Knowledge

Bertrand's box paradox

Source đź“ť

873: 38: 510: 166: 868:{\displaystyle \mathrm {P(GG\mid see\ gold)={\frac {P(see\ gold\mid GG)\times {\frac {1}{3}}}{P(see\ gold\mid GG)\times {\frac {1}{3}}+P(see\ gold\mid SS)\times {\frac {1}{3}}+P(see\ gold\mid GS)\times {\frac {1}{3}}}}} ={\frac {\frac {1}{3}}{\frac {1}{3}}}\times {\frac {1}{1+0+{\frac {1}{2}}}}={\frac {2}{3}}} 955:
Bertrand's purpose for constructing this example was to show that merely counting cases is not always proper. Instead, one should sum the probabilities that the cases would produce the observed result; and the two methods are equivalent only if this probability is either 1 or 0 in every case. This
1034:
The Monty Hall and Three Prisoners problems are identical mathematically to Bertrand's Box paradox. The construction of the Boy or Girl paradox is similar, essentially adding a fourth box with a gold coin and a silver coin. Its answer is controversial, based on how one assumes the "drawer" was
169:
Bertrand's box paradox: the three equally probable outcomes after the first gold coin draw. The probability of drawing another gold coin from the same box is 0 in (a), and 1 in (b) and (c). Thus, the overall probability of drawing a gold coin in the second draw is
494: 83:
A coin withdrawn at random from the three boxes happens to be a gold coin. If you now examine the *other* coin in that box, what is the probability it will also be a gold coin?
86:
A veridical paradox is a paradox whose correct solution seems to be counterintuitive. It may seem intuitive that the probability that the remaining coin is gold should be
238:
The problem can be reframed by describing the boxes as each having one drawer on each of two sides. Each drawer contains a coin. One box has a gold coin on each side (
153:
This simple but counterintuitive puzzle is used as a standard example in teaching probability theory. The solution illustrates some basic principles, including the
1140: 322:
The flaw is in the last step. While those two cases were originally equally likely, the fact that you are certain to find a gold coin if you had chosen the
250:). A box is chosen at random, a random drawer is opened, and a gold coin is found inside it. What is the chance of the coin on the other side being gold? 391: 31: 1169: 1127: 62: 1174: 1052: 1028: 1018: 964:
In a survey of 53 Psychology freshmen taking an introductory probability course, 35 incorrectly responded
1023: 931:
The three remaining possibilities are equally likely, so the probability that the drawer is from box
1008: 330:
box, means they are no longer equally likely given that you have found a gold coin. Specifically:
1102: 1013: 53: 1123: 1094: 154: 1122:, Lawrence Erlbaum. Ch. 5, "Some instructive problems: Three cards", pp. 157–160. 1086: 1070: 57: 17: 1153: 497: 296:
The two remaining possibilities are equally likely. So the probability that the box is
1163: 1090: 1106: 956:
condition is applied correctly by the second solution method, but not by the first.
37: 41:
The paradox starts with three boxes, the contents of which are initially unknown
489:{\displaystyle \left(\mathrm {i.e.,P(GG)=P(SS)=P(GS)} ={\frac {1}{3}}\right)} 1074: 1098: 246:), and the other a gold coin on one side and a silver coin on the other ( 326:
box, but are only 50% sure of finding a gold coin if you had chosen the
49: 165: 36: 253:
The following faulty reasoning appears to give a probability of
1120:
Cognition and Chance: The psychology of probabilistic reasoning
1077:(1982). "Some teasers concerning conditional probabilities". 275:
Originally, all three boxes were equally likely to be chosen.
898:
Originally, all six coins were equally likely to be chosen.
1154:
Estimating the Probability with Random Boxes and Names
513: 394: 134:
were correct, it would result in a contradiction, so
500:the conditional probability that the chosen box is 79:
a box containing one gold coin and one silver coin.
1004:Other veridical paradoxes of probability include: 867: 488: 8: 30:For other paradoxes by Joseph Bertrand, see 504:, given we have observed a gold coin, is: 855: 839: 821: 798: 781: 723: 665: 608: 560: 514: 512: 471: 400: 393: 164: 1141:Wason, Monty Hall, and Adverse Defaults 1044: 980:; only 3 students correctly responded 901:The chosen coin cannot be from drawer 300:, and the other coin is also gold, is 7: 242:), one a silver coin on each side ( 32:Bertrand's paradox (disambiguation) 772: 769: 763: 760: 757: 754: 748: 745: 742: 736: 714: 711: 705: 702: 699: 696: 690: 687: 684: 678: 656: 653: 647: 644: 641: 638: 632: 629: 626: 620: 599: 596: 590: 587: 584: 581: 575: 572: 569: 563: 551: 548: 545: 542: 536: 533: 530: 524: 521: 515: 461: 458: 452: 443: 440: 434: 425: 422: 416: 407: 401: 102:, but the probability is actually 76:a box containing two silver coins, 25: 894:can also be obtained as follows: 73:a box containing two gold coins, 909:, or from either drawer of box 347:would produce a gold coin is 0. 340:would produce a gold coin is 1. 775: 739: 717: 681: 659: 623: 602: 566: 554: 518: 464: 455: 446: 437: 428: 419: 1: 354:would produce a gold coin is 278:The chosen box cannot be box 1170:Probability theory paradoxes 1091:10.1016/0010-0277(82)90021-X 1118:Nickerson, Raymond (2004). 1191: 924:, or either drawer of box 118:. Bertrand showed that if 29: 916:So it must come from the 18:Three cards and a top hat 1053:"Bertrand's box paradox" 69:There are three boxes: 56:. It was first posed by 1029:Sleeping Beauty problem 1019:Three Prisoners problem 63:Calcul des ProbabilitĂ©s 878:The correct answer of 869: 490: 235: 46:Bertrand's box paradox 42: 1134:Paradoxes from A to Z 1024:Two envelopes problem 870: 491: 350:The probability that 343:The probability that 336:The probability that 168: 40: 1175:Probability problems 511: 392: 27:Mathematical paradox 1009:Boy or Girl paradox 388:are equally likely 150:cannot be correct. 1014:Monty Hall problem 865: 486: 285:So it must be box 236: 54:probability theory 43: 1139:Howard Margolis, 960:Experimental data 863: 850: 847: 816: 815: 807: 792: 789: 753: 731: 695: 673: 637: 616: 580: 541: 479: 155:Kolmogorov axioms 60:in his 1889 work 50:veridical paradox 16:(Redirected from 1182: 1111: 1110: 1071:Bar-Hillel, Maya 1067: 1061: 1060: 1057:Oxford Reference 1049: 1000:Related problems 995: 993: 992: 989: 986: 979: 977: 976: 973: 970: 950: 948: 947: 944: 941: 893: 891: 890: 887: 884: 874: 872: 871: 866: 864: 856: 851: 849: 848: 840: 822: 817: 808: 800: 799: 794: 793: 791: 790: 782: 751: 732: 724: 693: 674: 666: 635: 618: 617: 609: 578: 561: 539: 496:. Therefore, by 495: 493: 492: 487: 485: 481: 480: 472: 467: 369: 367: 366: 363: 360: 315: 313: 312: 309: 306: 268: 266: 265: 262: 259: 233: 231: 230: 227: 224: 217: 215: 214: 211: 208: 201: 199: 198: 195: 192: 185: 183: 182: 179: 176: 149: 147: 146: 143: 140: 133: 131: 130: 127: 124: 117: 115: 114: 111: 108: 101: 99: 98: 95: 92: 21: 1190: 1189: 1185: 1184: 1183: 1181: 1180: 1179: 1160: 1159: 1150: 1132:Michael Clark, 1115: 1114: 1069: 1068: 1064: 1051: 1050: 1046: 1041: 1002: 990: 987: 984: 983: 981: 974: 971: 968: 967: 965: 962: 945: 942: 939: 938: 936: 888: 885: 882: 881: 879: 826: 619: 562: 509: 508: 399: 395: 390: 389: 364: 361: 358: 357: 355: 310: 307: 304: 303: 301: 263: 260: 257: 256: 254: 228: 225: 222: 221: 219: 212: 209: 206: 205: 203: 196: 193: 190: 189: 187: 180: 177: 174: 173: 171: 163: 144: 141: 138: 137: 135: 128: 125: 122: 121: 119: 112: 109: 106: 105: 103: 96: 93: 90: 89: 87: 58:Joseph Bertrand 35: 28: 23: 22: 15: 12: 11: 5: 1188: 1186: 1178: 1177: 1172: 1162: 1161: 1158: 1157: 1156:, a simulation 1149: 1148:External links 1146: 1145: 1144: 1137: 1130: 1113: 1112: 1062: 1043: 1042: 1040: 1037: 1032: 1031: 1026: 1021: 1016: 1011: 1001: 998: 961: 958: 953: 952: 929: 920:drawer of box 914: 899: 876: 875: 862: 859: 854: 846: 843: 838: 835: 832: 829: 825: 820: 814: 811: 806: 803: 797: 788: 785: 780: 777: 774: 771: 768: 765: 762: 759: 756: 750: 747: 744: 741: 738: 735: 730: 727: 722: 719: 716: 713: 710: 707: 704: 701: 698: 692: 689: 686: 683: 680: 677: 672: 669: 664: 661: 658: 655: 652: 649: 646: 643: 640: 634: 631: 628: 625: 622: 615: 612: 607: 604: 601: 598: 595: 592: 589: 586: 583: 577: 574: 571: 568: 565: 559: 556: 553: 550: 547: 544: 538: 535: 532: 529: 526: 523: 520: 517: 484: 478: 475: 470: 466: 463: 460: 457: 454: 451: 448: 445: 442: 439: 436: 433: 430: 427: 424: 421: 418: 415: 412: 409: 406: 403: 398: 374: 373: 372: 371: 348: 341: 320: 319: 318: 317: 294: 283: 276: 162: 159: 81: 80: 77: 74: 52:in elementary 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1187: 1176: 1173: 1171: 1168: 1167: 1165: 1155: 1152: 1151: 1147: 1142: 1138: 1136:, p. 16; 1135: 1131: 1129: 1128:0-8058-4898-3 1125: 1121: 1117: 1116: 1108: 1104: 1100: 1096: 1092: 1088: 1085:(2): 109–22. 1084: 1080: 1076: 1072: 1066: 1063: 1058: 1054: 1048: 1045: 1038: 1036: 1030: 1027: 1025: 1022: 1020: 1017: 1015: 1012: 1010: 1007: 1006: 1005: 999: 997: 959: 957: 934: 930: 927: 923: 919: 915: 912: 908: 904: 900: 897: 896: 895: 860: 857: 852: 844: 841: 836: 833: 830: 827: 823: 818: 812: 809: 804: 801: 795: 786: 783: 778: 766: 733: 728: 725: 720: 708: 675: 670: 667: 662: 650: 613: 610: 605: 593: 557: 527: 507: 506: 505: 503: 499: 482: 476: 473: 468: 449: 431: 413: 410: 404: 396: 387: 383: 379: 353: 349: 346: 342: 339: 335: 334: 333: 332: 331: 329: 325: 299: 295: 292: 288: 284: 281: 277: 274: 273: 272: 271: 270: 251: 249: 245: 241: 167: 160: 158: 156: 151: 84: 78: 75: 72: 71: 70: 67: 65: 64: 59: 55: 51: 47: 39: 33: 19: 1133: 1119: 1082: 1078: 1065: 1056: 1047: 1033: 1003: 963: 954: 932: 925: 921: 917: 910: 906: 902: 877: 501: 385: 381: 377: 375: 351: 344: 337: 327: 323: 321: 297: 290: 286: 279: 252: 247: 243: 239: 237: 152: 85: 82: 68: 61: 45: 44: 498:Bayes' rule 1164:Categories 1075:Falk, Ruma 1039:References 376:Initially 1079:Cognition 819:× 779:× 767:∣ 721:× 709:∣ 663:× 651:∣ 606:× 594:∣ 528:∣ 1107:44509163 1035:chosen. 161:Solution 1099:7198956 994:⁠ 982:⁠ 978:⁠ 966:⁠ 949:⁠ 937:⁠ 905:of box 892:⁠ 880:⁠ 368:⁠ 356:⁠ 314:⁠ 302:⁠ 267:⁠ 255:⁠ 232:⁠ 220:⁠ 216:⁠ 204:⁠ 200:⁠ 188:⁠ 184:⁠ 172:⁠ 148:⁠ 136:⁠ 132:⁠ 120:⁠ 116:⁠ 104:⁠ 100:⁠ 88:⁠ 1126:  1105:  1097:  752:  694:  636:  579:  540:  1103:S2CID 48:is a 1124:ISBN 1095:PMID 384:and 1087:doi 935:is 289:or 1166:: 1101:. 1093:. 1083:11 1081:. 1073:; 1055:. 996:. 933:GG 926:GG 922:GS 911:SS 907:GS 502:GG 386:GS 382:SS 380:, 378:GG 352:GS 345:SS 338:GG 328:GS 324:GG 298:GG 291:GS 287:GG 280:SS 269:: 248:GS 244:SS 240:GG 218:= 202:+ 186:+ 157:. 66:. 1143:. 1109:. 1089:: 1059:. 991:3 988:/ 985:2 975:2 972:/ 969:1 951:. 946:3 943:/ 940:2 928:. 918:G 913:. 903:S 889:3 886:/ 883:2 861:3 858:2 853:= 845:2 842:1 837:+ 834:0 831:+ 828:1 824:1 813:3 810:1 805:3 802:1 796:= 787:3 784:1 776:) 773:S 770:G 764:d 761:l 758:o 755:g 749:e 746:e 743:s 740:( 737:P 734:+ 729:3 726:1 718:) 715:S 712:S 706:d 703:l 700:o 697:g 691:e 688:e 685:s 682:( 679:P 676:+ 671:3 668:1 660:) 657:G 654:G 648:d 645:l 642:o 639:g 633:e 630:e 627:s 624:( 621:P 614:3 611:1 603:) 600:G 597:G 591:d 588:l 585:o 582:g 576:e 573:e 570:s 567:( 564:P 558:= 555:) 552:d 549:l 546:o 543:g 537:e 534:e 531:s 525:G 522:G 519:( 516:P 483:) 477:3 474:1 469:= 465:) 462:S 459:G 456:( 453:P 450:= 447:) 444:S 441:S 438:( 435:P 432:= 429:) 426:G 423:G 420:( 417:P 414:, 411:. 408:e 405:. 402:i 397:( 370:. 365:2 362:/ 359:1 316:. 311:2 308:/ 305:1 293:. 282:. 264:2 261:/ 258:1 234:. 229:3 226:/ 223:2 213:3 210:/ 207:1 197:3 194:/ 191:1 181:3 178:/ 175:0 145:2 142:/ 139:1 129:2 126:/ 123:1 113:3 110:/ 107:2 97:2 94:/ 91:1 34:. 20:)

Index

Three cards and a top hat
Bertrand's paradox (disambiguation)

veridical paradox
probability theory
Joseph Bertrand
Calcul des Probabilités
Kolmogorov axioms

Bayes' rule
Boy or Girl paradox
Monty Hall problem
Three Prisoners problem
Two envelopes problem
Sleeping Beauty problem
"Bertrand's box paradox"
Bar-Hillel, Maya
Falk, Ruma
doi
10.1016/0010-0277(82)90021-X
PMID
7198956
S2CID
44509163
ISBN
0-8058-4898-3
Wason, Monty Hall, and Adverse Defaults
Estimating the Probability with Random Boxes and Names
Categories
Probability theory paradoxes

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑