Knowledge

Transition path sampling

Source 📝

625:
is the flux of trajectories starting before the first interface and going through the last interface. Being a rare event, the flux is very small and practically impossible to compute with a direct simulation. However, using the other interfaces between the states, one can rewrite the flux in terms of
169:
is a random perturbation consistent with system constraints, e.g. conservation of energy and linear and angular momentum. A new trajectory is then simulated from this point, both backward and forward in time until one of the states is reached. Being in a transition region, this will not take long. If
59:
Consider in general a system with two stable states A and B. The system will spend a long time in those states and occasionally jump from one to the other. There are many ways in which the transition can take place. Once a probability is assigned to each of the many pathways, one can construct a
833:
Theoretical considerations show that TIS computations are at least twice as fast as TPS, and computer experiments have shown that the TIS rate constant can converge up to 10 times faster. A reason for this is due to TIS using paths of adjustable length and on average shorter than TPS. Also, TPS
610:
The TPS rate constant calculation can be improved in a variation of the method called Transition interface sampling (TIS). In this method the transition region is divided in subregions using interfaces. The first interface defines state A and the last state B. The interfaces are not physical
43:
can generate the dynamical trajectories of all the atoms in the system. However, because of the gap in accessible time-scales between simulation and reality, even present supercomputers might require years of simulations to show an event that occurs once per millisecond without some kind of
572: 75:
Given an initial path, TPS provides some algorithms to perturb that path and create a new one. As in all Monte Carlo walks, the new path will then be accepted or rejected in order to have the correct path probability. The procedure is iterated and the ensemble is gradually sampled.
291: 56:. For example, an initially unfolded protein will vibrate for a long time in an open-string configuration before undergoing a transition and fold on itself. The aim of the method is to reproduce precisely those folding moments. 735: 383: 867:). To treat non-stationary systems in which there is time dependence in the dynamics, due either to variation of an external parameter or to evolution of the system itself, then other 777:. By making this interface close enough, the quantity can be computed with a standard simulation, as the crossing event through this interface is not a rare event any more. 27:
of rare events: physical or chemical transitions of a system from one stable state to another that occur too rarely to be observed on a computer timescale. Examples include
1142:
Bolhuis, Peter G.; Chandler, David; Dellago, Christoph; Geissler, Phillip L. (2002). "TRANSITION PATH SAMPLING: Throwing Ropes Over Rough Mountain Passes, in the Dark".
801:. These probabilities can be computed with a path sampling simulation using the TPS shooting move. A path crossing interface i is perturbed and a new path is 68:
of all transition paths. All the relevant information can then be extracted from the ensemble, such as the reaction mechanism, the transition states, and the
196: 842:), computed by summation of positive and negative terms due to recrossings. TIS instead computes the rate as an effective positive flux, the quantity 872: 1132: 978: 567:{\displaystyle k_{AB}^{TPS}(t)={\frac {d}{dt}}C(t)={\frac {\langle {\dot {h_{B}(t)}}\rangle _{AB}}{\langle h_{B}(t')\rangle _{AB}}}C(t')} 366:
for times of the order of the transition time. Hence once the function is known up to these times, the rate constant is also available.
631: 994:
Van Erp, Titus S.; Moroni, Daniele; Bolhuis, Peter G. (2003). "A novel path sampling method for the calculation of rate constants".
1251: 1266: 934:
Chandler, David (1978). "Statistical mechanics of isomerization dynamics in liquids and the transition state approximation".
1256: 780:
Remarkably, in the formula above there is no Markov assumption of independent transition probabilities. The quantities
1261: 899:; Chandler, David (1998). "Efficient transition path sampling: Application to Lennard-Jones cluster rearrangements". 578:
where the subscript AB denotes an average in the ensemble of paths that start in A and visit B at least once. Time
1047:
Berryman, Joshua T.; Schilling, Tanja (2010). "Sampling rare events in nonequilibrium and nonstationary systems".
851:
is directly computed as an average of only positive terms contributing to the interface transition probabilities.
797:
to indicate that the probabilities are all dependent on the history of the path, all the way from when it left
336: 170:
the new path still connects A to B it is accepted, otherwise it is rejected and the procedure starts again.
892: 896: 1151: 1066: 1013: 943: 908: 868: 24: 20: 1090: 1056: 1029: 1003: 864: 61: 40: 1115:
Dellago, Christoph; Bolhuis, Peter G.; Geissler, Phillip L. (2002). "Transition Path Sampling".
1167: 1163: 1128: 1082: 974: 599: 32: 1193: 1159: 1120: 1074: 1021: 951: 916: 860: 28: 1155: 1070: 1017: 947: 912: 286:{\displaystyle C(t)={\frac {\langle h_{A}(0)h_{B}(t)\rangle }{\langle h_{A}\rangle }}} 1245: 69: 1094: 1033: 64:
random walk in the path space of the transition trajectories, and thus generate the
598:') at this specific time can be computed with a combination of path sampling and 1226:
Python open source library to perform transition path sampling, Interfaced with
1211: 612: 36: 618:
The rate constant can be viewed as a flux through these interfaces. The rate
83:. Consider the case of a classical many-body system described by coordinates 1190:
Efficient sampling of rare event pathways: from simple models to nucleation
1171: 1124: 1086: 1197: 1008: 863:
calculations provided that the interfacial fluxes are time-independent (
1227: 1078: 1025: 1231: 1215: 955: 920: 826:) follows from the ratio of the number of paths that reach interface 1185: 1061: 971:
Algorithms for Chemical Computations, ACS Symposium Series No. 46
1235: 730:{\displaystyle k_{AB}=\Phi _{1,0}\prod _{i=1}^{n-1}P_{A}(i+1|i)} 830: + 1 to the total number of paths in the ensemble. 805:. If the path still starts from A and crosses interface  52:
TPS focuses on the most interesting part of the simulation,
117:
is the length of the path. For a transition from A to B, (
1223: 757:) is the probability for trajectories, coming from state 153:. One of the path times is chosen at random, the momenta 859:
TPS/TIS as normally implemented can be acceptable for
377:) can be rewritten as an average in the path ensemble 178:
In the Bennett–Chandler procedure, the rate constant k
634: 386: 199: 79:
A powerful and efficient algorithm is the so-called
91:. Molecular dynamics generates a path as a set of ( 773:is the flux through the interface closest to  761:and crossing interface i, to reach interface  729: 566: 285: 969:Bennett, C. H. (1977). Christofferson, R. (ed.). 973:. Washington, D.C.: American Chemical Society. 765: + 1. Here interface 0 defines state 582:is an arbitrary time in the plateau region of 769:and interface n defines state B. The factor Φ 8: 1212:C++ source code of an S-PRES wrapper program 1192:(Ph.D. thesis). Universiteit van Amsterdam. 626:transition probabilities between interfaces 532: 504: 490: 456: 277: 264: 259: 218: 1164:10.1146/annurev.physchem.53.082301.113146 1060: 1007: 716: 698: 682: 671: 655: 639: 633: 535: 511: 493: 467: 460: 459: 453: 423: 399: 391: 385: 271: 244: 225: 215: 198: 190:is derived from the correlation function 306:is the characteristic function of state 884: 873:stochastic-process rare-event sampling 7: 793: + 1|i) carry a subscript 611:interfaces but hypersurfaces in the 331:or 0 if not. The time-derivative C'( 323:) is either 1 if the system at time 39:. Standard simulation tools such as 1144:Annual Review of Physical Chemistry 834:relies on the correlation function 1214:, with optional parallelism using 652: 14: 1119:. Vol. 123. pp. 1–84. 1049:The Journal of Chemical Physics 996:The Journal of Chemical Physics 936:The Journal of Chemical Physics 901:The Journal of Chemical Physics 871:methods may be needed, such as 809:, is accepted. The probability 724: 717: 704: 561: 550: 528: 517: 479: 473: 447: 441: 417: 411: 256: 250: 237: 231: 209: 203: 17:Transition path sampling (TPS) 1: 606:Transition interface sampling 1117:Advances in Chemical Physics 157:are modified slightly into 1283: 335:) starts at time 0 at the 174:Rate constant computation 855:Time Dependent Processes 182:for the transition from 48:Transition path ensemble 1252:Computational chemistry 337:transition state theory 1224:http://www.pyretis.org 1125:10.1002/0471231509.ch1 731: 693: 568: 348:and reaches a plateau 287: 1267:Theoretical chemistry 1110:For a review of TPS: 732: 667: 569: 369:In the TPS framework 288: 1179:For a review of TIS 632: 384: 197: 109:) at discrete times 25:computer simulations 1257:Monte Carlo methods 1184:Moroni, D. (2005). 1156:2002ARPC...53..291B 1071:2010JChPh.133x4101B 1018:2003JChPh.118.7762V 948:1978JChPh..68.2959C 913:1998JChPh.108.9236D 410: 21:rare-event sampling 1262:Molecular dynamics 893:Dellago, Christoph 727: 564: 387: 283: 41:molecular dynamics 33:chemical reactions 1134:978-0-471-21453-3 1079:10.1063/1.3525099 1026:10.1063/1.1562614 980:978-0-8412-0371-6 897:Bolhuis, Peter G. 600:umbrella sampling 545: 486: 436: 281: 1274: 1201: 1175: 1138: 1099: 1098: 1064: 1044: 1038: 1037: 1011: 1009:cond-mat/0210614 991: 985: 984: 966: 960: 959: 956:10.1063/1.436049 942:(6): 2959–2970. 931: 925: 924: 921:10.1063/1.476378 889: 879:Cited references 736: 734: 733: 728: 720: 703: 702: 692: 681: 666: 665: 647: 646: 573: 571: 570: 565: 560: 546: 544: 543: 542: 527: 516: 515: 502: 501: 500: 488: 487: 482: 472: 471: 461: 454: 437: 435: 424: 409: 398: 292: 290: 289: 284: 282: 280: 276: 275: 262: 249: 248: 230: 229: 216: 131:) is in A, and ( 1282: 1281: 1277: 1276: 1275: 1273: 1272: 1271: 1242: 1241: 1208: 1183: 1141: 1135: 1114: 1108: 1106:More references 1103: 1102: 1046: 1045: 1041: 993: 992: 988: 981: 968: 967: 963: 933: 932: 928: 891: 890: 886: 881: 861:non-equilibrium 857: 850: 822: + 1| 817: 788: 772: 753: + 1| 748: 694: 651: 635: 630: 629: 623: 608: 553: 531: 520: 507: 503: 489: 463: 462: 455: 428: 382: 381: 365: 356: 347: 318: 305: 267: 263: 240: 221: 217: 195: 194: 181: 176: 148: 139: 130: 123: 108: 99: 50: 29:protein folding 23:method used in 12: 11: 5: 1280: 1278: 1270: 1269: 1264: 1259: 1254: 1244: 1243: 1240: 1239: 1220: 1219: 1207: 1206:External links 1204: 1203: 1202: 1198:11245/1.240856 1177: 1176: 1139: 1133: 1107: 1104: 1101: 1100: 1055:(24): 244101. 1039: 986: 979: 961: 926: 883: 882: 880: 877: 856: 853: 846: 813: 784: 770: 744: 726: 723: 719: 715: 712: 709: 706: 701: 697: 691: 688: 685: 680: 677: 674: 670: 664: 661: 658: 654: 650: 645: 642: 638: 621: 607: 604: 590:). The factor 576: 575: 563: 559: 556: 552: 549: 541: 538: 534: 530: 526: 523: 519: 514: 510: 506: 499: 496: 492: 485: 481: 478: 475: 470: 466: 458: 452: 449: 446: 443: 440: 434: 431: 427: 422: 419: 416: 413: 408: 405: 402: 397: 394: 390: 361: 352: 343: 314: 301: 295: 294: 279: 274: 270: 266: 261: 258: 255: 252: 247: 243: 239: 236: 233: 228: 224: 220: 214: 211: 208: 205: 202: 179: 175: 172: 144: 135: 128: 121: 104: 95: 70:rate constants 54:the transition 49: 46: 44:acceleration. 13: 10: 9: 6: 4: 3: 2: 1279: 1268: 1265: 1263: 1260: 1258: 1255: 1253: 1250: 1249: 1247: 1237: 1233: 1229: 1225: 1222: 1221: 1217: 1213: 1210: 1209: 1205: 1199: 1195: 1191: 1187: 1182: 1181: 1180: 1173: 1169: 1165: 1161: 1157: 1153: 1149: 1145: 1140: 1136: 1130: 1126: 1122: 1118: 1113: 1112: 1111: 1105: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1063: 1058: 1054: 1050: 1043: 1040: 1035: 1031: 1027: 1023: 1019: 1015: 1010: 1005: 1001: 997: 990: 987: 982: 976: 972: 965: 962: 957: 953: 949: 945: 941: 937: 930: 927: 922: 918: 914: 910: 906: 902: 898: 894: 888: 885: 878: 876: 874: 870: 866: 862: 854: 852: 849: 845: 841: 837: 831: 829: 825: 821: 816: 812: 808: 804: 800: 796: 792: 787: 783: 778: 776: 768: 764: 760: 756: 752: 747: 743: 738: 721: 713: 710: 707: 699: 695: 689: 686: 683: 678: 675: 672: 668: 662: 659: 656: 648: 643: 640: 636: 627: 624: 616: 614: 605: 603: 601: 597: 593: 589: 585: 581: 557: 554: 547: 539: 536: 524: 521: 512: 508: 497: 494: 483: 476: 468: 464: 450: 444: 438: 432: 429: 425: 420: 414: 406: 403: 400: 395: 392: 388: 380: 379: 378: 376: 372: 367: 364: 360: 355: 351: 346: 342: 338: 334: 330: 326: 322: 317: 313: 309: 304: 300: 272: 268: 253: 245: 241: 234: 226: 222: 212: 206: 200: 193: 192: 191: 189: 185: 173: 171: 168: 164: 161: +  160: 156: 152: 147: 143: 138: 134: 127: 120: 116: 112: 107: 103: 98: 94: 90: 86: 82: 81:shooting move 77: 73: 71: 67: 63: 57: 55: 47: 45: 42: 38: 34: 30: 26: 22: 18: 1189: 1178: 1147: 1143: 1116: 1109: 1052: 1048: 1042: 1002:(17): 7762. 999: 995: 989: 970: 964: 939: 935: 929: 907:(22): 9236. 904: 900: 887: 858: 847: 843: 839: 835: 832: 827: 823: 819: 814: 810: 806: 802: 798: 794: 790: 785: 781: 779: 774: 766: 762: 758: 754: 750: 745: 741: 739: 628: 619: 617: 609: 595: 591: 587: 583: 579: 577: 374: 370: 368: 362: 358: 353: 349: 344: 340: 339:(TST) value 332: 328: 327:is in state 324: 320: 315: 311: 307: 302: 298: 296: 187: 183: 177: 166: 162: 158: 154: 150: 145: 141: 136: 132: 125: 118: 114: 110: 105: 101: 96: 92: 88: 87:and momenta 84: 80: 78: 74: 65: 58: 53: 51: 16: 15: 1150:: 291–318. 613:phase space 62:Monte Carlo 1246:Categories 869:rare-event 865:stationary 113:in where 37:nucleation 1062:1001.2456 687:− 669:∏ 653:Φ 533:⟩ 505:⟨ 491:⟩ 484:˙ 457:⟨ 278:⟩ 265:⟨ 260:⟩ 219:⟨ 1172:11972010 1095:34154184 1087:21197970 1034:94328349 558:′ 525:′ 165:, where 149:) is in 66:ensemble 1228:GROMACS 1152:Bibcode 1067:Bibcode 1014:Bibcode 944:Bibcode 909:Bibcode 1232:LAMMPS 1216:OpenMP 1186:"DARE" 1170:  1131:  1093:  1085:  1032:  977:  740:where 310:, and 297:where 1091:S2CID 1057:arXiv 1030:S2CID 1004:arXiv 19:is a 1236:CP2K 1168:PMID 1129:ISBN 1083:PMID 975:ISBN 803:shot 35:and 1194:hdl 1160:doi 1121:doi 1075:doi 1053:133 1022:doi 1000:118 952:doi 917:doi 905:108 771:1,0 186:to 1248:: 1234:, 1230:, 1188:. 1166:. 1158:. 1148:53 1146:. 1127:. 1089:. 1081:. 1073:. 1065:. 1051:. 1028:. 1020:. 1012:. 998:. 950:. 940:68 938:. 915:. 903:. 895:; 875:. 848:AB 737:, 622:AB 615:. 602:. 580:t' 363:AB 357:≤ 354:AB 345:AB 180:AB 167:δp 163:δp 140:, 124:, 100:, 72:. 31:, 1238:. 1218:. 1200:. 1196:: 1174:. 1162:: 1154:: 1137:. 1123:: 1097:. 1077:: 1069:: 1059:: 1036:. 1024:: 1016:: 1006:: 983:. 958:. 954:: 946:: 923:. 919:: 911:: 844:k 840:t 838:( 836:C 828:i 824:i 820:i 818:( 815:A 811:P 807:i 799:A 795:A 791:i 789:( 786:A 782:P 775:A 767:A 763:i 759:A 755:i 751:i 749:( 746:A 742:P 725:) 722:i 718:| 714:1 711:+ 708:i 705:( 700:A 696:P 690:1 684:n 679:1 676:= 673:i 663:0 660:, 657:1 649:= 644:B 641:A 637:k 620:k 596:t 594:( 592:C 588:t 586:( 584:C 574:, 562:) 555:t 551:( 548:C 540:B 537:A 529:) 522:t 518:( 513:B 509:h 498:B 495:A 480:) 477:t 474:( 469:B 465:h 451:= 448:) 445:t 442:( 439:C 433:t 430:d 426:d 421:= 418:) 415:t 412:( 407:S 404:P 401:T 396:B 393:A 389:k 375:t 373:( 371:C 359:k 350:k 341:k 333:t 329:X 325:t 321:t 319:( 316:X 312:h 308:X 303:X 299:h 293:, 273:A 269:h 257:) 254:t 251:( 246:B 242:h 238:) 235:0 232:( 227:A 223:h 213:= 210:) 207:t 204:( 201:C 188:B 184:A 159:p 155:p 151:B 146:T 142:p 137:T 133:r 129:0 126:p 122:0 119:r 115:T 111:t 106:t 102:p 97:t 93:r 89:p 85:r

Index

rare-event sampling
computer simulations
protein folding
chemical reactions
nucleation
molecular dynamics
Monte Carlo
rate constants
transition state theory
umbrella sampling
phase space
non-equilibrium
stationary
rare-event
stochastic-process rare-event sampling
Dellago, Christoph
Bolhuis, Peter G.
Bibcode
1998JChPh.108.9236D
doi
10.1063/1.476378
Bibcode
1978JChPh..68.2959C
doi
10.1063/1.436049
ISBN
978-0-8412-0371-6
arXiv
cond-mat/0210614
Bibcode

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.