62:Kerr frequency comb 3676:Validated numerics 2914:Fourier transforms 2905:{\displaystyle dt} 2902: 2879: 2844: 2691: 2667: 2563: 2534: 2501: 2451: 2373: 2344: 2326:{\displaystyle ik} 2323: 2300: 2271: 2251: 2218: 2075:{\displaystyle dt} 2072: 2049: 2015: 1986: 1953: 1829: 1809: 1789: 1734: 1643: 1623: 1603: 1565: 1383:{\displaystyle Nh} 1380: 1357: 1337: 1317: 1272: 1215: 1048: 1017: 928: 871: 837: 809: 749: 614: 594: 564: 461: 331: 311: 291: 253: 18:numerical analysis 3699: 3698: 3639:Immersed boundary 3632:Method of moments 3547:Neumann–Dirichlet 3540:abstract additive 3525:Fictitious domain 3469:Meshless/Meshfree 3353: 3352: 3255:Finite difference 3027:(15): 2845–2847. 2815: 2694:{\displaystyle F} 2641: 2560: 2531: 2420: 2376:{\displaystyle k} 2353: 2297: 2274:{\displaystyle t} 2248: 2187: 2148: 2012: 1983: 1919: 1904: 1812:{\displaystyle m} 1760: 1732: 1703: 1672: 1646:{\displaystyle t} 1626:{\displaystyle x} 1553: 1538: 1492: 1458: 1428: 1360:{\displaystyle N} 1340:{\displaystyle h} 1248: 1188: 1139: 1081: 1060:Fourier transform 901: 819:and consequently 804: 617:{\displaystyle z} 597:{\displaystyle h} 555: 509: 452: 438: 404: 376: 334:{\displaystyle z} 314:{\displaystyle t} 241: 226: 177: 143: 115: 46:Fourier transform 3724: 3644:Analytic element 3627:Boundary element 3520:Schur complement 3501:Particle-in-cell 3436:Spectral element 3260: 3240: 3233: 3226: 3217: 3173: 3172: 3144: 3138: 3137: 3119: 3113: 3112: 3102: 3076: 3067: 3061: 3060: 3016: 3010: 3009: 2967: 2944: 2911: 2909: 2908: 2903: 2889:for a time step 2888: 2886: 2885: 2880: 2878: 2877: 2853: 2851: 2850: 2845: 2819: 2818: 2817: 2816: 2808: 2782: 2781: 2780: 2779: 2753: 2752: 2700: 2698: 2697: 2692: 2676: 2674: 2673: 2668: 2645: 2644: 2643: 2642: 2634: 2608: 2607: 2606: 2605: 2572: 2570: 2569: 2564: 2562: 2561: 2553: 2543: 2541: 2540: 2535: 2533: 2532: 2524: 2510: 2508: 2507: 2502: 2500: 2499: 2498: 2497: 2460: 2458: 2457: 2452: 2432: 2431: 2427: 2422: 2421: 2413: 2382: 2380: 2379: 2374: 2362: 2360: 2359: 2354: 2352: 2339: 2332: 2330: 2329: 2324: 2309: 2307: 2306: 2301: 2299: 2298: 2290: 2280: 2278: 2277: 2272: 2260: 2258: 2257: 2252: 2250: 2249: 2241: 2227: 2225: 2224: 2219: 2199: 2198: 2194: 2189: 2188: 2180: 2160: 2159: 2155: 2150: 2149: 2141: 2081: 2079: 2078: 2073: 2058: 2056: 2055: 2050: 2048: 2047: 2024: 2022: 2021: 2016: 2014: 2013: 2005: 1995: 1993: 1992: 1987: 1985: 1984: 1976: 1962: 1960: 1959: 1954: 1934: 1933: 1929: 1921: 1920: 1912: 1906: 1905: 1897: 1838: 1836: 1835: 1830: 1818: 1816: 1815: 1810: 1798: 1796: 1795: 1790: 1788: 1787: 1782: 1773: 1762: 1761: 1753: 1743: 1741: 1740: 1735: 1733: 1731: 1730: 1729: 1716: 1715: 1706: 1704: 1702: 1694: 1693: 1688: 1682: 1674: 1673: 1665: 1652: 1650: 1649: 1644: 1632: 1630: 1629: 1624: 1612: 1610: 1609: 1604: 1574: 1572: 1571: 1566: 1555: 1554: 1546: 1540: 1539: 1531: 1519: 1518: 1513: 1504: 1493: 1491: 1490: 1489: 1476: 1472: 1471: 1461: 1459: 1457: 1449: 1448: 1443: 1437: 1429: 1427: 1419: 1411: 1389: 1387: 1386: 1381: 1366: 1364: 1363: 1358: 1346: 1344: 1343: 1338: 1326: 1324: 1323: 1318: 1316: 1312: 1281: 1279: 1278: 1273: 1250: 1249: 1241: 1224: 1222: 1221: 1216: 1196: 1195: 1190: 1189: 1181: 1177: 1173: 1169: 1168: 1159: 1158: 1140: 1135: 1134: 1133: 1120: 1083: 1082: 1074: 1057: 1055: 1054: 1049: 1047: 1046: 1026: 1024: 1023: 1018: 1001: 1000: 955: 954: 944: 939: 909: 908: 903: 902: 894: 880: 878: 877: 872: 870: 869: 852:frequency domain 846: 844: 843: 838: 836: 818: 816: 815: 810: 805: 802: 797: 796: 791: 773: 758: 756: 755: 750: 727: 723: 719: 718: 713: 689: 643: 642: 623: 621: 620: 615: 603: 601: 600: 595: 573: 571: 570: 565: 557: 556: 548: 539: 538: 533: 524: 510: 508: 500: 499: 498: 485: 470: 468: 467: 462: 454: 453: 445: 439: 437: 436: 435: 422: 418: 417: 407: 405: 400: 399: 398: 385: 377: 375: 367: 366: 365: 352: 340: 338: 337: 332: 320: 318: 317: 312: 300: 298: 297: 292: 262: 260: 259: 254: 243: 242: 234: 228: 227: 219: 207: 206: 201: 192: 178: 176: 175: 174: 161: 157: 156: 146: 144: 139: 138: 137: 124: 116: 114: 106: 98: 50:frequency domain 3732: 3731: 3727: 3726: 3725: 3723: 3722: 3721: 3702: 3701: 3700: 3695: 3664:Galerkin method 3607:Method of lines 3584: 3552:Neumann–Neumann 3506: 3463: 3405: 3372:High-resolution 3349: 3320: 3282: 3249: 3244: 3182: 3177: 3176: 3149:J. Comput. Phys 3146: 3145: 3141: 3134: 3121: 3120: 3116: 3074: 3069: 3068: 3064: 3018: 3017: 3013: 2948:Erkintalo, Miro 2946: 2945: 2941: 2936: 2891: 2890: 2869: 2861: 2860: 2789: 2771: 2757: 2741: 2706: 2705: 2683: 2682: 2615: 2597: 2583: 2578: 2577: 2546: 2545: 2517: 2516: 2489: 2475: 2470: 2469: 2394: 2389: 2388: 2365: 2364: 2345: 2335: 2334: 2312: 2311: 2283: 2282: 2263: 2262: 2234: 2233: 2161: 2122: 2087: 2086: 2061: 2060: 2039: 2031: 2030: 1998: 1997: 1969: 1968: 1878: 1852: 1851: 1821: 1820: 1801: 1800: 1777: 1746: 1745: 1721: 1717: 1707: 1683: 1658: 1657: 1635: 1634: 1615: 1614: 1580: 1579: 1508: 1481: 1477: 1463: 1462: 1438: 1420: 1412: 1399: 1398: 1369: 1368: 1349: 1348: 1329: 1328: 1296: 1292: 1284: 1283: 1234: 1233: 1178: 1160: 1150: 1125: 1121: 1118: 1114: 1067: 1066: 1038: 1033: 1032: 992: 946: 891: 886: 885: 861: 856: 855: 821: 820: 786: 764: 763: 708: 678: 674: 634: 629: 628: 606: 605: 604:is taken along 586: 585: 528: 501: 490: 486: 479: 478: 427: 423: 409: 408: 390: 386: 368: 357: 353: 346: 345: 323: 322: 303: 302: 268: 267: 196: 166: 162: 148: 147: 129: 125: 107: 99: 92: 91: 82: 34:pseudo-spectral 12: 11: 5: 3730: 3728: 3720: 3719: 3714: 3704: 3703: 3697: 3696: 3694: 3693: 3688: 3683: 3678: 3673: 3672: 3671: 3661: 3656: 3651: 3646: 3641: 3636: 3635: 3634: 3624: 3619: 3614: 3609: 3604: 3601:Pseudospectral 3598: 3592: 3590: 3586: 3585: 3583: 3582: 3577: 3571: 3565: 3559: 3554: 3549: 3544: 3543: 3542: 3537: 3527: 3522: 3516: 3514: 3508: 3507: 3505: 3504: 3498: 3492: 3486: 3480: 3473: 3471: 3465: 3464: 3462: 3461: 3455: 3450: 3444: 3439: 3433: 3427: 3421: 3415: 3413: 3411:Finite element 3407: 3406: 3404: 3403: 3397: 3391: 3389:Riemann solver 3386: 3380: 3374: 3369: 3363: 3361: 3355: 3354: 3351: 3350: 3348: 3347: 3341: 3335: 3328: 3326: 3322: 3321: 3319: 3318: 3313: 3308: 3303: 3298: 3296:Lax–Friedrichs 3292: 3290: 3284: 3283: 3281: 3280: 3278:Crank–Nicolson 3275: 3268: 3266: 3257: 3251: 3250: 3245: 3243: 3242: 3235: 3228: 3220: 3214: 3213: 3207: 3201: 3195: 3189: 3181: 3178: 3175: 3174: 3155:(2): 203–230. 3139: 3132: 3114: 3085:(2): 231–243. 3062: 3021:Optics Letters 3011: 2952:Optics Letters 2938: 2937: 2935: 2932: 2901: 2898: 2876: 2872: 2868: 2856: 2855: 2843: 2840: 2837: 2834: 2831: 2828: 2825: 2822: 2814: 2811: 2805: 2802: 2799: 2796: 2792: 2788: 2785: 2778: 2774: 2770: 2767: 2764: 2760: 2756: 2751: 2748: 2744: 2740: 2737: 2734: 2731: 2728: 2725: 2722: 2719: 2716: 2713: 2690: 2679: 2678: 2666: 2663: 2660: 2657: 2654: 2651: 2648: 2640: 2637: 2631: 2628: 2625: 2622: 2618: 2614: 2611: 2604: 2600: 2596: 2593: 2590: 2586: 2559: 2556: 2530: 2527: 2513: 2512: 2496: 2492: 2488: 2485: 2482: 2478: 2463: 2462: 2450: 2447: 2444: 2441: 2438: 2435: 2430: 2426: 2419: 2416: 2410: 2407: 2404: 2401: 2397: 2372: 2351: 2348: 2343: 2322: 2319: 2296: 2293: 2270: 2247: 2244: 2230: 2229: 2217: 2214: 2211: 2208: 2205: 2202: 2197: 2193: 2186: 2183: 2177: 2174: 2171: 2168: 2164: 2158: 2154: 2147: 2144: 2138: 2135: 2132: 2129: 2125: 2121: 2118: 2115: 2112: 2109: 2106: 2103: 2100: 2097: 2094: 2071: 2068: 2046: 2042: 2038: 2011: 2008: 1982: 1979: 1965: 1964: 1952: 1949: 1946: 1943: 1940: 1937: 1932: 1928: 1924: 1918: 1915: 1909: 1903: 1900: 1894: 1891: 1888: 1885: 1881: 1877: 1874: 1871: 1868: 1865: 1862: 1859: 1845: 1844: 1828: 1808: 1786: 1781: 1776: 1772: 1768: 1765: 1759: 1756: 1728: 1724: 1720: 1714: 1710: 1701: 1698: 1692: 1687: 1680: 1677: 1671: 1668: 1642: 1622: 1602: 1599: 1596: 1593: 1590: 1587: 1576: 1575: 1564: 1561: 1558: 1552: 1549: 1543: 1537: 1534: 1528: 1525: 1522: 1517: 1512: 1507: 1503: 1499: 1496: 1488: 1484: 1480: 1475: 1470: 1466: 1456: 1453: 1447: 1442: 1435: 1432: 1426: 1423: 1418: 1415: 1409: 1406: 1379: 1376: 1356: 1336: 1315: 1311: 1308: 1305: 1302: 1299: 1295: 1291: 1271: 1268: 1265: 1262: 1259: 1256: 1253: 1247: 1244: 1228:By taking the 1226: 1225: 1214: 1211: 1208: 1205: 1202: 1199: 1194: 1187: 1184: 1176: 1172: 1167: 1163: 1157: 1153: 1149: 1146: 1143: 1138: 1132: 1128: 1124: 1117: 1113: 1110: 1107: 1104: 1101: 1098: 1095: 1092: 1089: 1086: 1080: 1077: 1045: 1041: 1029: 1028: 1016: 1013: 1010: 1007: 1004: 999: 995: 991: 988: 985: 982: 979: 976: 973: 970: 967: 964: 961: 958: 953: 949: 943: 938: 935: 931: 927: 924: 921: 918: 915: 912: 907: 900: 897: 868: 864: 835: 831: 828: 808: 800: 795: 790: 785: 782: 779: 776: 772: 760: 759: 748: 745: 742: 739: 736: 733: 730: 726: 722: 717: 712: 707: 704: 701: 698: 695: 692: 688: 684: 681: 677: 673: 670: 667: 664: 661: 658: 655: 652: 649: 646: 641: 637: 613: 593: 575: 574: 563: 560: 554: 551: 545: 542: 537: 532: 527: 523: 519: 516: 513: 507: 504: 497: 493: 489: 472: 471: 460: 457: 451: 448: 442: 434: 430: 426: 421: 416: 412: 403: 397: 393: 389: 383: 380: 374: 371: 364: 360: 356: 330: 310: 290: 287: 284: 281: 278: 275: 264: 263: 252: 249: 246: 240: 237: 231: 225: 222: 216: 213: 210: 205: 200: 195: 191: 187: 184: 181: 173: 169: 165: 160: 155: 151: 142: 136: 132: 128: 122: 119: 113: 110: 105: 102: 81: 78: 13: 10: 9: 6: 4: 3: 2: 3729: 3718: 3715: 3713: 3710: 3709: 3707: 3692: 3689: 3687: 3684: 3682: 3679: 3677: 3674: 3670: 3667: 3666: 3665: 3662: 3660: 3657: 3655: 3652: 3650: 3647: 3645: 3642: 3640: 3637: 3633: 3630: 3629: 3628: 3625: 3623: 3620: 3618: 3615: 3613: 3610: 3608: 3605: 3602: 3599: 3597: 3594: 3593: 3591: 3587: 3581: 3578: 3575: 3572: 3569: 3566: 3563: 3560: 3558: 3555: 3553: 3550: 3548: 3545: 3541: 3538: 3536: 3533: 3532: 3531: 3528: 3526: 3523: 3521: 3518: 3517: 3515: 3513: 3509: 3502: 3499: 3496: 3493: 3490: 3487: 3484: 3481: 3478: 3475: 3474: 3472: 3470: 3466: 3459: 3456: 3454: 3451: 3448: 3445: 3443: 3440: 3437: 3434: 3431: 3428: 3425: 3422: 3420: 3417: 3416: 3414: 3412: 3408: 3401: 3398: 3395: 3392: 3390: 3387: 3384: 3381: 3378: 3375: 3373: 3370: 3368: 3365: 3364: 3362: 3360: 3359:Finite volume 3356: 3345: 3342: 3339: 3336: 3333: 3330: 3329: 3327: 3323: 3317: 3314: 3312: 3309: 3307: 3304: 3302: 3299: 3297: 3294: 3293: 3291: 3289: 3285: 3279: 3276: 3273: 3270: 3269: 3267: 3265: 3261: 3258: 3256: 3252: 3248: 3241: 3236: 3234: 3229: 3227: 3222: 3221: 3218: 3212: 3208: 3206: 3202: 3200: 3196: 3194: 3190: 3188: 3184: 3183: 3179: 3170: 3166: 3162: 3158: 3154: 3150: 3143: 3140: 3135: 3133:0-12-045143-3 3129: 3125: 3118: 3115: 3110: 3106: 3101: 3096: 3092: 3088: 3084: 3080: 3079:Nanophotonics 3073: 3066: 3063: 3058: 3054: 3050: 3046: 3042: 3038: 3034: 3030: 3026: 3022: 3015: 3012: 3007: 3003: 2999: 2995: 2991: 2987: 2983: 2979: 2975: 2971: 2966: 2961: 2957: 2953: 2949: 2943: 2940: 2933: 2931: 2929: 2925: 2924: 2919: 2915: 2899: 2896: 2874: 2870: 2866: 2832: 2829: 2826: 2820: 2809: 2803: 2800: 2797: 2794: 2790: 2783: 2776: 2772: 2768: 2765: 2762: 2758: 2749: 2746: 2742: 2738: 2732: 2729: 2726: 2723: 2720: 2717: 2711: 2704: 2703: 2702: 2688: 2658: 2655: 2652: 2646: 2635: 2629: 2626: 2623: 2620: 2616: 2609: 2602: 2598: 2594: 2591: 2588: 2584: 2576: 2575: 2574: 2554: 2525: 2494: 2490: 2486: 2483: 2480: 2476: 2468: 2467: 2466: 2445: 2442: 2439: 2433: 2424: 2414: 2408: 2405: 2402: 2399: 2395: 2387: 2386: 2385: 2370: 2349: 2320: 2317: 2291: 2268: 2242: 2212: 2209: 2206: 2200: 2191: 2181: 2175: 2172: 2169: 2166: 2162: 2152: 2142: 2136: 2133: 2130: 2127: 2123: 2119: 2113: 2110: 2107: 2104: 2101: 2098: 2092: 2085: 2084: 2083: 2069: 2066: 2044: 2040: 2036: 2028: 2006: 1977: 1947: 1944: 1941: 1935: 1926: 1913: 1907: 1898: 1889: 1886: 1883: 1879: 1875: 1869: 1866: 1863: 1857: 1850: 1849: 1848: 1842: 1806: 1784: 1774: 1766: 1763: 1754: 1726: 1722: 1712: 1699: 1696: 1690: 1678: 1675: 1666: 1656: 1655: 1654: 1653:. Note that 1640: 1620: 1597: 1594: 1591: 1585: 1562: 1559: 1547: 1541: 1532: 1523: 1520: 1515: 1505: 1497: 1494: 1486: 1482: 1473: 1468: 1454: 1451: 1445: 1433: 1430: 1424: 1416: 1404: 1397: 1396: 1395: 1391: 1377: 1374: 1354: 1334: 1313: 1309: 1306: 1303: 1300: 1297: 1293: 1289: 1266: 1263: 1260: 1257: 1254: 1242: 1231: 1212: 1206: 1203: 1200: 1192: 1182: 1174: 1170: 1165: 1155: 1151: 1147: 1144: 1136: 1130: 1126: 1122: 1115: 1111: 1108: 1105: 1099: 1096: 1093: 1090: 1087: 1075: 1065: 1064: 1063: 1061: 1043: 1039: 1014: 1011: 1005: 997: 993: 989: 986: 980: 974: 971: 965: 962: 959: 951: 947: 933: 929: 925: 919: 916: 913: 905: 895: 884: 883: 882: 866: 862: 853: 848: 829: 826: 806: 798: 793: 780: 774: 746: 740: 737: 734: 728: 724: 720: 715: 702: 699: 696: 690: 682: 679: 675: 671: 668: 665: 659: 656: 653: 650: 647: 639: 635: 627: 626: 625: 611: 591: 582: 580: 561: 558: 549: 543: 540: 535: 525: 517: 514: 511: 505: 495: 491: 477: 476: 475: 458: 455: 446: 440: 432: 428: 419: 414: 401: 395: 391: 387: 381: 378: 372: 362: 358: 344: 343: 342: 328: 308: 285: 282: 279: 273: 250: 247: 235: 229: 220: 211: 208: 203: 193: 185: 182: 179: 171: 167: 158: 153: 140: 134: 130: 126: 120: 117: 111: 103: 90: 89: 88: 87: 79: 77: 75: 71: 67: 63: 57: 55: 51: 47: 43: 39: 35: 31: 27: 23: 19: 3717:Fiber optics 3483:Peridynamics 3301:Lax–Wendroff 3152: 3148: 3142: 3123: 3117: 3082: 3078: 3065: 3024: 3020: 3014: 2958:(1): 37–39. 2955: 2951: 2942: 2921: 2857: 2680: 2514: 2464: 2231: 1966: 1846: 1577: 1392: 1282:one obtains 1227: 1030: 849: 761: 583: 576: 473: 265: 83: 64:dynamics in 58: 29: 25: 21: 15: 3617:Collocation 1799:, and that 54:time domain 3706:Categories 3306:MacCormack 3288:Hyperbolic 2934:References 22:split-step 3622:Level-set 3612:Multigrid 3562:Balancing 3264:Parabolic 3109:2192-8606 3049:1539-4794 2990:1539-4794 2965:1211.1697 2918:algorithm 2821:ψ 2813:^ 2795:− 2747:− 2712:ψ 2647:ψ 2639:^ 2621:− 2558:^ 2529:^ 2434:ψ 2429:ℏ 2418:^ 2400:− 2347:∂ 2342:∂ 2295:^ 2246:^ 2201:ψ 2196:ℏ 2185:^ 2167:− 2157:ℏ 2146:^ 2128:− 2120:≈ 2093:ψ 2010:^ 1981:^ 1936:ψ 1931:ℏ 1917:^ 1902:^ 1884:− 1858:ψ 1827:ℏ 1775:ψ 1767:γ 1758:^ 1719:∂ 1709:∂ 1686:ℏ 1679:− 1670:^ 1633:and time 1586:ψ 1560:ψ 1551:^ 1536:^ 1521:ψ 1506:ψ 1498:γ 1479:∂ 1474:ψ 1465:∂ 1441:ℏ 1434:− 1422:∂ 1417:ψ 1414:∂ 1408:ℏ 1255:ω 1246:~ 1201:ω 1186:~ 1152:ω 1148:− 1145:ω 1127:β 1112:⁡ 1088:ω 1079:~ 1040:ω 994:ω 990:− 987:ω 975:⁡ 942:∞ 937:∞ 934:− 930:∫ 914:ω 899:~ 830:∈ 827:γ 683:γ 672:⁡ 553:^ 518:γ 503:∂ 488:∂ 450:^ 425:∂ 411:∂ 392:β 382:− 370:∂ 355:∂ 239:^ 224:^ 186:γ 164:∂ 150:∂ 131:β 121:− 109:∂ 101:∂ 40:like the 3596:Spectral 3535:additive 3458:Smoothed 3424:Extended 3057:21808332 2998:23282830 2916:of this 2363:, where 3580:FETI-DP 3460:(S-FEM) 3379:(MUSCL) 3367:Godunov 3157:Bibcode 3087:Bibcode 3029:Bibcode 3006:7248349 2970:Bibcode 1839:is the 74:soliton 26:Fourier 3589:Others 3576:(FETI) 3570:(BDDC) 3442:Mortar 3426:(XFEM) 3419:hp-FEM 3402:(WENO) 3385:(AUSM) 3346:(FDTD) 3340:(FDFD) 3325:Others 3311:Upwind 3274:(FTCS) 3130:  3107:  3055:  3047:  3004:  2996:  2988:  2912:. The 2681:where 1967:Since 1578:where 1031:where 881:using 266:where 30:method 20:, the 3603:(DVR) 3564:(BDD) 3503:(PIC) 3497:(MPM) 3491:(MPS) 3479:(SPH) 3449:(GDM) 3438:(SEM) 3396:(ENO) 3334:(ADI) 3075:(PDF) 3002:S2CID 2960:arXiv 803:const 32:is a 3485:(PD) 3432:(DG) 3128:ISBN 3105:ISSN 3053:PMID 3045:ISSN 2994:PMID 2986:ISSN 2544:and 2333:for 1996:and 1744:and 3165:doi 3095:doi 3037:doi 2978:doi 1232:of 1109:exp 972:exp 669:exp 16:In 3708:: 3163:. 3153:55 3151:. 3103:. 3093:. 3081:. 3077:. 3051:. 3043:. 3035:. 3025:36 3023:. 3000:. 2992:. 2984:. 2976:. 2968:. 2956:38 2954:. 2930:. 1390:. 847:. 56:. 28:) 3239:e 3232:t 3225:v 3171:. 3167:: 3159:: 3136:. 3111:. 3097:: 3089:: 3083:5 3059:. 3039:: 3031:: 3008:. 2980:: 2972:: 2962:: 2900:t 2897:d 2875:3 2871:t 2867:d 2854:. 2842:] 2839:] 2836:) 2833:t 2830:, 2827:x 2824:( 2810:N 2804:t 2801:d 2798:i 2791:e 2787:[ 2784:F 2777:2 2773:k 2769:t 2766:d 2763:i 2759:e 2755:[ 2750:1 2743:F 2739:= 2736:) 2733:t 2730:d 2727:+ 2724:t 2721:, 2718:x 2715:( 2689:F 2677:, 2665:] 2662:) 2659:t 2656:, 2653:x 2650:( 2636:N 2630:t 2627:d 2624:i 2617:e 2613:[ 2610:F 2603:2 2599:k 2595:t 2592:d 2589:i 2585:e 2555:D 2526:N 2511:, 2495:2 2491:k 2487:t 2484:d 2481:i 2477:e 2461:, 2449:) 2446:t 2443:, 2440:x 2437:( 2425:/ 2415:N 2409:t 2406:d 2403:i 2396:e 2371:k 2350:x 2321:k 2318:i 2292:D 2269:t 2243:N 2228:. 2216:) 2213:t 2210:, 2207:x 2204:( 2192:/ 2182:N 2176:t 2173:d 2170:i 2163:e 2153:/ 2143:D 2137:t 2134:d 2131:i 2124:e 2117:) 2114:t 2111:d 2108:+ 2105:t 2102:, 2099:x 2096:( 2070:t 2067:d 2045:2 2041:t 2037:d 2007:N 1978:D 1963:. 1951:) 1948:0 1945:, 1942:x 1939:( 1927:/ 1923:) 1914:N 1908:+ 1899:D 1893:( 1890:t 1887:i 1880:e 1876:= 1873:) 1870:t 1867:, 1864:x 1861:( 1843:. 1807:m 1785:2 1780:| 1771:| 1764:= 1755:N 1727:2 1723:x 1713:2 1700:m 1697:2 1691:2 1676:= 1667:D 1641:t 1621:x 1601:) 1598:t 1595:, 1592:x 1589:( 1563:, 1557:] 1548:N 1542:+ 1533:D 1527:[ 1524:= 1516:2 1511:| 1502:| 1495:+ 1487:2 1483:x 1469:2 1455:m 1452:2 1446:2 1431:= 1425:t 1405:i 1378:h 1375:N 1355:N 1335:h 1314:) 1310:h 1307:+ 1304:z 1301:, 1298:t 1294:( 1290:A 1270:) 1267:h 1264:+ 1261:z 1258:, 1252:( 1243:A 1213:. 1210:) 1207:z 1204:, 1198:( 1193:N 1183:A 1175:] 1171:h 1166:2 1162:) 1156:0 1142:( 1137:2 1131:2 1123:i 1116:[ 1106:= 1103:) 1100:h 1097:+ 1094:z 1091:, 1085:( 1076:A 1044:0 1027:, 1015:t 1012:d 1009:] 1006:t 1003:) 998:0 984:( 981:i 978:[ 969:) 966:z 963:, 960:t 957:( 952:N 948:A 926:= 923:) 920:z 917:, 911:( 906:N 896:A 867:N 863:A 834:R 807:. 799:= 794:2 789:| 784:) 781:z 778:( 775:A 771:| 747:, 744:) 741:z 738:, 735:t 732:( 729:A 725:] 721:h 716:2 711:| 706:) 703:z 700:, 697:t 694:( 691:A 687:| 680:i 676:[ 666:= 663:) 660:h 657:+ 654:z 651:, 648:t 645:( 640:N 636:A 612:z 592:h 562:. 559:A 550:N 544:= 541:A 536:2 531:| 526:A 522:| 515:i 512:= 506:z 496:N 492:A 459:, 456:A 447:D 441:= 433:2 429:t 420:A 415:2 402:2 396:2 388:i 379:= 373:z 363:D 359:A 329:z 309:t 289:) 286:z 283:, 280:t 277:( 274:A 251:, 248:A 245:] 236:N 230:+ 221:D 215:[ 212:= 209:A 204:2 199:| 194:A 190:| 183:i 180:+ 172:2 168:t 159:A 154:2 141:2 135:2 127:i 118:= 112:z 104:A 24:(

Index

numerical analysis
pseudo-spectral
partial differential equations
nonlinear Schrödinger equation
Fourier transform
frequency domain
time domain
Kerr frequency comb
optical microresonators
Lugiato–Lefever equation
soliton
nonlinear Schrödinger equation
nonlinear Schrödinger equation
frequency domain
Fourier transform
inverse Fourier transform
reduced Planck constant
Baker-Campbell-Hausdorff formula
Fourier transforms
algorithm
fast Fourier transform (FFT)
finite difference methods
Erkintalo, Miro
arXiv
1211.1697
Bibcode
2013OptL...38...37C
doi
10.1364/OL.38.000037
ISSN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑