Knowledge (XXG)

Toral subalgebra

Source 📝

233: 752: 886: 793: 696: 615: 544: 503: 574: 471: 387: 351: 327: 297: 273: 171: 147: 119: 92: 912: 845: 819: 932: 635: 176: 655: 235:
is a toral subalgebra. A maximal toral Lie subalgebra of a finite-dimensional semisimple Lie algebra, or more generally of a finite-dimensional
1004: 970: 1022: 701: 850: 757: 660: 579: 508: 59: 476: 549: 446: 95: 354: 236: 47: 368: 332: 308: 278: 254: 152: 128: 122: 100: 73: 329:
over an algebraically closed field of a characteristic zero, a toral subalgebra exists. In fact, if
50:
over an algebraically closed field). Equivalently, a Lie algebra is toral if it contains no nonzero
55: 43: 891: 824: 798: 358: 302:
For more general Lie algebras, a Cartan subalgebra may differ from a maximal toral subalgebra.
1000: 966: 917: 620: 240: 228:{\displaystyle \operatorname {ad} ({\mathfrak {h}})\subset {\mathfrak {gl}}({\mathfrak {g}})} 244: 980: 996: 976: 962: 640: 39: 1016: 989: 406: 954: 362: 248: 961:, Graduate Texts in Mathematics, vol. 126 (2nd ed.), Berlin, New York: 243:
and vice versa. In particular, a maximal toral Lie subalgebra in this setting is
17: 31: 51: 54:
elements. Over an algebraically closed field, every toral Lie algebra is
747:{\displaystyle -\lambda y=\operatorname {ad} _{\mathfrak {h}}(y)x} 239:, over an algebraically closed field of characteristic 0 is a 505:
is diagonalizable, it is enough to show the eigenvalues of
365:
is identically zero, contradicting semisimplicity. Hence,
42:
of a general linear Lie algebra all of whose elements are
991:
Introduction to Lie Algebras and Representation Theory
881:{\displaystyle \operatorname {ad} _{\mathfrak {h}}(y)} 788:{\displaystyle \operatorname {ad} _{\mathfrak {h}}(y)} 691:{\displaystyle \operatorname {ad} _{\mathfrak {h}}(y)} 610:{\displaystyle \operatorname {ad} _{\mathfrak {h}}(x)} 539:{\displaystyle \operatorname {ad} _{\mathfrak {h}}(x)} 920: 894: 853: 827: 801: 760: 704: 663: 643: 623: 582: 552: 511: 479: 449: 371: 335: 311: 281: 257: 179: 155: 131: 103: 76: 988: 926: 906: 880: 839: 813: 787: 746: 690: 649: 629: 609: 568: 538: 497: 465: 381: 345: 321: 291: 267: 227: 165: 141: 113: 86: 27:Lie algebra all of which elements are semisimple 305:In a finite-dimensional semisimple Lie algebra 888:with eigenvalue zero, a contradiction. Thus, 8: 389:must have a nonzero semisimple element, say 754:is a linear combination of eigenvectors of 247:, coincides with its centralizer, and the 942: 919: 893: 859: 858: 852: 826: 800: 766: 765: 759: 722: 721: 703: 669: 668: 662: 642: 622: 588: 587: 581: 560: 559: 551: 517: 516: 510: 478: 457: 456: 448: 431: 373: 372: 370: 337: 336: 334: 313: 312: 310: 283: 282: 280: 259: 258: 256: 216: 215: 203: 202: 190: 189: 178: 157: 156: 154: 133: 132: 130: 105: 104: 102: 78: 77: 75: 353:has only nilpotent elements, then it is 66:In semisimple and reductive Lie algebras 419: 795:with nonzero eigenvalues. But, unless 498:{\displaystyle \operatorname {ad} (x)} 427: 425: 423: 7: 569:{\displaystyle y\in {\mathfrak {h}}} 466:{\displaystyle x\in {\mathfrak {h}}} 860: 767: 723: 670: 589: 561: 518: 458: 374: 338: 314: 284: 260: 217: 207: 204: 191: 158: 134: 106: 79: 25: 382:{\displaystyle {\mathfrak {g}}} 346:{\displaystyle {\mathfrak {g}}} 322:{\displaystyle {\mathfrak {g}}} 292:{\displaystyle {\mathfrak {h}}} 268:{\displaystyle {\mathfrak {g}}} 166:{\displaystyle {\mathfrak {g}}} 142:{\displaystyle {\mathfrak {h}}} 114:{\displaystyle {\mathfrak {g}}} 87:{\displaystyle {\mathfrak {h}}} 875: 869: 782: 776: 738: 732: 685: 679: 604: 598: 533: 527: 492: 486: 222: 212: 196: 186: 1: 409:, in the theory of Lie groups 60:simultaneously diagonalizable 987:Humphreys, James E. (1972), 657:is a sum of eigenvectors of 443:Proof (from Humphreys): Let 397:is then a toral subalgebra. 945:, Ch. IV, § 15.3. Corollary 1039: 1023:Properties of Lie algebras 907:{\displaystyle \lambda =0} 840:{\displaystyle -\lambda y} 814:{\displaystyle \lambda =0} 58:; thus, its elements are 927:{\displaystyle \square } 630:{\displaystyle \lambda } 959:Linear algebraic groups 121:is called toral if the 928: 908: 882: 841: 815: 789: 748: 692: 651: 631: 611: 570: 540: 499: 467: 383: 347: 323: 293: 269: 229: 167: 143: 123:adjoint representation 115: 96:semisimple Lie algebra 88: 929: 909: 883: 847:is an eigenvector of 842: 816: 790: 749: 693: 652: 632: 612: 576:be an eigenvector of 571: 541: 500: 468: 393:; the linear span of 384: 348: 324: 294: 270: 237:reductive Lie algebra 230: 168: 144: 116: 89: 995:, Berlin, New York: 918: 892: 851: 825: 799: 758: 702: 661: 641: 621: 580: 550: 509: 477: 447: 369: 333: 309: 279: 255: 177: 153: 129: 101: 74: 924: 904: 878: 837: 811: 785: 744: 688: 647: 627: 607: 566: 546:are all zero. Let 536: 495: 463: 379: 343: 319: 299:is nondegenerate. 289: 265: 225: 163: 139: 111: 84: 1006:978-0-387-90053-7 972:978-0-387-97370-8 650:{\displaystyle x} 241:Cartan subalgebra 18:Toral Lie algebra 16:(Redirected from 1030: 1009: 994: 983: 946: 940: 934: 933: 931: 930: 925: 913: 911: 910: 905: 887: 885: 884: 879: 865: 864: 863: 846: 844: 843: 838: 820: 818: 817: 812: 794: 792: 791: 786: 772: 771: 770: 753: 751: 750: 745: 728: 727: 726: 697: 695: 694: 689: 675: 674: 673: 656: 654: 653: 648: 636: 634: 633: 628: 617:with eigenvalue 616: 614: 613: 608: 594: 593: 592: 575: 573: 572: 567: 565: 564: 545: 543: 542: 537: 523: 522: 521: 504: 502: 501: 496: 472: 470: 469: 464: 462: 461: 441: 435: 434:, Ch. II, § 8.1. 429: 388: 386: 385: 380: 378: 377: 361:), but then its 352: 350: 349: 344: 342: 341: 328: 326: 325: 320: 318: 317: 298: 296: 295: 290: 288: 287: 274: 272: 271: 266: 264: 263: 245:self-normalizing 234: 232: 231: 226: 221: 220: 211: 210: 195: 194: 172: 170: 169: 164: 162: 161: 148: 146: 145: 140: 138: 137: 120: 118: 117: 112: 110: 109: 93: 91: 90: 85: 83: 82: 36:toral subalgebra 21: 1038: 1037: 1033: 1032: 1031: 1029: 1028: 1027: 1013: 1012: 1007: 997:Springer-Verlag 986: 973: 963:Springer-Verlag 953: 950: 949: 941: 937: 916: 915: 890: 889: 854: 849: 848: 823: 822: 821:, we have that 797: 796: 761: 756: 755: 717: 700: 699: 664: 659: 658: 639: 638: 619: 618: 583: 578: 577: 548: 547: 512: 507: 506: 475: 474: 445: 444: 442: 438: 430: 421: 416: 403: 367: 366: 359:Engel's theorem 331: 330: 307: 306: 277: 276: 253: 252: 175: 174: 151: 150: 127: 126: 99: 98: 72: 71: 68: 28: 23: 22: 15: 12: 11: 5: 1036: 1034: 1026: 1025: 1015: 1014: 1011: 1010: 1005: 984: 971: 948: 947: 943:Humphreys 1972 935: 923: 903: 900: 897: 877: 874: 871: 868: 862: 857: 836: 833: 830: 810: 807: 804: 784: 781: 778: 775: 769: 764: 743: 740: 737: 734: 731: 725: 720: 716: 713: 710: 707: 687: 684: 681: 678: 672: 667: 646: 626: 606: 603: 600: 597: 591: 586: 563: 558: 555: 535: 532: 529: 526: 520: 515: 494: 491: 488: 485: 482: 460: 455: 452: 436: 432:Humphreys 1972 418: 417: 415: 412: 411: 410: 402: 399: 376: 340: 316: 286: 275:restricted to 262: 224: 219: 214: 209: 206: 201: 198: 193: 188: 185: 182: 160: 136: 108: 81: 67: 64: 48:diagonalizable 40:Lie subalgebra 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1035: 1024: 1021: 1020: 1018: 1008: 1002: 998: 993: 992: 985: 982: 978: 974: 968: 964: 960: 956: 955:Borel, Armand 952: 951: 944: 939: 936: 921: 901: 898: 895: 872: 866: 855: 834: 831: 828: 808: 805: 802: 779: 773: 762: 741: 735: 729: 718: 714: 711: 708: 705: 682: 676: 665: 644: 624: 601: 595: 584: 556: 553: 530: 524: 513: 489: 483: 480: 453: 450: 440: 437: 433: 428: 426: 424: 420: 413: 408: 407:Maximal torus 405: 404: 400: 398: 396: 392: 364: 360: 356: 303: 300: 250: 246: 242: 238: 199: 183: 180: 124: 97: 70:A subalgebra 65: 63: 61: 57: 53: 49: 45: 41: 37: 33: 19: 990: 958: 938: 439: 394: 390: 363:Killing form 304: 301: 249:Killing form 69: 35: 29: 32:mathematics 414:References 44:semisimple 922:◻ 896:λ 867:⁡ 832:λ 829:− 803:λ 774:⁡ 730:⁡ 709:λ 706:− 698:and then 677:⁡ 625:λ 596:⁡ 557:∈ 525:⁡ 484:⁡ 454:∈ 355:nilpotent 200:⊂ 184:⁡ 52:nilpotent 1017:Category 957:(1991), 473:. Since 401:See also 981:1102012 637:. Then 56:abelian 1003:  979:  969:  94:of a 38:is a 1001:ISBN 967:ISBN 46:(or 34:, a 251:of 149:on 125:of 30:In 1019:: 999:, 977:MR 975:, 965:, 914:. 856:ad 763:ad 719:ad 666:ad 585:ad 514:ad 481:ad 422:^ 181:ad 173:, 62:. 902:0 899:= 876:) 873:y 870:( 861:h 835:y 809:0 806:= 783:) 780:y 777:( 768:h 742:x 739:) 736:y 733:( 724:h 715:= 712:y 686:) 683:y 680:( 671:h 645:x 605:) 602:x 599:( 590:h 562:h 554:y 534:) 531:x 528:( 519:h 493:) 490:x 487:( 459:h 451:x 395:x 391:x 375:g 357:( 339:g 315:g 285:h 261:g 223:) 218:g 213:( 208:l 205:g 197:) 192:h 187:( 159:g 135:h 107:g 80:h 20:)

Index

Toral Lie algebra
mathematics
Lie subalgebra
semisimple
diagonalizable
nilpotent
abelian
simultaneously diagonalizable
semisimple Lie algebra
adjoint representation
reductive Lie algebra
Cartan subalgebra
self-normalizing
Killing form
nilpotent
Engel's theorem
Killing form
Maximal torus



Humphreys 1972
Humphreys 1972
Borel, Armand
Springer-Verlag
ISBN
978-0-387-97370-8
MR
1102012
Introduction to Lie Algebras and Representation Theory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.