Knowledge (XXG)

Turbidite

Source 📝

297:
fan systems. Geologic processes influencing turbidite systems can either be of allogenic or autogenic origin and submarine fan models are designed to capture the impact of these processes on reservoir presence, reservoir distribution, morphology, and architecture of turbidite deposits. Some significant allogenic forcing includes the effect of sea level fluctuations, regional tectonic events, sediment supply type, sediment supply rate, and sediment concentration. Autogenic controls can include seafloor topography, confinements, and slope gradients. There are about 26 submarine fan models. Some common fan models include the classical single-source suprafan model, models depicting fans with attached lobes, detached lobes fan model, and submarine fan models relating to the response of turbidite systems to varying grain sizes and different feeder systems. The integration of subsurface datasets such as 3D/4D seismic reflection, well logs, and core data as well as modern seafloor bathymetry studies, numerical forward stratigraphic modeling, and flume tank experiments are enabling improvements and more realistic development of submarine fan models across different basins.
114: 31: 169: 82: 147:
It is unusual to see all of a complete Bouma cycle, as successive turbidity currents may erode the unconsolidated upper sequences. Alternatively, the entire sequence may not be present depending on whether the exposed section was at the edge of the turbidity current lobe (where it may be present as a
622:
Goldfinger, C., Nelson, C.H., Morey, A., Johnson, J.E., Gutierrez-Pastor, J., Eriksson, A.T., Karabanov, E., Patton, J., Gracia, E., Enkin, R., Dallimore, A., Dunhill, G., and Vallier, T., 2012, Turbidite Event History: Methods and Implications for Holocene Paleoseismicity of the Cascadia Subduction
296:
Submarine fan models are often based on source-to-sink concepts linking sediment source areas, and sediment routing systems to the eventual depositional environments of turbidite deposits. They are aimed at providing insights into the relationships between different geologic processes and turbidite
34:
Turbidites are deposited in the deep ocean troughs below the continental shelf, or similar structures in deep lakes, by underwater avalanches which slide down the steep slopes of the continental shelf edge. When the material comes to rest in the ocean trough, it is the sand and other coarse material
155:
It is now recognized that the vertical progression of sedimentary structures described by Bouma applies to turbidites deposited by low-density turbidity currents. As the sand concentration of a flow increases, grain-to-grain collisions within the turbid suspension create dispersive pressures that
313:
to trigger density-based avalanches. Density currents may be triggered in areas of high sediment supply by gravitational failure alone. Turbidites can represent a high resolution record of seismicity, and terrestrial storm/flood events depending on the connectivity of canyon/channel systems to
203:). The water must be travelling at a certain velocity in order to suspend the particle in the water and push it along. The greater the size or density of the particle relative to the fluid in which it is travelling, the higher the water velocity required to suspend it and transport it. 218:. In this case, larger fragments of rock can be transported at water velocities too low to otherwise do so because of the lower density contrast (that is, the water plus sediment has a higher density than the water and is therefore closer to the density of the rock). 606:
A new high-resolution radiocarbon Bayesian age model of the Holocene and Late Pleistocene from core MD02-2494 and others, Effingham Inlet, British Columbia, Canada; with an application to the paleoseismic event chronology of the Cascadia Subduction
156:
become important in hindering further settling of grains. As a consequence, a slightly different set of sedimentary structures develops in turbidites deposited by high-density turbidity currents. This different set of structures is known as the
449:
Mutti, E. & Ricci Lucci, F. (1975) Turbidite facies and facies associations. In: Examples of turbidite facies and associations from selected formations of the northern Apennines. IX Int. Congress of Sedimentology, Field Trip A-11, p.
538:
Mutti, E., Ricci Lucci, F., 1975. Turbidite facies and facies associations, in: examples of turbidite facies and associations from selected formations of the northern Apennines. In: IX Int. Congress of Sedimentology, Field Trip A-11, p.
129:
and terminated in shales. This was anomalous because within the deep ocean it had historically been assumed that there was no mechanism by which tractional flow could carry and deposit coarse-grained sediments into the abyssal depths.
548:
Griffiths, C.M., Dyt, C., Paraschivoiu, E., Liu, K. (2001). Sedsim in Hydrocarbon Exploration. In: Merriam, D.F., Davis, J.C. (eds) Geologic Modeling and Simulation. Computer Applications in the Earth Sciences. Springer, Boston, MA.
459:
Normark, W.R. (1978) "Fan valleys, channels, and depositional lobes on modern submarine fans : Characters for recognition of sandy turbidite environments", American Association of Petroleum Geologists Bulletin, 62 (6), p.
667:
Strasser, M., Anselmetti, F.S., Fäh, D., Giardini, D., and Schnellmann, M., 2006, Magnitudes and source areas of large prehistoric northern Alpine earthquakes revealed by slope failures in lakes: Geology, v. 34,
740: 501:
A. Prélat, J.A. Covault, D.M. Hodgson, A. Fildani, S.S. Flint, (2010) Intrinsic controls on the range of volumes, morphologies, and dimensions of submarine lobes, Sedimentary Geology, Volume 232, Issues 1–2,
317:
Turbidites from lakes and fjords are also important as they can provide chronologic evidence of the frequency of landslides and the earthquakes that presumably formed them, by dating using radiocarbon or
361:
industry makes strenuous efforts to predict the location, overall shape, and internal characteristics of these sediment bodies in order to efficiently develop fields as well as explore for new reserves.
469:
Walker, R.G. (1978) "Deep-water sandstone facies and ancient submarine fans: model for exploration for stratigraphic traps", American Association of Petroleum Geologists Bulletin, 62 (6), p. 932–966.
136:
begin with an erosional contact of a coarse lower bed of pebble to granule conglomerate in a sandy matrix, and grade up through coarse then medium plane parallel sandstone; through cross-bedded
529:
Mutti, E., Ricci Lucchi, F., 1972. Turbidites of the northern Apennines, introduction to facies analysis (English translation by T.H. Nilsen, 1978) International Geology Review 20, p.125-166.
562:
Zhang, L., Pan, M., and Li, Z., 2020, 3D modeling of deepwater turbidite lobes: a review of the research status and progress, Petroleum Science, p. 17, doi:10.1007/s12182-019-00415-y.
121:
Turbidites were first properly described by Arnold H. Bouma (1962), who studied deepwater sediments and recognized particular "fining-up intervals" within deep water, fine-grained
511:
G. Shanmugam, Submarine fans: A critical retrospective (1950–2015), (2016) Journal of Palaeogeography, Volume 5, Issue 2, p. 110-184. describing turbidite source to sink systems.
305:
Turbidites provide a mechanism for assigning a tectonic and depositional setting to ancient sedimentary sequences as they usually represent deep-water rocks formed offshore of a
737: 646:
In: Examples of turbidite facies and associations from selected formations of the northern Apennines. IX Int. Congress of Sedimentology, Field Trip A-11, p. 21–36.
346:, where more than 2,600 tons of gold have been extracted from saddle-reef deposits hosted in shale sequences from a thick succession of Cambrian-Ordovician turbidites. 440:
Fairbridge, Rhodes W. (ed.) (1966) The Encyclopedia of Oceanography, Encyclopedia of earth sciences series 1, Van Nostrand Reinhold Company, New York, p. 945–946.
649:
Normark, W.R. (1978) "Fan valleys, channels, and depositional lobes on modern submarine fans : Characters for recognition of sandy turbidite environments",
520:
Walker, R.G., 1978. Deep-water sandstone facies and ancient submarine fans, models for exploration for stratigraphic traps. AAPG Bulletin 62, p.932-966.
483:
Reading, H.G., Richards, M., (1994). Turbidite systems in deepwater basin margins classified by grain size and feeder system. AAPG Bulletin 78, p.794.
277:. Sedimentary models of such fan systems typically are subdivided into upper, mid, and lower fan sequences each with distinct sand-body geometries, 492:
Stow, D.A.V., Mayall, M., (2000). Deep-water sedimentary systems: new models for the 21st century. Marine and Petroleum Geology 17 (2), p.125-135.
714: 695: 633:, Brümmer, R., and Urrutia, R., 2007, Giant earthquakes in South-Central Chile revealed by Holocene mass-wasting events in Lake Puyehue: 233:
all create density-based flow situations and, especially in the latter, can create sequences which are strikingly similar to turbidites.
771: 35:
which settles first followed by mud and eventually the very fine particulate matter. It is this sequence of deposition that creates the
415:
Bouma, Arnold H. (1962) Sedimentology of some Flysch deposits: A graphic approach to facies interpretation, Elsevier, Amsterdam, 168 p
144:, bedding, and changing lithology is representative of strong to waning flow regime currents and their corresponding sedimentation. 221:
This condition occurs in many environments aside from simply the deep ocean, where turbidites are particularly well represented.
148:
thin deposit), or upslope from the deposition centre and manifested as a scour channel filled with fine sands grading up into a
381: 1768: 671:
Walker, R.G. (1978) "Deep-water sandstone facies and ancient submarine fans: model for exploration for stratigraphic traps",
725:
Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents,
635: 429:
Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents,
266:, and an absence of shallow-water features. A different vertical progression of sedimentary structures characterize 113: 1773: 610: 140:; rippled cross-bedded sand/silty sand, and finally laminar siltstone and shale. This vertical succession of 210:
of sediment during transport causes a change to the density of the fluid. This is usually achieved by highly
824: 804: 764: 267: 1778: 1249: 391: 185: 141: 126: 199:
or stream bed, particles of rock are carried along by frictional drag of water on the particle (known as
1214: 727:
Journal of Sedimentology, Society of Economic Paleontologists and Mineralogists, v. 52, p. 279–297.
59: 623:
Zone, USGS Professional Paper 1661-F, Reston, VA, U.S. Geological Survey, p. 184 p, 64 Figures.
343: 51: 619:, Encyclopedia of earth sciences series 1, Van Nostrand Reinhold Company, New York, p. 945–946. 160:, which is a descriptive classification that complements, but does not replace, the Bouma sequence. 431:
Journal of Sedimentology, Society of Economic Paleontologists and Mineralogists, v. 52, p. 279-297.
306: 1499: 1045: 757: 630: 339: 273:
Massive accumulations of turbidites and other deep-water deposits may result in the formation of
1000: 710: 691: 335: 149: 55: 1697: 1409: 1196: 1065: 230: 1509: 1269: 1122: 744: 604:
Randolph J. Enkin, Audrey Dallimore, Judith Baker, John R. Southon, Tara Ivanochkod; 2013
310: 255: 1702: 1544: 1137: 1060: 396: 285: 240: 133: 36: 1762: 1747: 1662: 1627: 1474: 1035: 940: 385: 274: 259: 244: 157: 86: 1672: 1652: 1524: 1171: 1149: 1090: 990: 935: 920: 786: 247: 236:
Turbidites in sediments can occur in carbonate as well as siliciclastic sequences.
207: 98: 30: 599:
Sedimentology of some Flysch deposits: A graphic approach to facies interpretation
1561: 1452: 1432: 1422: 1349: 1299: 1224: 1070: 1005: 975: 930: 888: 861: 856: 846: 809: 354: 347: 1727: 1712: 1687: 1682: 1592: 1577: 1494: 1462: 1427: 1417: 1399: 1379: 1324: 1304: 1259: 1181: 1166: 1142: 1102: 1075: 1055: 1025: 985: 960: 950: 945: 925: 834: 664:, Thesis: Technische Universität Clausthal, Germany. Retrieved 27 January 2006 550: 371: 211: 70: 1742: 1732: 1722: 1707: 1677: 1657: 1642: 1637: 1602: 1597: 1556: 1549: 1514: 1484: 1469: 1447: 1369: 1364: 1354: 1339: 1319: 1294: 1289: 1284: 1274: 1264: 1239: 1204: 1117: 1085: 1030: 1020: 995: 970: 965: 905: 866: 829: 358: 137: 90: 117:
Complete Bouma sequence in Devonian Sandstone (Becke-Oese Quarry, Germany)
17: 1717: 1692: 1617: 1587: 1582: 1504: 1489: 1457: 1437: 1334: 1309: 1186: 1161: 1154: 1132: 1127: 1080: 1015: 900: 851: 841: 799: 278: 189: 94: 66: 48: 214:
liquids which have a suspended load of fine grained particles forming a
168: 1737: 1667: 1632: 1607: 1539: 1374: 1314: 1254: 1219: 1112: 1040: 955: 915: 883: 878: 794: 263: 251: 226: 181: 102: 81: 63: 1647: 1622: 1519: 1479: 1442: 1344: 1209: 1107: 1097: 1050: 1010: 980: 910: 895: 873: 819: 814: 376: 222: 215: 173: 629:
Moernaut, J., De Batist, M., Charlet, F., Heirman, K., Chapron, E.,
624: 609:; Geological Survey of Canada-Pacific, Sidney, BC V8L 4B2, Canada. 353:
Lithified accumulations of turbidite deposits may, in time, become
1612: 1534: 1529: 1394: 1359: 1279: 1234: 1229: 319: 309:, and generally require at least a sloping shelf and some form of 196: 167: 122: 112: 80: 29: 749: 738:
Turbidite sedimentary processes in carbonates, Trenton Formation.
1384: 1329: 1244: 1176: 331: 180:
Turbidites are sediments which are transported and deposited by
106: 753: 350:
gold deposits are also known from turbidite basin deposits.
258:
changes between the turbidite and native pelagic sediments,
479: 477: 475: 250:, climbing ripple laminations, alternating sequences with 125:, which were anomalous because they started at pebble 673:
American Association of Petroleum Geologists Bulletin
651:
American Association of Petroleum Geologists Bulletin
239:
Classic, low-density turbidites are characterized by
1570: 1408: 1195: 785: 58:, which is a type of amalgamation of fluidal and 690:. American Association of Petroleum Geologists. 686:Arnold H. Bouma, Charles G. Stone, ed. (2000). 330:Turbidite sequences are classic hosts for lode 281:distributions, and lithologic characteristics. 765: 62:responsible for distributing vast amounts of 8: 580:Moernaut et al., 2007, Strasser et al., 2002 662:Sedimentology of the Grès d'Annot Formation 551:https://doi.org/10.1007/978-1-4615-1359-9_5 772: 758: 750: 644:Turbidite facies and facies associations. 206:Density-based flow, however, occurs when 642:Mutti, E. & Ricci Lucci, F. (1975) 408: 27:Geologic deposit of a turbidity current 423: 421: 284:Turbidite deposits typically occur in 195:The distinction is that, in a normal 7: 705:S. A. Lomas, P. Joseph, ed. (2004). 262:, thick sediment sequences, regular 615:Fairbridge, Rhodes W. (ed.) (1966) 334:deposits, the prime example being 25: 709:. Geological Society of London. 625:http://pubs.usgs.gov/pp/pp1661f/ 617:The Encyclopedia of Oceanography 382:High-density turbidity currents 322:above and below the turbidite. 688:Fine-Grained Turbidite Systems 314:terrestrial sediment sources. 39:that characterize these rocks. 1: 601:, Elsevier, Amsterdam, 168 p. 1795: 707:Confined Turbidite Systems 675:, 62 (6), p. 932–966. 639:, v. 195, p. 239–256. 225:on the side of volcanoes, 597:Bouma, Arnold H. (1962) 825:Basaltic trachyandesite 805:Alkali feldspar granite 660:Ødegård, Stefan (2000) 571:Goldfinger et al., 2012 268:high-density turbidites 392:Sediment gravity flows 177: 176:, Miocene, South Italy 142:sedimentary structures 118: 110: 40: 1769:Physical oceanography 1215:Banded iron formation 657:(6), p. 912–931. 171: 116: 84: 60:sediment gravity flow 33: 292:Submarine fan models 254:sediments, distinct 85:Turbidite sequence. 723:Lowe, D.R. (1982), 636:Sedimentary Geology 427:Lowe, D.R. (1982), 357:reservoirs and the 344:Victoria, Australia 326:Economic importance 1571:Specific varieties 743:2015-11-18 at the 668:p. 1005–1008. 589:Enkin et al., 2013 178: 119: 111: 41: 1774:Sedimentary rocks 1756: 1755: 1001:Nepheline syenite 716:978-1-86239-149-9 697:978-0-89181-353-8 307:convergent margin 231:pyroclastic flows 56:turbidity current 16:(Redirected from 1786: 1698:Rapakivi granite 1410:Metamorphic rock 1197:Sedimentary rock 1066:Quartz monzonite 774: 767: 760: 751: 720: 701: 590: 587: 581: 578: 572: 569: 563: 560: 554: 546: 540: 536: 530: 527: 521: 518: 512: 509: 503: 499: 493: 490: 484: 481: 470: 467: 461: 457: 451: 447: 441: 438: 432: 425: 416: 413: 21: 1794: 1793: 1789: 1788: 1787: 1785: 1784: 1783: 1759: 1758: 1757: 1752: 1566: 1510:Pseudotachylite 1404: 1191: 1123:Tephriphonolite 781: 778: 745:Wayback Machine 734: 717: 704: 698: 685: 682: 680:Further reading 594: 593: 588: 584: 579: 575: 570: 566: 561: 557: 547: 543: 537: 533: 528: 524: 519: 515: 510: 506: 500: 496: 491: 487: 482: 473: 468: 464: 458: 454: 448: 444: 439: 435: 426: 419: 414: 410: 405: 368: 328: 303: 294: 286:foreland basins 201:tractional flow 166: 79: 37:Bouma sequences 28: 23: 22: 15: 12: 11: 5: 1792: 1790: 1782: 1781: 1776: 1771: 1761: 1760: 1754: 1753: 1751: 1750: 1745: 1740: 1735: 1730: 1725: 1720: 1715: 1710: 1705: 1703:Rhomb porphyry 1700: 1695: 1690: 1685: 1680: 1675: 1670: 1665: 1660: 1655: 1650: 1645: 1640: 1635: 1630: 1625: 1620: 1615: 1610: 1605: 1600: 1595: 1590: 1585: 1580: 1574: 1572: 1568: 1567: 1565: 1564: 1559: 1554: 1553: 1552: 1545:Talc carbonate 1542: 1537: 1532: 1527: 1522: 1517: 1512: 1507: 1502: 1497: 1492: 1487: 1482: 1477: 1472: 1467: 1466: 1465: 1455: 1450: 1445: 1440: 1435: 1430: 1425: 1420: 1414: 1412: 1406: 1405: 1403: 1402: 1397: 1392: 1387: 1382: 1377: 1372: 1367: 1362: 1357: 1352: 1347: 1342: 1337: 1332: 1327: 1322: 1317: 1312: 1307: 1302: 1297: 1292: 1287: 1282: 1277: 1272: 1267: 1262: 1257: 1252: 1247: 1242: 1237: 1232: 1227: 1222: 1217: 1212: 1207: 1201: 1199: 1193: 1192: 1190: 1189: 1184: 1179: 1174: 1169: 1164: 1159: 1158: 1157: 1147: 1146: 1145: 1138:Trachyandesite 1135: 1130: 1125: 1120: 1115: 1110: 1105: 1100: 1095: 1094: 1093: 1088: 1078: 1073: 1068: 1063: 1061:Quartz diorite 1058: 1053: 1048: 1043: 1038: 1033: 1028: 1023: 1018: 1013: 1008: 1003: 998: 993: 988: 983: 978: 973: 968: 963: 958: 953: 948: 943: 938: 933: 928: 923: 918: 913: 908: 903: 898: 893: 892: 891: 881: 876: 871: 870: 869: 859: 854: 849: 844: 839: 838: 837: 832: 822: 817: 812: 807: 802: 797: 791: 789: 783: 782: 780:Types of rocks 779: 777: 776: 769: 762: 754: 748: 747: 733: 732:External links 730: 729: 728: 721: 715: 702: 696: 681: 678: 677: 676: 669: 665: 658: 647: 640: 627: 620: 613: 602: 592: 591: 582: 573: 564: 555: 541: 531: 522: 513: 504: 494: 485: 471: 462: 452: 442: 433: 417: 407: 406: 404: 401: 400: 399: 397:Bouma sequence 394: 389: 379: 374: 367: 364: 327: 324: 302: 299: 293: 290: 275:submarine fans 241:graded bedding 165: 162: 78: 75: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1791: 1780: 1779:Sedimentology 1777: 1775: 1772: 1770: 1767: 1766: 1764: 1749: 1746: 1744: 1741: 1739: 1736: 1734: 1731: 1729: 1726: 1724: 1721: 1719: 1716: 1714: 1711: 1709: 1706: 1704: 1701: 1699: 1696: 1694: 1691: 1689: 1686: 1684: 1681: 1679: 1676: 1674: 1671: 1669: 1666: 1664: 1663:Litchfieldite 1661: 1659: 1656: 1654: 1651: 1649: 1646: 1644: 1641: 1639: 1636: 1634: 1631: 1629: 1628:Hyaloclastite 1626: 1624: 1621: 1619: 1616: 1614: 1611: 1609: 1606: 1604: 1601: 1599: 1596: 1594: 1591: 1589: 1586: 1584: 1581: 1579: 1576: 1575: 1573: 1569: 1563: 1560: 1558: 1555: 1551: 1548: 1547: 1546: 1543: 1541: 1538: 1536: 1533: 1531: 1528: 1526: 1523: 1521: 1518: 1516: 1513: 1511: 1508: 1506: 1503: 1501: 1498: 1496: 1493: 1491: 1488: 1486: 1483: 1481: 1478: 1476: 1475:Litchfieldite 1473: 1471: 1468: 1464: 1461: 1460: 1459: 1456: 1454: 1451: 1449: 1446: 1444: 1441: 1439: 1436: 1434: 1431: 1429: 1426: 1424: 1421: 1419: 1416: 1415: 1413: 1411: 1407: 1401: 1398: 1396: 1393: 1391: 1388: 1386: 1383: 1381: 1378: 1376: 1373: 1371: 1368: 1366: 1363: 1361: 1358: 1356: 1353: 1351: 1348: 1346: 1343: 1341: 1338: 1336: 1333: 1331: 1328: 1326: 1323: 1321: 1318: 1316: 1313: 1311: 1308: 1306: 1303: 1301: 1298: 1296: 1293: 1291: 1288: 1286: 1283: 1281: 1278: 1276: 1273: 1271: 1268: 1266: 1263: 1261: 1258: 1256: 1253: 1251: 1248: 1246: 1243: 1241: 1238: 1236: 1233: 1231: 1228: 1226: 1223: 1221: 1218: 1216: 1213: 1211: 1208: 1206: 1203: 1202: 1200: 1198: 1194: 1188: 1185: 1183: 1180: 1178: 1175: 1173: 1170: 1168: 1165: 1163: 1160: 1156: 1153: 1152: 1151: 1148: 1144: 1141: 1140: 1139: 1136: 1134: 1131: 1129: 1126: 1124: 1121: 1119: 1116: 1114: 1111: 1109: 1106: 1104: 1101: 1099: 1096: 1092: 1089: 1087: 1084: 1083: 1082: 1079: 1077: 1074: 1072: 1069: 1067: 1064: 1062: 1059: 1057: 1054: 1052: 1049: 1047: 1044: 1042: 1039: 1037: 1036:Phonotephrite 1034: 1032: 1029: 1027: 1024: 1022: 1019: 1017: 1014: 1012: 1009: 1007: 1004: 1002: 999: 997: 994: 992: 989: 987: 984: 982: 979: 977: 974: 972: 969: 967: 964: 962: 959: 957: 954: 952: 949: 947: 944: 942: 941:Hyaloclastite 939: 937: 934: 932: 929: 927: 924: 922: 919: 917: 914: 912: 909: 907: 904: 902: 899: 897: 894: 890: 887: 886: 885: 882: 880: 877: 875: 872: 868: 865: 864: 863: 860: 858: 855: 853: 850: 848: 845: 843: 840: 836: 833: 831: 828: 827: 826: 823: 821: 818: 816: 813: 811: 808: 806: 803: 801: 798: 796: 793: 792: 790: 788: 784: 775: 770: 768: 763: 761: 756: 755: 752: 746: 742: 739: 736: 735: 731: 726: 722: 718: 712: 708: 703: 699: 693: 689: 684: 683: 679: 674: 670: 666: 663: 659: 656: 652: 648: 645: 641: 638: 637: 632: 628: 626: 621: 618: 614: 612: 608: 603: 600: 596: 595: 586: 583: 577: 574: 568: 565: 559: 556: 552: 545: 542: 535: 532: 526: 523: 517: 514: 508: 505: 498: 495: 489: 486: 480: 478: 476: 472: 466: 463: 456: 453: 446: 443: 437: 434: 430: 424: 422: 418: 412: 409: 402: 398: 395: 393: 390: 387: 386:Lowe sequence 383: 380: 378: 375: 373: 370: 369: 365: 363: 360: 356: 351: 349: 345: 341: 337: 333: 325: 323: 321: 315: 312: 308: 300: 298: 291: 289: 287: 282: 280: 276: 271: 269: 265: 261: 260:sole markings 257: 253: 249: 246: 242: 237: 234: 232: 228: 224: 219: 217: 213: 209: 204: 202: 198: 193: 191: 187: 184:flow, not by 183: 175: 170: 163: 161: 159: 158:Lowe sequence 153: 151: 145: 143: 139: 135: 131: 128: 127:conglomerates 124: 115: 108: 104: 100: 96: 92: 88: 87:Carboniferous 83: 76: 74: 72: 68: 65: 61: 57: 53: 50: 46: 38: 32: 19: 1673:Luxullianite 1653:Lapis lazuli 1598:Blue Granite 1525:Serpentinite 1500:Metapsammite 1389: 1250:Conglomerate 1172:Trondhjemite 1150:Trachybasalt 1091:Pantellerite 991:Monzogranite 936:Hornblendite 921:Granodiorite 787:Igneous rock 724: 706: 687: 672: 661: 654: 650: 643: 634: 616: 611:Article link 605: 598: 585: 576: 567: 558: 544: 534: 525: 516: 507: 497: 488: 465: 455: 445: 436: 428: 411: 352: 329: 316: 304: 295: 283: 272: 248:ripple marks 238: 235: 220: 208:liquefaction 205: 200: 194: 179: 172:Gorgoglione 154: 150:pelagic ooze 146: 134:Bouma cycles 132: 120: 99:County Clare 44: 42: 1562:Whiteschist 1453:Greenschist 1433:Cataclasite 1423:Amphibolite 1350:Phosphorite 1300:Itacolumite 1225:Calcarenite 1071:Quartzolite 1006:Nephelinite 976:Lamprophyre 931:Harzburgite 889:Napoleonite 862:Charnockite 857:Carbonatite 847:Blairmorite 810:Anorthosite 355:hydrocarbon 348:Proterozoic 93:Formation ( 1763:Categories 1728:Teschenite 1713:Shonkinite 1688:Pietersite 1683:Novaculite 1593:Borolanite 1578:Adamellite 1495:Metapelite 1463:Calcflinta 1428:Blueschist 1418:Anthracite 1400:Wackestone 1380:Travertine 1325:Lumachelle 1305:Jaspillite 1260:Diamictite 1182:Websterite 1167:Troctolite 1143:Benmoreite 1103:Shonkinite 1076:Rhyodacite 1056:Pyroxenite 1026:Peridotite 986:Lherzolite 961:Kimberlite 951:Ignimbrite 946:Icelandite 926:Granophyre 835:Shoshonite 403:References 372:Contourite 301:Importance 190:frictional 186:tractional 101:, Western 77:Sequencing 71:deep ocean 18:Turbidites 1743:Variolite 1733:Theralite 1723:Tachylite 1708:Rodingite 1678:Mangerite 1658:Larvikite 1643:Jasperoid 1638:Jadeitite 1603:Epidosite 1557:Tectonite 1550:Soapstone 1515:Quartzite 1485:Migmatite 1470:Itabirite 1448:Granulite 1390:Turbidite 1370:Sylvinite 1365:Siltstone 1355:Sandstone 1340:Oil shale 1320:Limestone 1295:Gritstone 1290:Greywacke 1285:Geyserite 1275:Evaporite 1265:Diatomite 1240:Claystone 1205:Argillite 1118:Tachylyte 1086:Comendite 1031:Phonolite 1021:Pegmatite 996:Monzonite 971:Lamproite 966:Komatiite 906:Foidolite 867:Enderbite 830:Mugearite 359:petroleum 311:tectonism 227:mudslides 212:turbulent 164:Formation 138:sandstone 91:Sandstone 69:into the 45:turbidite 1718:Taconite 1693:Pyrolite 1618:Ganister 1588:Aphanite 1583:Appinite 1505:Phyllite 1490:Mylonite 1458:Hornfels 1438:Eclogite 1335:Mudstone 1310:Laterite 1270:Dolomite 1187:Wehrlite 1162:Trachyte 1155:Hawaiite 1133:Tonalite 1128:Tephrite 1081:Rhyolite 1046:Porphyry 1016:Obsidian 901:Essexite 852:Boninite 842:Basanite 800:Andesite 741:Archived 631:Pino, M. 502:p.66-76. 460:912–931. 366:See also 340:Ballarat 279:sediment 95:Namurian 67:sediment 49:geologic 1738:Unakite 1668:Llanite 1633:Ijolite 1608:Felsite 1540:Suevite 1375:Tillite 1315:Lignite 1255:Coquina 1220:Breccia 1113:Syenite 1041:Picrite 956:Ijolite 916:Granite 884:Diorite 879:Diabase 795:Adakite 336:Bendigo 264:bedding 252:pelagic 245:current 182:density 103:Ireland 64:clastic 52:deposit 47:is the 1648:Kenyte 1623:Gossan 1520:Schist 1480:Marble 1443:Gneiss 1345:Oolite 1210:Arkose 1108:Sovite 1098:Scoria 1051:Pumice 1011:Norite 981:Latite 911:Gabbro 896:Dunite 874:Dacite 820:Basalt 815:Aplite 713:  694:  539:21-36. 450:21–36. 377:Flysch 320:varves 223:Lahars 216:slurry 192:flow. 174:Flysch 123:shales 109:image) 1613:Flint 1535:Slate 1530:Skarn 1395:Varve 1360:Shale 1280:Flint 1235:Chert 1230:Chalk 607:Zone1 256:fauna 197:river 89:Ross 54:of a 1385:Tufa 1330:Marl 1245:Coal 1177:Tuff 711:ISBN 692:ISBN 338:and 332:gold 229:and 107:USGS 1748:Wad 342:in 188:or 97:), 1765:: 655:62 653:, 474:^ 420:^ 288:. 270:. 243:, 152:. 73:. 43:A 773:e 766:t 759:v 719:. 700:. 553:. 388:) 384:( 105:( 20:)

Index

Turbidites

Bouma sequences
geologic
deposit
turbidity current
sediment gravity flow
clastic
sediment
deep ocean

Carboniferous
Sandstone
Namurian
County Clare
Ireland
USGS

shales
conglomerates
Bouma cycles
sandstone
sedimentary structures
pelagic ooze
Lowe sequence

Flysch
density
tractional
frictional

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.