Knowledge (XXG)

Ligand cone angle

Source 📝

31: 502:
The Tolman cone angle method assumes empirical bond data and defines the perimeter as the maximum possible circumscription of an idealized free-spinning substituent. The metal-ligand bond length in the Tolman model was determined empirically from crystal structures of tetrahedral nickel complexes. In
678:
Manz, T. A.; Phomphrai, K.; Medvedev, G.; Krishnamurthy, B. B.; Sharma, S.; Haq, J.; Novstrup, K. A.; Thomson, K. T.; Delgass, W. N.; Caruthers, J. M.; Abu-Omar, M. M. (2007). "Structure−Activity Correlation in Titanium Single-Site Olefin Polymerization Catalysts Containing Mixed
901:
Newman-Stonebraker, Samuel H.; Smith, Sleight R.; Borowski, Julia E.; Peters, Ellyn; Gensch, Tobias; Johnson, Heather C.; Sigman, Matthew S.; Doyle, Abigail G. (2021). "Univariate classification of phosphine ligation state and reactivity in cross-coupling catalysis".
534:
of a metal center. Recent research has found that other descriptors—such as percent buried volume—are more accurate than cone angle at capturing the relevant steric effects of the phosphine ligand(s) when bound to the metal center.
492: 148:, assuming a bite angle of 74°, 85°, and 90° for diphosphines with methylene, ethylene, and propylene backbones, respectively. The Manz cone angle is often easier to compute than the Tolman cone angle: 98:. But the approach has been refined to include less symmetrical ligands of the type PRR′R″ as well as diphosphines. In such asymmetric cases, the substituent angles' half angles, 503:
contrast, the solid-angle concept derives both bond length and the perimeter from empirical solid state crystal structures. There are advantages to each system.
619:
Tolman, C. A.; Seidel, W. C.; Gosser, L. W. (1974-01-01). "Formation of three-coordinate nickel(0) complexes by phosphorus ligand dissociation from NiL
86:. Tolman originally developed the method for phosphine ligands in nickel complexes, determining them from measurements of accurate physical models. 437: 770: 969: 591:
Tolman, Chadwick A. (1970-05-01). "Phosphorus ligand exchange equilibriums on zerovalent nickel. Dominant role for steric effects".
267: 247: 257: 212: 974: 874: 741:
Niksch, Tobias; Görls, Helmar; Weigand, Wolfgang (2009). "The Extension of the Solid-Angle Concept to Bidentate Ligands".
959: 550: 522:
because the size of the ligand affects the reactivity of the attached metal center. In an example, the selectivity of
650:
Tolman, C. A. (1977). "Steric Effects of Phosphorus Ligands in Organometallic Chemistry and Homogeneous Catalysis".
872:
Evans, D.; Osborn, J. A.; Wilkinson, G. (1968). "Hydroformylation of Alkenes by Use of Rhodium Complex Catalyst".
839:"Analytical Algorithms for Ligand Cone Angles Calculations. Application to Triphenylphosphine Palladium Complexes" 964: 714:
Immirzi, A.; Musco, A. (1977). "A method to measure the size of phosphorus ligands in coordination complexes".
71: 506:
If the geometry of a ligand is known, either through crystallography or computations, an exact cone angle (
382: 327: 182: 39: 843: 768:
Bilbrey, Jenna A.; Kazez, Arianna H.; Locklin, J.; Allen, Wesley D. (2013). "Exact ligand cone angles".
519: 911: 67: 55: 74:
are commonly classified using this parameter, but the method can be applied to any ligand. The term
531: 195: 935: 813: 795: 306: 230: 79: 927: 787: 696: 593: 277: 34:
Ligand cone angle shows how much space is taken up by a ligand coordinated to a metal center.
919: 883: 852: 779: 750: 723: 688: 660: 632: 601: 523: 510:) can be calculated. No assumptions about the geometry are made, unlike the Tolman method. 915: 544: 527: 727: 953: 939: 94:
The concept of cone angle is most easily visualized with symmetrical ligands, e.g. PR
799: 17: 59: 47: 857: 838: 652: 145: 526:
catalysts is strongly influenced by the size of the coligands. Despite being
923: 169: 153: 931: 791: 754: 700: 887: 664: 636: 605: 487:{\displaystyle \theta ={\frac {2}{3}}\sum _{i}{\frac {\theta _{i}}{2}}} 408: 70:
of the ligand atoms at the perimeter of the base of the cone. Tertiary
783: 692: 83: 51: 530:, some phosphines are large enough to occupy more than half of the 30: 29: 63: 27:
Measure of the steric bulk of a ligand in a coordination complex
119:, are averaged and then doubled to find the total cone angle, 518:
The concept of cone angle is of practical importance in
440: 144:
of the backbone is approximated as half the chelate
486: 586: 8: 584: 582: 580: 578: 576: 574: 572: 570: 568: 566: 150: 856: 473: 467: 461: 447: 439: 62:formed with the metal at the vertex of a 562: 679:Cyclopentadienyl/Aryloxide Ligation". 7: 123:. In the case of diphosphines, the 771:Journal of Computational Chemistry 25: 875:Journal of the Chemical Society 66:and the outermost edge of the 1: 728:10.1016/S0020-1693(00)95635-4 551:Tolman electronic parameter 547:(versus electronic effects) 991: 858:10.1016/j.crci.2015.04.004 837:Petitjean, Michel (2015). 818:aarontools.readthedocs.io 970:Organometallic chemistry 82:, a research chemist at 78:was first introduced by 46:(θ) is a measure of the 924:10.1126/science.abj4213 58:. It is defined as the 975:Coordination chemistry 755:10.1002/ejic.200900825 488: 152:Cone angles of common 54:in a transition metal 40:coordination chemistry 35: 844:Comptes Rendus Chimie 520:homogeneous catalysis 489: 68:van der Waals spheres 33: 888:10.1039/J19680003133 438: 56:coordination complex 960:Tertiary phosphines 916:2021Sci...374..301N 743:Eur. J. Inorg. Chem 665:10.1021/cr60307a002 637:10.1021/ja00808a009 606:10.1021/ja00713a007 532:coordination sphere 157: 484: 466: 151: 80:Chadwick A. Tolman 36: 910:(6565): 301–308. 882:(21): 3133–3142. 784:10.1002/jcc.23217 778:(14): 1189–1197. 716:Inorg. Chim. Acta 693:10.1021/ja0640849 687:(13): 3776–3777. 600:(10): 2956–2965. 594:J. Am. Chem. Soc. 482: 457: 455: 432: 431: 72:phosphine ligands 44:ligand cone angle 18:Tolman cone angle 16:(Redirected from 982: 944: 943: 898: 892: 891: 869: 863: 862: 860: 834: 828: 827: 825: 824: 810: 804: 803: 765: 759: 758: 738: 732: 731: 711: 705: 704: 681:J. Am. Chem. Soc 675: 669: 668: 647: 641: 640: 625:J. Am. Chem. Soc 616: 610: 609: 588: 524:hydroformylation 493: 491: 490: 485: 483: 478: 477: 468: 465: 456: 448: 158: 143: 141: 140: 137: 134: 118: 116: 115: 112: 109: 90:Asymmetric cases 21: 990: 989: 985: 984: 983: 981: 980: 979: 965:Stereochemistry 950: 949: 948: 947: 900: 899: 895: 871: 870: 866: 836: 835: 831: 822: 820: 812: 811: 807: 767: 766: 762: 740: 739: 735: 713: 712: 708: 677: 676: 672: 649: 648: 644: 622: 618: 617: 613: 590: 589: 564: 559: 541: 516: 500: 469: 436: 435: 425: 420: 416: 412: 398: 394: 390: 386: 374: 370: 366: 355: 339: 335: 331: 318: 314: 310: 289: 285: 281: 238: 234: 203: 199: 186: 173: 138: 135: 132: 127: 126: 124: 113: 110: 107: 102: 101: 99: 97: 92: 28: 23: 22: 15: 12: 11: 5: 988: 986: 978: 977: 972: 967: 962: 952: 951: 946: 945: 893: 864: 851:(6): 678–684. 829: 805: 760: 733: 706: 670: 642: 620: 611: 561: 560: 558: 555: 554: 553: 548: 545:Steric effects 540: 537: 515: 512: 499: 496: 495: 494: 481: 476: 472: 464: 460: 454: 451: 446: 443: 430: 429: 426: 423: 418: 414: 410: 404: 403: 400: 396: 392: 388: 384: 379: 378: 375: 372: 368: 364: 360: 359: 356: 353: 345: 344: 341: 337: 333: 329: 324: 323: 320: 316: 312: 308: 303: 302: 299: 295: 294: 291: 287: 283: 279: 274: 273: 270: 264: 263: 260: 254: 253: 250: 244: 243: 240: 236: 232: 227: 226: 223: 219: 218: 215: 209: 208: 205: 201: 197: 192: 191: 188: 184: 179: 178: 175: 171: 166: 165: 162: 130: 105: 95: 91: 88: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 987: 976: 973: 971: 968: 966: 963: 961: 958: 957: 955: 941: 937: 933: 929: 925: 921: 917: 913: 909: 905: 897: 894: 889: 885: 881: 877: 876: 868: 865: 859: 854: 850: 846: 845: 840: 833: 830: 819: 815: 809: 806: 801: 797: 793: 789: 785: 781: 777: 773: 772: 764: 761: 756: 752: 749:(1): 95–105. 748: 744: 737: 734: 729: 725: 721: 717: 710: 707: 702: 698: 694: 690: 686: 682: 674: 671: 666: 662: 659:(3): 313–48. 658: 655: 654: 646: 643: 638: 634: 630: 626: 615: 612: 607: 603: 599: 596: 595: 587: 585: 583: 581: 579: 577: 575: 573: 571: 569: 567: 563: 556: 552: 549: 546: 543: 542: 538: 536: 533: 529: 525: 521: 513: 511: 509: 504: 497: 479: 474: 470: 462: 458: 452: 449: 444: 441: 434: 433: 427: 421: 406: 405: 401: 399: 381: 380: 376: 362: 361: 357: 351: 347: 346: 342: 340: 326: 325: 321: 319: 305: 304: 300: 297: 296: 292: 290: 276: 275: 271: 269: 266: 265: 261: 259: 256: 255: 251: 249: 246: 245: 241: 239: 229: 228: 224: 221: 220: 216: 214: 211: 210: 206: 204: 194: 193: 189: 187: 181: 180: 176: 174: 168: 167: 163: 160: 159: 155: 149: 147: 133: 122: 108: 89: 87: 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 32: 19: 907: 903: 896: 879: 873: 867: 848: 842: 832: 821:. Retrieved 817: 814:"AaronTools" 808: 775: 769: 763: 746: 742: 736: 719: 715: 709: 684: 680: 673: 656: 651: 645: 631:(1): 53–60. 628: 624: 614: 597: 592: 517: 507: 505: 501: 349: 128: 120: 103: 93: 75: 43: 37: 722:: L41–L42. 514:Application 60:solid angle 48:steric bulk 954:Categories 823:2023-05-30 653:Chem. Rev. 557:References 528:monovalent 498:Variations 164:Angle (°) 146:bite angle 76:cone angle 940:238991361 471:θ 459:∑ 442:θ 328:P(cyclo-C 154:phosphine 932:34648340 800:23864226 792:23408559 701:17348648 539:See also 407:P(2,4,6- 156:ligands 912:Bibcode 904:Science 142:⁠ 125:⁠ 117:⁠ 100:⁠ 938:  930:  798:  790:  699:  161:Ligand 84:DuPont 52:ligand 42:, the 936:S2CID 796:S2CID 391:-2-CH 196:P(OCH 50:of a 928:PMID 788:PMID 747:2010 697:PMID 428:212 402:194 377:184 358:182 352:-Bu) 343:179 322:145 301:142 298:dcpe 293:132 278:P(CH 272:127 268:dppp 262:125 258:dppe 252:121 248:dppm 242:118 231:P(CH 225:115 222:depe 217:107 213:dmpe 207:107 190:104 64:cone 920:doi 908:374 884:doi 853:doi 780:doi 751:doi 724:doi 689:doi 685:129 661:doi 633:doi 623:". 602:doi 383:P(C 363:P(C 307:P(C 177:87 38:In 956:: 934:. 926:. 918:. 906:. 880:33 878:. 849:18 847:. 841:. 816:. 794:. 786:. 776:34 774:. 745:. 720:25 718:. 695:. 683:. 657:77 629:96 627:. 598:92 565:^ 409:Me 348:P( 334:11 282:CH 183:PF 170:PH 942:. 922:: 914:: 890:. 886:: 861:. 855:: 826:. 802:. 782:: 757:. 753:: 730:. 726:: 703:. 691:: 667:. 663:: 639:. 635:: 621:4 608:. 604:: 508:θ 480:2 475:i 463:i 453:3 450:2 445:= 424:3 422:) 419:2 417:H 415:6 413:C 411:3 397:3 395:) 393:3 389:4 387:H 385:6 373:3 371:) 369:5 367:F 365:6 354:3 350:t 338:3 336:) 332:H 330:6 317:3 315:) 313:5 311:H 309:6 288:3 286:) 284:3 280:2 237:3 235:) 233:3 202:3 200:) 198:3 185:3 172:3 139:2 136:/ 131:i 129:θ 121:θ 114:2 111:/ 106:i 104:θ 96:3 20:)

Index

Tolman cone angle

coordination chemistry
steric bulk
ligand
coordination complex
solid angle
cone
van der Waals spheres
phosphine ligands
Chadwick A. Tolman
DuPont
bite angle
phosphine
PH3
PF3
P(OCH3)3
dmpe
P(CH3)3
dppm
dppe
dppp
P(CH2CH3)3
P(C6H5)3
P(cyclo-C6H11)3
P(C6H4-2-CH3)3
Me3C6H2
homogeneous catalysis
hydroformylation
monovalent

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.