Knowledge (XXG)

Multigate device

Source đź“ť

946: 961:. Physical surface-potential-based formulations are derived for both intrinsic and extrinsic models with finite body doping. The surface potentials at the source and drain ends are solved analytically with poly-depletion and quantum mechanical effects. The effect of finite body doping is captured through a perturbation approach. The analytic surface potential solution agrees closely with the 2-D device simulation results. If the channel doping concentration is low enough to be neglected, computational efficiency can be further improved by a setting a specific flag (COREMOD = 1). 508:). The FinFET is a variation on traditional MOSFETs distinguished by the presence of a thin silicon "fin" inversion channel on top of the substrate, allowing the gate to make two points of contact: the left and right sides of the fin. The thickness of the fin (measured in the direction from source to drain) determines the effective channel length of the device. The wrap-around gate structure provides a better electrical control over the channel and thus helps in reducing the leakage current and overcoming other 486: 766:, which feature tri-gate transistors. Intel has been working on its tri-gate architecture since 2002, but it took until 2011 to work out mass-production issues. The new style of transistor was described on May 4, 2011, in San Francisco. It was announced that Intel's factories were expected to make upgrades over 2011 and 2012 to be able to manufacture the Ivy Bridge CPUs. It was announced that the new transistors would also be used in Intel's 459: 31: 921:
current. Multigate transistors also provide a better analog performance due to a higher intrinsic gain and lower channel length modulation. These advantages translate to lower power consumption and enhanced device performance. Nonplanar devices are also more compact than conventional planar transistors, enabling higher transistor density which translates to smaller overall microelectronics.
175: 471: 399: 968:, hence the subsequent I–V formulation automatically captures the volume-inversion effect. Analysis of electrostatic potential in the body of MG MOSFETs provided a model equation for short-channel effects (SCE). The extra electrostatic control from the end gates (top/bottom gates) (triple or quadruple-gate) is also captured in the short-channel model. 444:
true double-gate transistor in that (1) both the top and bottom gates provide transistor operation, and (2) the operation of the gates is coupled such that the top gate operation affects the bottom gate operation and vice versa. FlexFET was developed and is manufactured by American Semiconductor, Inc.
904:
node for its foundry customers. Intel is also developing RibbonFET, a variation of MBCFET "nanoribbon" transistors. Unlike FinFETs, both the width and the number of the sheets can be varied to adjust drive strength or the amount of current the transistor can drive at a given voltage. The sheets often
443:
metal top gate MOSFET and an implanted JFET bottom gate that are self-aligned in a gate trench. This device is highly scalable due to its sub-lithographic channel length; non-implanted ultra-shallow source and drain extensions; non-epi raised source and drain regions; and gate-last flow. FlexFET is a
804:
Intel explains: "The additional control enables as much transistor current flowing as possible when the transistor is in the 'on' state (for performance), and as close to zero as possible when it is in the 'off' state (to minimize power), and enables the transistor to switch very quickly between the
649:
In 2012, Intel started using FinFETs for its future commercial devices. Leaks suggest that Intel's FinFET has an unusual shape of a triangle rather than rectangle, and it is speculated that this might be either because a triangle has a higher structural strength and can be more reliably manufactured
427:
requirements associated with non-planar, vertical transistor structures. In planar double-gate transistors the drain–source channel is sandwiched between two independently fabricated gate/gate-oxide stacks. The primary challenge in fabricating such structures is achieving satisfactory self-alignment
916:
have been the core of integrated circuits for several decades, during which the size of the individual transistors has steadily decreased. As the size decreases, planar transistors increasingly suffer from the undesirable short-channel effect, especially "off-state" leakage current, which increases
920:
In a multigate device, the channel is surrounded by several gates on multiple surfaces. Thus it provides better electrical control over the channel, allowing more effective suppression of "off-state" leakage current. Multiple gates also allow enhanced current in the "on" state, also known as drive
706:
released GPUs using their Polaris chip architecture and made on 14 nm FinFET in June 2016. The company has tried to produce a design to provide a "generational jump in power efficiency" while also offering stable frame rates for graphics, gaming, virtual reality, and multimedia applications.
582:
avoids using the term when describing their closely related tri-gate architecture. In the technical literature, FinFET is used somewhat generically to describe any fin-based, multigate transistor architecture regardless of number of gates. It is common for a single FinFET transistor to contain
834:
GAAFET, also known as a surrounding-gate transistor (SGT), is similar in concept to a FinFET except that the gate material surrounds the channel region on all sides. Depending on design, gate-all-around FETs can have two or four effective gates. Gate-all-around FETs have been successfully
754:
announced that it was working on similar technology at the International Conference on Solid State Devices and Materials. No further announcements of this technology were made until Intel's announcement in May 2011, although it was stated at IDF 2011, that they demonstrated a working
240:
on a single transistor. The multiple gates may be controlled by a single gate electrode, wherein the multiple gate surfaces act electrically as a single gate, or by independent gate electrodes. A multigate device employing independent gate electrodes is sometimes called a
899:
A multi-bridge channel FET (MBCFET) is similar to a GAAFET except for the use of nanosheets instead of nanowires. MBCFET is a word mark (trademark) registered in the U.S. to Samsung Electronics. Samsung plans on mass producing MBCFET transistors at the
890:
As of 2020, Samsung and Intel have announced plans to mass produce GAAFET transistors (specifically MBCFET transistors) while TSMC has announced that they will continue to use FinFETs in their 3 nm node, despite TSMC developing GAAFET transistors.
2212: 406:
Dozens of multigate transistor variants may be found in the literature. In general, these variants may be differentiated and classified in terms of architecture (planar vs. non-planar design) and the number of channels/gates (2, 3, or 4).
2323:
Singh, N.; Agarwal, A.; Bera, L. K.; Liow, T. Y.; Yang, R.; Rustagi, S. C.; Tung, C. H.; Kumar, R.; Lo, G. Q.; Balasubramanian, N.; Kwong, D. (2006). "High-Performance fully depleted Silicon Nanowire Gate-All-Around CMOS devices".
2796: 886:
have been demonstrated which allow for improved performance and/or reduced device footprint. The widths of the nanosheets in GAAFETs is controllable which more easily allows for the adjustment of device characteristics.
523:'s Digh Hisamoto, Toru Kaga, Yoshifumi Kawamoto and Eiji Takeda in 1989. In the late 1990s, Digh Hisamoto began collaborating with an international team of researchers on further developing DELTA technology, including 749:
Intel announced this technology in September 2002. Intel announced "triple-gate transistors" which maximize "transistor switching performance and decreases power-wasting leakage". A year later, in September 2003,
2196: 645:
researchers Masoud Rostami and Kartik Mohanram demonstrated that FINFETs can have two electrically independent gates, which gives circuit designers more flexibility to design with efficient, low-power gates.
2479:; Takato, Hiroshi; Sunouchi, Kazumasa; Okabe, N.; Nitayama, Akihiro; Hieda, K.; Horiguchi, Fumio (December 1988). "High performance CMOS surrounding gate transistor (SGT) for ultra high density LSIs". 789:
processors. These transistors employ a single gate stacked on top of two vertical gates (a single gate wrapped over three sides of the channel), allowing essentially three times the surface area for
2059: 583:
several fins, arranged side by side and all covered by the same gate, that act electrically as one, to increase drive strength and performance. The gate may also cover the entirety of the fin(s).
2033: 233: 543:, Xuejue Huang, Leland Chang, Nick Lindert, S. Ahmed, Cyrus Tabery, Yang-Kyu Choi, Pushkar Ranade, Sriram Balasubramanian, A. Agarwal and M. Ameen. In 1998, the team developed the first 1710: 858:, Hiroshi Takato, and Kazumasa Sunouchi, who demonstrated a vertical nanowire GAAFET which they called a "surrounding gate transistor" (SGT). Masuoka, best known as the inventor of 2832: 1883:
Hieda, K.; Horiguchi, Fumio; Watanabe, H.; Sunouchi, Kazumasa; Inoue, I.; Hamamoto, Takeshi (December 1987). "New effects of trench isolated transistor using side-wall gates".
344: 1824: 1327: 734:
transistor, also known as a triple-gate transistor, is a type of MOSFET with a gate on three of its sides. A triple-gate transistor was first demonstrated in 1987, by a
2192: 1495: 1803: 1735: 2954: 2234: 2818: 1380:
Hisamoto, D.; Kaga, T.; Kawamoto, Y.; Takeda, E. (December 1989). "A fully depleted lean-channel transistor (DELTA)-a novel vertical ultra thin SOI MOSFET".
2907: 2377:
Dastjerdy, E.; Ghayour, R.; Sarvari, H. (August 2012). "Simulation and analysis of the frequency performance of a new silicon nanowire MOSFET structure".
1685: 2088: 2067: 1838: 3828: 203: 2724: 801:
than previous transistors. This allows up to 37% higher speed or a power consumption at under 50% of the previous type of transistors used by Intel.
657:
announced plans to offer a 14-nanometer process technology featuring FinFET three-dimensional transistors in 2014. The next month, the rival company
1141: 2037: 3469: 2645: 1714: 2525: 2446: 2307: 2273: 1929: 1867: 1616: 1364: 1280: 1276: 1244: 1181: 2846:
Subramanian (5 Dec 2005). "Device and circuit-level analog performance trade-offs: A comparative study of planar bulk FETs versus FinFETs".
2008: 1546: 3386: 2749: 1227:
Wong, H-S.; Chan, K.; Taur, Y. (December 10, 1997). "Self-aligned (Top and bottom) double-gate MOSFET with a 25 nm thick silicon channel".
978: 505: 129: 1859: 1317: 945: 2917: 2572:"Still Room at the Bottom.(nanometer transistor developed by Yang-kyu Choi from the Korea Advanced Institute of Science and Technology )" 1565:"Still Room at the Bottom.(nanometer transistor developed by Yang-kyu Choi from the Korea Advanced Institute of Science and Technology )" 1520: 3167: 2947: 1423: 532: 316: 1945:
Wong, Hon-Sum (December 1992). "Gate-current injection and surface impact ionization in MOSFET's with a gate induced virtual drain".
1450:; Bokor, J.; King, Tsu-Jae; Anderson, E.; et al. (December 2000). "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm". 3150: 3046: 2887: 2863: 2683:"MBCFET Trademark of Samsung Electronics Co., Ltd. - Registration Number 5495359 - Serial Number 87447776 :: Justia Trademarks" 1962: 1065: 964:
All of the important multi-gate (MG) transistor behavior is captured by this model. Volume inversion is included in the solution of
738:
research team including K. Hieda, Fumio Horiguchi and H. Watanabe. They realized that the fully depleted (FD) body of a narrow bulk
929:
The primary challenges to integrating nonplanar multigate devices into conventional semiconductor manufacturing processes include:
3290: 3017: 1997: 742:-based transistor helped improve switching due to a lessened body-bias effect. In 1992, a triple-gate MOSFET was demonstrated by 650:
or because a triangular prism has a higher area-to-volume ratio than a rectangular prism, thus increasing switching performance.
516: 124: 1277:"Flexfet: Independently-Double-Gated SOI Transistor With Variable Vt and 0.5V Operation Achieving Near Ideal Subthreshold Slope" 3338: 3137: 1003: 763: 594:(Taiwan Semiconductor Manufacturing Company). The "Omega FinFET" design is named after the similarity between the Greek letter 2940: 2627: 778: 2571: 1564: 2912: 1739: 196: 104: 3369: 3121: 2326: 1499: 1018: 618: 515:
The first FinFET transistor type was called a "Depleted Lean-channel Transistor" or "DELTA" transistor, which was first
2664: 3173: 3110: 2922: 2265: 1418: 998: 786: 782: 756: 613:
demonstrated a "Bulk FinFET" design, which made it possible to mass-produce FinFET devices. They demonstrated dynamic
292: 61: 2541: 3833: 3380: 2767: 2113: 1322: 494: 862:, later left Toshiba and founded Unisantis Electronics in 2004 to research surrounding-gate technology along with 287:(in its narrow, specific version concerning density scaling, exclusive of its careless historical conflation with 3997: 3587: 3301: 3144: 3029: 679: 3454: 3596: 3306: 3162: 2928:
Intel video explaining 3D ("Tri-Gate") chip and transistor design used in 22 nm architecture of Ivy Bridge
1689: 1024: 673: 189: 882:(GAA) FinFET technology. GAAFET transistors may make use of high-k/metal gate materials. GAAFETs with up to 7 827:
are the successor to FinFETs, as they can work at sizes below 7 nm. They were used by IBM to demonstrate
504:(fin field-effect transistor) is a type of non-planar transistor, or "3D" transistor (not to be confused with 3607: 3327: 3126: 2706: 1070: 840: 340: 280: 2781: 3776: 3343: 3208: 3184: 1467: 328: 1138: 905:
vary from 8 to 50 nanometers in width. The width of the nanosheets is known as Weff, or effective width.
3845: 3797: 3618: 3434: 3349: 3280: 3116: 2826: 2413: 1008: 320: 965: 485: 1640:
Rostami, M.; Mohanram, K. (2011). "Dual-Vth$ Independent-Gate FinFETs for Low Power Logic Circuits".
378:(VHF) mixers and in sensitive VHF front-end amplifiers. They are available from manufacturers such as 3919: 3663: 3558: 3332: 3225: 3079: 3040: 2971: 2963: 2386: 2335: 1783: 1459: 1050: 1039: 993: 983: 794: 614: 509: 475: 368: 364: 66: 2601: 3639: 3547: 3439: 3275: 3252: 1985: 1762:"TSMC likely to launch 16 nm FinFET+ process at year-end 2014, and "FinFET Turbo" later in 2015-16" 1472: 676: 610: 440: 375: 332: 835:
characterized both theoretically and experimentally. They have also been successfully etched onto
816:
is sometimes used generically to denote any multigate FET with three effective gates or channels.
548: 3944: 3804: 3512: 3479: 3295: 3179: 3157: 2869: 2492: 2452: 2424: 2359: 2159: 2012: 1968: 1896: 1667: 1622: 1393: 1258: 1100: 1085: 1080: 1013: 383: 360: 179: 1157: 1331: 559:
FinFETs. They coined the term "FinFET" (fin field-effect transistor) in a December 2000 paper.
3939: 3860: 3751: 3703: 3532: 3459: 3421: 2859: 2521: 2511: 2442: 2414:"First experimental demonstration of gate-all-around III–V MOSFETs by top-down approach" 2351: 2303: 2293: 2269: 2259: 1958: 1925: 1915: 1863: 1612: 1524: 1360: 1250: 1240: 913: 863: 844: 490: 237: 1853: 1354: 3992: 3655: 3602: 3464: 3429: 2851: 2808: 2484: 2434: 2394: 2343: 2167: 1950: 1888: 1657: 1649: 1602: 1594: 1477: 1414: 1385: 1232: 1105: 536: 356: 352: 2682: 669: 3932: 3865: 3718: 3449: 3359: 3203: 2200: 1145: 1095: 879: 682: 654: 642: 348: 288: 276: 99: 46: 2891: 1589:
Lee, Hyunjin; et al. (2006). "Sub-5nm All-Around Gate FinFET for Ultimate Scaling".
2390: 2339: 1463: 3907: 3688: 3678: 3444: 3247: 2412:
Gu, J. J.; Liu, Y. Q.; Wu, Y. Q.; Colby, R.; Gordon, R. G.; Ye, P. D. (December 2011).
2136: 1839:"Samsung and eSilicon Taped Out 14nm Network Processor with Rambus 28G SerDes Solution" 875: 798: 638: 563: 416: 284: 114: 71: 30: 1204: 598:(Ω) and the shape in which the gate wraps around the source/drain structure. It has a 3986: 3969: 3792: 3708: 3527: 3354: 3322: 2725:"Scaling Down: Intel Boasts RibbonFET and PowerVia as Next IC Design Solution - News" 2496: 2476: 1972: 1397: 855: 540: 423:(metal–oxide–semiconductor field-effect transistor) devices, avoiding more stringent 272: 157: 152: 89: 2873: 2363: 1900: 1761: 1626: 1262: 458: 3850: 3838: 3726: 3693: 3522: 3507: 3090: 3074: 2456: 1825:"High-performance, high-bandwidth IP platform for Samsung 14LPP process technology" 1671: 1291: 988: 901: 859: 828: 806: 767: 661:
announced start early or "risk" production of 16 nm FinFETs in November 2013.
622: 351:. The primary roadblock to widespread implementation is manufacturability, as both 300: 359:
and patterning. Other complementary strategies for device scaling include channel
355:
and non-planar designs present significant challenges, especially with respect to
17: 2579: 1572: 1129:
Risch, L. "Pushing CMOS Beyond the Roadmap", Proceedings of ESSCIRC, 2005, p. 63.
3892: 3634: 3583: 3489: 3474: 3257: 3219: 2398: 1447: 1034: 1029: 528: 424: 257:(gate-all-around field-effect transistor), which are non-planar transistors, or 2646:"TSMC Plots an Aggressive Course for 3 nm Lithography and Beyond - ExtremeTech" 1598: 805:
two states (again, for performance)." Intel has stated that all products after
398: 174: 3964: 3954: 3887: 3761: 3731: 3698: 3673: 3668: 3645: 3517: 3497: 3375: 3237: 3214: 3100: 3002: 2997: 2992: 2927: 2855: 2438: 1653: 1110: 1055: 603: 599: 578:
describe their double-gate development efforts as FinFET development, whereas
265: 147: 109: 2355: 1954: 1892: 1642:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
1254: 1236: 3927: 3771: 3766: 3756: 3683: 3563: 3397: 3392: 3317: 3242: 2813: 2517: 2488: 2347: 2299: 2295:
Novel Compound Semiconductor Nanowires: Materials, Devices, and Applications
1921: 1389: 1090: 958: 883: 575: 556: 544: 291:). Development efforts into multigate transistors have been reported by the 470: 2768:"Samsung's 3-nm Tech Shows Nanosheet Transistor Advantage - IEEE Spectrum" 2172: 2034:"IDF 2011: Intel Looks to Take a Bite Out of ARM, AMD With 3D FinFET Tech" 3949: 3897: 3877: 3855: 3741: 3736: 3624: 3613: 3542: 3312: 2549: 1547:"Intel Announces first 22nm 3D Tri-Gate Transistors, Shipping in 2H 2011" 836: 790: 719: 715: 379: 94: 2932: 2848:
IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest
2750:"Intel to use Nanowire/Nanoribbon Transistors in Volume 'in Five Years'" 2137:"Intel's New Tri-Gate Ivy Bridge Transistors: 9 Things You Need to Know" 3809: 3746: 3568: 3553: 3407: 3364: 3012: 2060:"Intel Releases Ivy Bridge: First Processor with "Tri-Gate" Transistor" 851: 739: 735: 711: 520: 387: 304: 296: 1662: 1481: 957:, is the first standard model for FinFETs. BSIM-CMG is implemented in 562:
In current usage the term FinFET has a less precise definition. Among
3882: 3573: 3537: 3502: 3062: 3034: 3007: 2982: 2797:"Multiple gate field-effect transistors for future CMOS technologies" 1804:"AMD Demonstrates Revolutionary 14nm FinFET Polaris GPU Architecture" 1607: 1045: 629:
Bulk FinFET process. In 2006, a team of Korean researchers from the
501: 479: 463: 453: 420: 269: 250: 2513:
Micro- and Nanoelectronics: Emerging Device Challenges and Solutions
1917:
Micro- and Nanoelectronics: Emerging Device Challenges and Solutions
953:
BSIMCMG106.0.0, officially released on March 1, 2012 by UC Berkeley
850:
A gate-all-around (GAA) MOSFET was first demonstrated in 1988, by a
2782:"Nanosheets: IBM's Path to 5-Nanometer Transistors - IEEE Spectrum" 1591:
2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers
3959: 3870: 3629: 3402: 3195: 3057: 3052: 2429: 2258:
Claeys, C.; Murota, J.; Tao, M.; Iwai, H.; Deleonibus, S. (2015).
1784:"The AMD Radeon RX 480 Preview: Polaris Makes Its Mainstream Mark" 944: 867: 774: 630: 595: 579: 484: 469: 457: 397: 336: 324: 29: 347:
predicted correctly that such devices will be the cornerstone of
3902: 3285: 3231: 3132: 3085: 3023: 1075: 1060: 954: 871: 793:
to travel. Intel reports that their tri-gate transistors reduce
665: 658: 634: 606:(ps) for the N-type transistor and 0.88 ps for the P-type. 591: 587: 524: 312: 2936: 2707:"Samsung at foundry event talks about 3nm, MBCFET developments" 2193:
Intel to Present on 22-nm Tri-gate Technology at VLSI Symposium
1359:. Springer Science & Business Media. pp. 11 & 39. 419:(layer-by-layer) manufacturing processes to create double-gate 751: 743: 722:
for production of a 14 nm FinFET ASIC in a 2.5D package.
703: 571: 567: 308: 1229:
International Electron Devices Meeting. IEDM Technical Digest
949:
Different FinFET structures, which can be modeled by BSIM-CMG
762:
On April 23, 2012, Intel released a new line of CPUs, termed
2213:"Below 22nm, spacers get unconventional: Interview with ASM" 1986:
High Performance Non-Planar Tri-gate Transistor Architecture
1711:"Globalfoundries looks leapfrog fab rivals with new process" 1275:
Wilson, D.; Hayhurst, R.; Oblea, A.; Parke, S.; Hackler, D.
2235:"Intel's Tri-Gate transistors: everything you need to know" 933:
Fabrication of a thin silicon "fin" tens of nanometers wide
1947:
International Technical Digest on Electron Devices Meeting
1382:
International Technical Digest on Electron Devices Meeting
439:
is a planar, independently double-gated transistor with a
2628:"Where are my GAA-FETs? TSMC to Stay with FinFET for 3nm" 2481:
Technical Digest., International Electron Devices Meeting
936:
Fabrication of matched gates on multiple sides of the fin
415:
A planar double-gate MOSFET (DGMOS) employs conventional
668:
announced that it is nearing implementation of several
555:
process. The following year, they developed the first
547:
FinFETs and successfully fabricated devices down to a
2114:"Transistors go 3D as Intel re-invents the microchip" 2089:"Intel Reinvents Transistors Using New 3-D Structure" 870:(KAIST) and the National Nano Fab Center developed a 633:(KAIST) and the National Nano Fab Center developed a 268:
are one of the several strategies being developed by
2665:"Samsung Announces 3 nm GAA MBCFET PDK, Version 0.1" 3918: 3818: 3785: 3717: 3654: 3582: 3488: 3420: 3266: 3194: 3099: 2981: 2970: 777:for the non-planar transistor architecture used in 699:
16 nm FinFET "Turbo" (estimated in 2015–2016).
586:
A 25 nm transistor operating on just 0.7 
249:). The most widely used multi-gate devices are the 27:
MOS field-effect transistor with more than one gate
868:Korea Advanced Institute of Science and Technology 631:Korea Advanced Institute of Science and Technology 1328:Institute of Electrical and Electronics Engineers 866:. In 2006, a team of Korean researchers from the 243:multiple-independent-gate field-effect transistor 234:metal–oxide–semiconductor field-effect transistor 2831:: CS1 maint: DOI inactive as of February 2024 ( 1686:"Intel's FinFETs are less fin and more triangle" 493:from 2016, which uses a 16 nm FinFET-based 1158:"Motorola 3N201 Datasheet - Datasheetspdf.com" 2948: 641:device, based on FinFET technology. In 2011, 197: 8: 2292:Ishikawa, Fumitaro; Buyanova, Irina (2017). 1760:Josephine Lien; Steve Shen (31 March 2014). 1736:"TSMC taps ARM's V8 on road to 16 nm FinFET" 2923:Flexfet Transistor (American Semiconductor) 2421:2011 International Electron Devices Meeting 2287: 2285: 1885:1987 International Electron Devices Meeting 1427:. Symposium on VLSI Technology Short Course 759:chip based on this technology at IDF 2009. 2978: 2955: 2941: 2933: 1419:"FinFET: History, Fundamentals and Future" 1279:SOI Conference, 2007 IEEE International 204: 190: 37: 2812: 2428: 2171: 2009:"AMD Details Its Triple-Gate Transistors" 1661: 1606: 1471: 2908:Inverted T-FET (Freescale Semiconductor) 1855:FinFETs and Other Multi-Gate Transistors 1356:FinFETs and Other Multi-Gate Transistors 283:, colloquially referred to as extending 1584: 1582: 1318:"IEEE Andrew S. Grove Award Recipients" 1122: 917:the idle power required by the device. 374:Dual-gate MOSFETs are commonly used in 166: 138: 80: 52: 45: 34:A dual-gate MOSFET and schematic symbol 2824: 2602:"New Transistor Structures At 3nm/2nm" 2108: 2106: 1521:"Intel Silicon Technology Innovations" 1409: 1407: 253:(fin field-effect transistor) and the 2817:(inactive 2024-02-28). Archived from 1860:Springer Science & Business Media 1498:. Amd.com. 2002-09-10. Archived from 1452:IEEE Transactions on Electron Devices 590:was demonstrated in December 2002 by 275:manufacturers to create ever-smaller 7: 3387:Three-dimensional integrated circuit 1182:"3SK45 Datasheet - Alldatasheet.com" 979:Three-dimensional integrated circuit 130:List of semiconductor scale examples 3168:Programmable unijunction transistor 521:Hitachi Central Research Laboratory 428:between the upper and lower gates. 3069:Multi-gate field-effect transistor 2160:"Intel enters the third dimension" 1424:University of California, Berkeley 226:multi-gate field-effect transistor 25: 3047:Insulated-gate bipolar transistor 2918:Tri-Gate transistor (Intel Corp.) 2600:LaPedus, Mark (25 January 2021). 1066:High-electron-mobility transistor 874:transistor, the world's smallest 773:Tri-gate fabrication was used by 637:transistor, the world's smallest 411:Planar double-gate MOSFET (DGMOS) 3291:Heterostructure barrier varactor 3018:Chemical field-effect transistor 1988:; Dr. Gerald Marcyk. Intel, 2002 809:will be based upon this design. 236:(MOSFET) that has more than one 173: 125:Semiconductor device fabrication 3339:Mixed-signal integrated circuit 1004:Extreme ultraviolet lithography 770:chips for low-powered devices. 41:Part of a series of articles on 2578:, 1 April 2006, archived from 2135:Murray, Matthew (4 May 2011). 2011:. Xbitlabs.com. Archived from 1571:, 1 April 2006, archived from 895:Multi-bridge channel (MBC) FET 825:Gate-all-around FETs (GAAFETs) 1: 2890:. UC Berkeley. Archived from 3370:Silicon controlled rectifier 3232:Organic light-emitting diode 3122:Diffused junction transistor 2327:IEEE Electron Device Letters 1019:Very Large Scale Integration 820:Gate-all-around FET (GAAFET) 689:16 nm FinFET (Q4 2014), 3174:Static induction transistor 3111:Bipolar junction transistor 3063:MOS field-effect transistor 3035:Fin field-effect transistor 2399:10.1016/j.physe.2012.07.007 2266:The Electrochemical Society 2036:. DailyTech. Archived from 1523:. Intel.com. Archived from 1144:September 27, 2007, at the 999:Next-generation lithography 349:sub-32 nm technologies 293:Electrotechnical Laboratory 254: 81:Solid-state nanoelectronics 62:Molecular scale electronics 53:Single-molecule electronics 4014: 3381:Static induction thyristor 2423:. pp. 33.2.1–33.2.4. 2261:ULSI Process Integration 9 2233:Dan Grabham (2011-05-06). 2116:. Ars Technica. 5 May 2011 1738:. EE Times. Archived from 1713:. EE Times. Archived from 1688:. EE Times. Archived from 1599:10.1109/VLSIT.2006.1705215 1323:IEEE Andrew S. Grove Award 451: 3550:(Hexode, Heptode, Octode) 3302:Hybrid integrated circuit 3145:Light-emitting transistor 2856:10.1109/IEDM.2005.1609503 2606:Semiconductor Engineering 2439:10.1109/IEDM.2011.6131662 1654:10.1109/TCAD.2010.2097310 746:researcher Hon-Sum Wong. 497:chip manufactured by TSMC 367:-based technologies, and 3597:Backward-wave oscillator 3307:Light emitting capacitor 3163:Point-contact transistor 3133:Junction Gate FET (JFET) 2729:www.allaboutcircuits.com 1955:10.1109/IEDM.1992.307330 1893:10.1109/IEDM.1987.191536 1237:10.1109/IEDM.1997.650416 1025:Neuromorphic engineering 854:research team including 535:research team including 402:Several multigate models 3608:Crossed-field amplifier 3127:Field-effect transistor 2814:10.4103/0256-4602.72582 2510:Brozek, Tomasz (2017). 2489:10.1109/IEDM.1988.32796 2348:10.1109/LED.2006.873381 2199:April 15, 2012, at the 1914:Brozek, Tomasz (2017). 1390:10.1109/IEDM.1989.74182 1071:Field-effect transistor 371:/metal gate materials. 341:Freescale Semiconductor 3777:Voltage-regulator tube 3344:MOS integrated circuit 3209:Constant-current diode 3185:Unijunction transistor 2795:Subramanian V (2010). 2158:Cartwright J. (2011). 1852:Colinge, J.P. (2008). 1353:Colinge, J.P. (2008). 950: 925:Integration challenges 843:, which have a higher 621:) manufactured with a 498: 482: 467: 403: 343:, and others, and the 180:Electronics portal 35: 3846:Electrolytic detector 3619:Inductive output tube 3435:Low-dropout regulator 3350:Organic semiconductor 3281:Printed circuit board 3117:Darlington transistor 2964:Electronic components 2801:IETE Technical Review 2687:trademarks.justia.com 2546:Unisantis Electronics 2173:10.1038/news.2011.274 1806:. AMD. 4 January 2016 1009:Immersion lithography 948: 797:and consume far less 510:short-channel effects 488: 473: 461: 401: 321:Infineon Technologies 33: 3664:Beam deflection tube 3333:Metal oxide varistor 3226:Light-emitting diode 3080:Thin-film transistor 3041:Floating-gate MOSFET 2850:. pp. 898–901. 2483:. pp. 222–225. 1949:. pp. 151–154. 1887:. pp. 736–739. 1527:on September 3, 2011 1384:. pp. 833–836. 1334:on September 9, 2018 1231:. pp. 427–430. 1205:"BF1217WR Datasheet" 1051:Floating-gate MOSFET 1040:Silicon on insulator 984:Semiconductor device 831:process technology. 692:16 nm FinFET+ ( 615:random-access memory 365:silicon-on-insulator 67:Molecular logic gate 3640:Traveling-wave tube 3440:Switching regulator 3276:Printed electronics 3253:Step recovery diode 3030:Depletion-load NMOS 2913:Omega FinFET (TSMC) 2650:www.extremetech.com 2552:on 22 February 2007 2391:2012PhyE...45...66D 2340:2006IEDL...27..383S 2058:Miller, Michael J. 1545:Shimpi, Anand Lal. 1464:2000ITED...47.2320H 726:Tri-gate transistor 653:In September 2012, 611:Samsung Electronics 376:very high frequency 333:Samsung Electronics 3945:Crystal oscillator 3805:Variable capacitor 3480:Switched capacitor 3422:Voltage regulators 3296:Integrated circuit 3180:Tetrode transistor 3158:Pentode transistor 3151:Organic LET (OLET) 3138:Organic FET (OFET) 2821:on March 23, 2012. 2582:on 6 November 2012 1924:. pp. 116–7. 1593:. pp. 58–59. 1575:on 6 November 2012 1101:Quantum logic gate 1086:Pentode transistor 1081:Tetrode transistor 1014:Strain engineering 966:Poisson's equation 951: 914:Planar transistors 602:of just 0.39  499: 483: 468: 404: 384:NXP Semiconductors 361:strain engineering 139:Related approaches 36: 18:Trigate transistor 3980: 3979: 3940:Ceramic resonator 3752:Mercury-arc valve 3704:Video camera tube 3656:Cathode-ray tubes 3416: 3415: 3024:Complementary MOS 2754:www.anandtech.com 2748:Cutress, Dr Ian. 2669:www.anandtech.com 2632:www.anandtech.com 2626:Cutress, Dr Ian. 2576:Nanoparticle News 2542:"Company Profile" 2527:978-1-351-83134-5 2448:978-1-4577-0505-2 2309:978-1-315-34072-2 2275:978-1-60768-675-0 2195:(ElectroIQ 2012) 1931:978-1-351-83134-5 1869:978-0-387-71751-7 1618:978-1-4244-0005-8 1569:Nanoparticle News 1551:www.anandtech.com 1482:10.1109/16.887014 1458:(12): 2320–2325. 1417:(June 11, 2012). 1415:Tsu-Jae King, Liu 1366:978-0-387-71751-7 1292:"What is Finfet?" 1246:978-0-7803-4100-5 994:High-Îş dielectric 878:device, based on 864:Tohoku University 845:electron mobility 222:multi-gate MOSFET 214: 213: 16:(Redirected from 4005: 3998:Transistor types 3834:electrical power 3719:Gas-filled tubes 3603:Cavity magnetron 3430:Linear regulator 2979: 2957: 2950: 2943: 2934: 2896: 2895: 2884: 2878: 2877: 2843: 2837: 2836: 2830: 2822: 2816: 2792: 2786: 2785: 2778: 2772: 2771: 2764: 2758: 2757: 2745: 2739: 2738: 2736: 2735: 2721: 2715: 2714: 2703: 2697: 2696: 2694: 2693: 2679: 2673: 2672: 2660: 2654: 2653: 2642: 2636: 2635: 2623: 2617: 2616: 2614: 2612: 2597: 2591: 2590: 2589: 2587: 2568: 2562: 2561: 2559: 2557: 2548:. Archived from 2538: 2532: 2531: 2507: 2501: 2500: 2473: 2467: 2466: 2464: 2463: 2432: 2418: 2409: 2403: 2402: 2374: 2368: 2367: 2320: 2314: 2313: 2289: 2280: 2279: 2255: 2249: 2248: 2246: 2245: 2230: 2224: 2223: 2221: 2220: 2209: 2203: 2190: 2184: 2183: 2181: 2180: 2175: 2155: 2149: 2148: 2146: 2144: 2132: 2126: 2125: 2123: 2121: 2110: 2101: 2100: 2098: 2096: 2085: 2079: 2078: 2076: 2075: 2066:. Archived from 2055: 2049: 2048: 2046: 2045: 2030: 2024: 2023: 2021: 2020: 2005: 1999: 1995: 1989: 1983: 1977: 1976: 1942: 1936: 1935: 1911: 1905: 1904: 1880: 1874: 1873: 1849: 1843: 1842: 1835: 1829: 1828: 1821: 1815: 1814: 1812: 1811: 1800: 1794: 1793: 1791: 1790: 1779: 1773: 1772: 1770: 1769: 1757: 1751: 1750: 1748: 1747: 1732: 1726: 1725: 1723: 1722: 1707: 1701: 1700: 1698: 1697: 1682: 1676: 1675: 1665: 1637: 1631: 1630: 1610: 1586: 1577: 1576: 1561: 1555: 1554: 1542: 1536: 1535: 1533: 1532: 1517: 1511: 1510: 1508: 1507: 1492: 1486: 1485: 1475: 1446:Hisamoto, Digh; 1443: 1437: 1436: 1434: 1432: 1411: 1402: 1401: 1377: 1371: 1370: 1350: 1344: 1343: 1341: 1339: 1330:. Archived from 1314: 1308: 1307: 1305: 1303: 1298:. April 26, 2017 1288: 1282: 1273: 1267: 1266: 1224: 1218: 1217: 1215: 1214: 1209: 1201: 1195: 1194: 1192: 1191: 1186: 1178: 1172: 1171: 1169: 1168: 1162:Datasheetpdf.com 1154: 1148: 1136: 1130: 1127: 1106:Transistor model 941:Compact modeling 695: 626: 552: 537:Tsu-Jae King Liu 218:multigate device 206: 199: 192: 178: 177: 120:Multigate device 38: 21: 4013: 4012: 4008: 4007: 4006: 4004: 4003: 4002: 3983: 3982: 3981: 3976: 3914: 3829:audio and video 3814: 3781: 3713: 3650: 3578: 3559:Photomultiplier 3484: 3412: 3360:Quantum circuit 3268: 3262: 3204:Avalanche diode 3190: 3102: 3095: 2984: 2973: 2966: 2961: 2904: 2899: 2888:"BSIMCMG Model" 2886: 2885: 2881: 2866: 2845: 2844: 2840: 2823: 2794: 2793: 2789: 2780: 2779: 2775: 2766: 2765: 2761: 2747: 2746: 2742: 2733: 2731: 2723: 2722: 2718: 2705: 2704: 2700: 2691: 2689: 2681: 2680: 2676: 2662: 2661: 2657: 2644: 2643: 2639: 2625: 2624: 2620: 2610: 2608: 2599: 2598: 2594: 2585: 2583: 2570: 2569: 2565: 2555: 2553: 2540: 2539: 2535: 2528: 2520:. p. 117. 2509: 2508: 2504: 2475: 2474: 2470: 2461: 2459: 2449: 2416: 2411: 2410: 2406: 2376: 2375: 2371: 2322: 2321: 2317: 2310: 2302:. p. 457. 2291: 2290: 2283: 2276: 2268:. p. 109. 2257: 2256: 2252: 2243: 2241: 2232: 2231: 2227: 2218: 2216: 2211: 2210: 2206: 2201:Wayback Machine 2191: 2187: 2178: 2176: 2157: 2156: 2152: 2142: 2140: 2134: 2133: 2129: 2119: 2117: 2112: 2111: 2104: 2094: 2092: 2087: 2086: 2082: 2073: 2071: 2057: 2056: 2052: 2043: 2041: 2032: 2031: 2027: 2018: 2016: 2007: 2006: 2002: 1996: 1992: 1984: 1980: 1965: 1944: 1943: 1939: 1932: 1913: 1912: 1908: 1882: 1881: 1877: 1870: 1851: 1850: 1846: 1837: 1836: 1832: 1823: 1822: 1818: 1809: 1807: 1802: 1801: 1797: 1788: 1786: 1781: 1780: 1776: 1767: 1765: 1759: 1758: 1754: 1745: 1743: 1734: 1733: 1729: 1720: 1718: 1709: 1708: 1704: 1695: 1693: 1684: 1683: 1679: 1639: 1638: 1634: 1619: 1588: 1587: 1580: 1563: 1562: 1558: 1544: 1543: 1539: 1530: 1528: 1519: 1518: 1514: 1505: 1503: 1494: 1493: 1489: 1445: 1444: 1440: 1430: 1428: 1413: 1412: 1405: 1379: 1378: 1374: 1367: 1352: 1351: 1347: 1337: 1335: 1316: 1315: 1311: 1301: 1299: 1290: 1289: 1285: 1274: 1270: 1247: 1226: 1225: 1221: 1212: 1210: 1207: 1203: 1202: 1198: 1189: 1187: 1184: 1180: 1179: 1175: 1166: 1164: 1156: 1155: 1151: 1146:Wayback Machine 1137: 1133: 1128: 1124: 1120: 1115: 1096:Quantum circuit 974: 943: 927: 911: 897: 880:gate-all-around 822: 728: 710:In March 2017, 693: 664:In March 2014, 655:GlobalFoundries 643:Rice University 624: 566:manufacturers, 550: 491:NVIDIA GTX 1070 456: 450: 434: 413: 396: 289:Dennard scaling 277:microprocessors 210: 172: 162: 134: 100:Nanolithography 76: 72:Molecular wires 47:Nanoelectronics 28: 23: 22: 15: 12: 11: 5: 4011: 4009: 4001: 4000: 3995: 3985: 3984: 3978: 3977: 3975: 3974: 3973: 3972: 3967: 3957: 3952: 3947: 3942: 3937: 3936: 3935: 3924: 3922: 3916: 3915: 3913: 3912: 3911: 3910: 3908:Wollaston wire 3900: 3895: 3890: 3885: 3880: 3875: 3874: 3873: 3868: 3858: 3853: 3848: 3843: 3842: 3841: 3836: 3831: 3822: 3820: 3816: 3815: 3813: 3812: 3807: 3802: 3801: 3800: 3789: 3787: 3783: 3782: 3780: 3779: 3774: 3769: 3764: 3759: 3754: 3749: 3744: 3739: 3734: 3729: 3723: 3721: 3715: 3714: 3712: 3711: 3706: 3701: 3696: 3691: 3689:Selectron tube 3686: 3681: 3679:Magic eye tube 3676: 3671: 3666: 3660: 3658: 3652: 3651: 3649: 3648: 3643: 3637: 3632: 3627: 3622: 3616: 3611: 3605: 3600: 3593: 3591: 3580: 3579: 3577: 3576: 3571: 3566: 3561: 3556: 3551: 3545: 3540: 3535: 3530: 3525: 3520: 3515: 3510: 3505: 3500: 3494: 3492: 3486: 3485: 3483: 3482: 3477: 3472: 3467: 3462: 3457: 3452: 3447: 3442: 3437: 3432: 3426: 3424: 3418: 3417: 3414: 3413: 3411: 3410: 3405: 3400: 3395: 3390: 3384: 3378: 3373: 3367: 3362: 3357: 3352: 3347: 3341: 3336: 3330: 3325: 3320: 3315: 3310: 3304: 3299: 3293: 3288: 3283: 3278: 3272: 3270: 3264: 3263: 3261: 3260: 3255: 3250: 3248:Schottky diode 3245: 3240: 3235: 3229: 3223: 3217: 3212: 3206: 3200: 3198: 3192: 3191: 3189: 3188: 3182: 3177: 3171: 3165: 3160: 3155: 3154: 3153: 3142: 3141: 3140: 3135: 3124: 3119: 3114: 3107: 3105: 3097: 3096: 3094: 3093: 3088: 3083: 3077: 3072: 3066: 3060: 3055: 3050: 3044: 3038: 3032: 3027: 3021: 3015: 3010: 3005: 3000: 2995: 2989: 2987: 2976: 2968: 2967: 2962: 2960: 2959: 2952: 2945: 2937: 2931: 2930: 2925: 2920: 2915: 2910: 2903: 2902:External links 2900: 2898: 2897: 2894:on 2012-07-21. 2879: 2864: 2838: 2807:(6): 446–454. 2787: 2773: 2759: 2740: 2716: 2711:techxplore.com 2698: 2674: 2663:Cutress, Ian. 2655: 2637: 2618: 2592: 2563: 2533: 2526: 2502: 2477:Masuoka, Fujio 2468: 2447: 2404: 2369: 2334:(5): 383–386. 2315: 2308: 2281: 2274: 2250: 2225: 2204: 2185: 2150: 2127: 2102: 2080: 2050: 2025: 2000: 1990: 1978: 1963: 1937: 1930: 1906: 1875: 1868: 1862:. p. 12. 1844: 1830: 1816: 1795: 1774: 1752: 1727: 1702: 1677: 1648:(3): 337–349. 1632: 1617: 1578: 1556: 1537: 1512: 1496:"AMD Newsroom" 1487: 1473:10.1.1.211.204 1438: 1403: 1372: 1365: 1345: 1309: 1283: 1268: 1245: 1219: 1196: 1173: 1149: 1131: 1121: 1119: 1116: 1114: 1113: 1108: 1103: 1098: 1093: 1088: 1083: 1078: 1073: 1068: 1063: 1058: 1053: 1048: 1043: 1037: 1032: 1027: 1022: 1016: 1011: 1006: 1001: 996: 991: 986: 981: 975: 973: 970: 942: 939: 938: 937: 934: 926: 923: 910: 907: 896: 893: 876:nanoelectronic 847:than silicon. 821: 818: 727: 724: 718:announced the 701: 700: 697: 690: 639:nanoelectronic 564:microprocessor 462:A double-gate 452:Main article: 449: 446: 433: 430: 412: 409: 395: 392: 259:3D transistors 232:) refers to a 212: 211: 209: 208: 201: 194: 186: 183: 182: 169: 168: 164: 163: 161: 160: 155: 150: 144: 141: 140: 136: 135: 133: 132: 127: 122: 117: 112: 107: 102: 97: 92: 86: 83: 82: 78: 77: 75: 74: 69: 64: 58: 55: 54: 50: 49: 43: 42: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4010: 3999: 3996: 3994: 3991: 3990: 3988: 3971: 3970:mercury relay 3968: 3966: 3963: 3962: 3961: 3958: 3956: 3953: 3951: 3948: 3946: 3943: 3941: 3938: 3934: 3931: 3930: 3929: 3926: 3925: 3923: 3921: 3917: 3909: 3906: 3905: 3904: 3901: 3899: 3896: 3894: 3891: 3889: 3886: 3884: 3881: 3879: 3876: 3872: 3869: 3867: 3864: 3863: 3862: 3859: 3857: 3854: 3852: 3849: 3847: 3844: 3840: 3837: 3835: 3832: 3830: 3827: 3826: 3824: 3823: 3821: 3817: 3811: 3808: 3806: 3803: 3799: 3796: 3795: 3794: 3793:Potentiometer 3791: 3790: 3788: 3784: 3778: 3775: 3773: 3770: 3768: 3765: 3763: 3760: 3758: 3755: 3753: 3750: 3748: 3745: 3743: 3740: 3738: 3735: 3733: 3730: 3728: 3725: 3724: 3722: 3720: 3716: 3710: 3709:Williams tube 3707: 3705: 3702: 3700: 3697: 3695: 3692: 3690: 3687: 3685: 3682: 3680: 3677: 3675: 3672: 3670: 3667: 3665: 3662: 3661: 3659: 3657: 3653: 3647: 3644: 3641: 3638: 3636: 3633: 3631: 3628: 3626: 3623: 3620: 3617: 3615: 3612: 3609: 3606: 3604: 3601: 3598: 3595: 3594: 3592: 3589: 3585: 3581: 3575: 3572: 3570: 3567: 3565: 3562: 3560: 3557: 3555: 3552: 3549: 3546: 3544: 3541: 3539: 3536: 3534: 3531: 3529: 3528:Fleming valve 3526: 3524: 3521: 3519: 3516: 3514: 3511: 3509: 3506: 3504: 3501: 3499: 3496: 3495: 3493: 3491: 3487: 3481: 3478: 3476: 3473: 3471: 3468: 3466: 3463: 3461: 3458: 3456: 3453: 3451: 3448: 3446: 3443: 3441: 3438: 3436: 3433: 3431: 3428: 3427: 3425: 3423: 3419: 3409: 3406: 3404: 3401: 3399: 3396: 3394: 3391: 3388: 3385: 3382: 3379: 3377: 3374: 3371: 3368: 3366: 3363: 3361: 3358: 3356: 3355:Photodetector 3353: 3351: 3348: 3345: 3342: 3340: 3337: 3334: 3331: 3329: 3326: 3324: 3323:Memtransistor 3321: 3319: 3316: 3314: 3311: 3308: 3305: 3303: 3300: 3297: 3294: 3292: 3289: 3287: 3284: 3282: 3279: 3277: 3274: 3273: 3271: 3265: 3259: 3256: 3254: 3251: 3249: 3246: 3244: 3241: 3239: 3236: 3233: 3230: 3227: 3224: 3221: 3218: 3216: 3213: 3210: 3207: 3205: 3202: 3201: 3199: 3197: 3193: 3186: 3183: 3181: 3178: 3175: 3172: 3169: 3166: 3164: 3161: 3159: 3156: 3152: 3149: 3148: 3146: 3143: 3139: 3136: 3134: 3131: 3130: 3128: 3125: 3123: 3120: 3118: 3115: 3112: 3109: 3108: 3106: 3104: 3098: 3092: 3089: 3087: 3084: 3081: 3078: 3076: 3073: 3070: 3067: 3064: 3061: 3059: 3056: 3054: 3051: 3048: 3045: 3042: 3039: 3036: 3033: 3031: 3028: 3025: 3022: 3019: 3016: 3014: 3011: 3009: 3006: 3004: 3001: 2999: 2996: 2994: 2991: 2990: 2988: 2986: 2980: 2977: 2975: 2972:Semiconductor 2969: 2965: 2958: 2953: 2951: 2946: 2944: 2939: 2938: 2935: 2929: 2926: 2924: 2921: 2919: 2916: 2914: 2911: 2909: 2906: 2905: 2901: 2893: 2889: 2883: 2880: 2875: 2871: 2867: 2865:0-7803-9268-X 2861: 2857: 2853: 2849: 2842: 2839: 2834: 2828: 2820: 2815: 2810: 2806: 2802: 2798: 2791: 2788: 2783: 2777: 2774: 2769: 2763: 2760: 2755: 2751: 2744: 2741: 2730: 2726: 2720: 2717: 2712: 2708: 2702: 2699: 2688: 2684: 2678: 2675: 2670: 2666: 2659: 2656: 2651: 2647: 2641: 2638: 2633: 2629: 2622: 2619: 2607: 2603: 2596: 2593: 2581: 2577: 2573: 2567: 2564: 2551: 2547: 2543: 2537: 2534: 2529: 2523: 2519: 2515: 2514: 2506: 2503: 2498: 2494: 2490: 2486: 2482: 2478: 2472: 2469: 2458: 2454: 2450: 2444: 2440: 2436: 2431: 2426: 2422: 2415: 2408: 2405: 2400: 2396: 2392: 2388: 2384: 2380: 2373: 2370: 2365: 2361: 2357: 2353: 2349: 2345: 2341: 2337: 2333: 2329: 2328: 2319: 2316: 2311: 2305: 2301: 2297: 2296: 2288: 2286: 2282: 2277: 2271: 2267: 2263: 2262: 2254: 2251: 2240: 2236: 2229: 2226: 2214: 2208: 2205: 2202: 2198: 2194: 2189: 2186: 2174: 2169: 2165: 2161: 2154: 2151: 2139:. PC Magazine 2138: 2131: 2128: 2115: 2109: 2107: 2103: 2090: 2084: 2081: 2070:on 2019-12-28 2069: 2065: 2061: 2054: 2051: 2040:on 2014-03-10 2039: 2035: 2029: 2026: 2015:on 2014-03-10 2014: 2010: 2004: 2001: 1998: 1994: 1991: 1987: 1982: 1979: 1974: 1970: 1966: 1964:0-7803-0817-4 1960: 1956: 1952: 1948: 1941: 1938: 1933: 1927: 1923: 1919: 1918: 1910: 1907: 1902: 1898: 1894: 1890: 1886: 1879: 1876: 1871: 1865: 1861: 1857: 1856: 1848: 1845: 1841:. 2017-03-22. 1840: 1834: 1831: 1827:. 2017-03-22. 1826: 1820: 1817: 1805: 1799: 1796: 1785: 1782:Smith, Ryan. 1778: 1775: 1763: 1756: 1753: 1742:on 2012-11-01 1741: 1737: 1731: 1728: 1717:on 2013-02-02 1716: 1712: 1706: 1703: 1692:on 2013-05-31 1691: 1687: 1681: 1678: 1673: 1669: 1664: 1659: 1655: 1651: 1647: 1643: 1636: 1633: 1628: 1624: 1620: 1614: 1609: 1604: 1600: 1596: 1592: 1585: 1583: 1579: 1574: 1570: 1566: 1560: 1557: 1552: 1548: 1541: 1538: 1526: 1522: 1516: 1513: 1502:on 2010-05-13 1501: 1497: 1491: 1488: 1483: 1479: 1474: 1469: 1465: 1461: 1457: 1453: 1449: 1442: 1439: 1426: 1425: 1420: 1416: 1410: 1408: 1404: 1399: 1395: 1391: 1387: 1383: 1376: 1373: 1368: 1362: 1358: 1357: 1349: 1346: 1333: 1329: 1325: 1324: 1319: 1313: 1310: 1297: 1296:Computer Hope 1293: 1287: 1284: 1281: 1278: 1272: 1269: 1264: 1260: 1256: 1252: 1248: 1242: 1238: 1234: 1230: 1223: 1220: 1206: 1200: 1197: 1183: 1177: 1174: 1163: 1159: 1153: 1150: 1147: 1143: 1140: 1135: 1132: 1126: 1123: 1117: 1112: 1109: 1107: 1104: 1102: 1099: 1097: 1094: 1092: 1089: 1087: 1084: 1082: 1079: 1077: 1074: 1072: 1069: 1067: 1064: 1062: 1059: 1057: 1054: 1052: 1049: 1047: 1044: 1041: 1038: 1036: 1033: 1031: 1028: 1026: 1023: 1020: 1017: 1015: 1012: 1010: 1007: 1005: 1002: 1000: 997: 995: 992: 990: 987: 985: 982: 980: 977: 976: 971: 969: 967: 962: 960: 956: 947: 940: 935: 932: 931: 930: 924: 922: 918: 915: 909:Industry need 908: 906: 903: 894: 892: 888: 885: 881: 877: 873: 869: 865: 861: 857: 856:Fujio Masuoka 853: 848: 846: 842: 838: 832: 830: 826: 819: 817: 815: 810: 808: 802: 800: 796: 792: 788: 784: 780: 776: 771: 769: 765: 760: 758: 753: 747: 745: 741: 737: 733: 725: 723: 721: 717: 713: 708: 705: 698: 691: 688: 687: 686: 684: 681: 680:manufacturing 678: 675: 671: 667: 662: 660: 656: 651: 647: 644: 640: 636: 632: 628: 620: 616: 612: 607: 605: 601: 597: 593: 589: 584: 581: 577: 573: 569: 565: 560: 558: 554: 546: 542: 541:Jeffrey Bokor 538: 534: 530: 526: 522: 518: 513: 511: 507: 506:3D microchips 503: 496: 492: 487: 481: 477: 472: 465: 460: 455: 447: 445: 442: 438: 431: 429: 426: 422: 418: 410: 408: 400: 393: 391: 389: 385: 381: 377: 372: 370: 366: 362: 358: 354: 350: 346: 342: 338: 334: 330: 326: 322: 318: 314: 310: 306: 302: 298: 294: 290: 286: 282: 278: 274: 273:semiconductor 271: 267: 262: 260: 256: 252: 248: 244: 239: 235: 231: 227: 223: 219: 207: 202: 200: 195: 193: 188: 187: 185: 184: 181: 176: 171: 170: 165: 159: 158:Nanomechanics 156: 154: 153:Nanophotonics 151: 149: 146: 145: 143: 142: 137: 131: 128: 126: 123: 121: 118: 116: 113: 111: 108: 106: 103: 101: 98: 96: 93: 91: 90:Nanocircuitry 88: 87: 85: 84: 79: 73: 70: 68: 65: 63: 60: 59: 57: 56: 51: 48: 44: 40: 39: 32: 19: 3727:Cold cathode 3694:Storage tube 3584:Vacuum tubes 3533:Neutron tube 3508:Beam tetrode 3490:Vacuum tubes 3075:Power MOSFET 3068: 2892:the original 2882: 2847: 2841: 2827:cite journal 2819:the original 2804: 2800: 2790: 2776: 2762: 2753: 2743: 2732:. Retrieved 2728: 2719: 2710: 2701: 2690:. Retrieved 2686: 2677: 2668: 2658: 2649: 2640: 2631: 2621: 2609:. Retrieved 2605: 2595: 2584:, retrieved 2580:the original 2575: 2566: 2554:. Retrieved 2550:the original 2545: 2536: 2512: 2505: 2480: 2471: 2460:. Retrieved 2420: 2407: 2382: 2378: 2372: 2331: 2325: 2318: 2294: 2260: 2253: 2242:. Retrieved 2238: 2228: 2217:. Retrieved 2207: 2188: 2177:. Retrieved 2163: 2153: 2141:. Retrieved 2130: 2118:. Retrieved 2093:. Retrieved 2083: 2072:. Retrieved 2068:the original 2063: 2053: 2042:. Retrieved 2038:the original 2028: 2017:. Retrieved 2013:the original 2003: 1993: 1981: 1946: 1940: 1916: 1909: 1884: 1878: 1854: 1847: 1833: 1819: 1808:. Retrieved 1798: 1787:. Retrieved 1777: 1766:. Retrieved 1755: 1744:. Retrieved 1740:the original 1730: 1719:. Retrieved 1715:the original 1705: 1694:. Retrieved 1690:the original 1680: 1645: 1641: 1635: 1590: 1573:the original 1568: 1559: 1550: 1540: 1529:. Retrieved 1525:the original 1515: 1504:. Retrieved 1500:the original 1490: 1455: 1451: 1448:Hu, Chenming 1441: 1429:. Retrieved 1422: 1381: 1375: 1355: 1348: 1336:. Retrieved 1332:the original 1321: 1312: 1300:. Retrieved 1295: 1286: 1271: 1228: 1222: 1211:. Retrieved 1199: 1188:. Retrieved 1176: 1165:. Retrieved 1161: 1152: 1134: 1125: 989:Clock gating 963: 952: 928: 919: 912: 898: 889: 860:flash memory 849: 833: 824: 823: 813: 811: 807:Sandy Bridge 803: 772: 761: 748: 731: 729: 709: 702: 663: 652: 648: 608: 585: 561: 514: 500: 436: 435: 414: 405: 373: 301:Grenoble INP 281:memory cells 263: 258: 246: 242: 229: 225: 221: 217: 215: 119: 3893:Transformer 3635:Sutton tube 3475:Charge pump 3328:Memory cell 3258:Zener diode 3220:Laser diode 3103:transistors 2985:transistors 2611:23 December 2215:. ELECTROIQ 2064:PC Magazine 1764:. DIGITIMES 1035:3D printing 1030:Bit slicing 533:UC Berkeley 529:Chenming Hu 425:lithography 357:lithography 317:UC Berkeley 285:Moore's law 266:transistors 264:Multi-gate 115:Moore's law 3987:Categories 3965:reed relay 3955:Parametron 3888:Thermistor 3866:resettable 3825:Connector 3786:Adjustable 3762:Nixie tube 3732:Crossatron 3699:Trochotron 3674:Iconoscope 3669:Charactron 3646:X-ray tube 3518:Compactron 3498:Acorn tube 3455:Buck–boost 3376:Solaristor 3238:Photodiode 3215:Gunn diode 3211:(CLD, CRD) 2993:Transistor 2734:2022-09-14 2692:2020-01-16 2462:2015-05-10 2244:2022-01-21 2219:2011-05-04 2179:2015-05-10 2074:2012-04-23 2044:2014-03-10 2019:2014-03-10 1810:2016-01-04 1789:2018-06-03 1768:2014-03-31 1746:2014-03-10 1721:2014-03-10 1696:2014-03-10 1663:1911/72088 1531:2014-03-10 1506:2015-07-07 1213:2023-01-08 1190:2023-01-08 1167:2023-01-08 1118:References 1111:Die shrink 1056:Transistor 955:BSIM Group 884:nanosheets 779:Ivy Bridge 764:Ivy Bridge 604:picosecond 600:gate delay 517:fabricated 148:Nanoionics 110:Nanosensor 3928:Capacitor 3772:Trigatron 3767:Thyratron 3757:Neon lamp 3684:Monoscope 3564:Phototube 3548:Pentagrid 3513:Barretter 3398:Trancitor 3393:Thyristor 3318:Memristor 3243:PIN diode 3020:(ChemFET) 2518:CRC Press 2497:114148274 2430:1112.3573 2385:: 66–71. 2379:Physica E 2356:0741-3106 2300:CRC Press 2239:TechRadar 1973:114058374 1922:CRC Press 1608:10203/698 1468:CiteSeerX 1398:114072236 1255:0163-1918 1091:Memristor 959:Verilog-A 872:3 nm 837:nanowires 812:The term 791:electrons 696:Q4 2014), 683:processes 635:3 nm 609:In 2004, 576:Freescale 557:P-channel 545:N-channel 441:damascene 95:Nanowires 3950:Inductor 3920:Reactive 3898:Varistor 3878:Resistor 3856:Antifuse 3742:Ignitron 3737:Dekatron 3625:Klystron 3614:Gyrotron 3543:Nuvistor 3460:Split-pi 3346:(MOS IC) 3313:Memistor 3071:(MuGFET) 3065:(MOSFET) 3037:(FinFET) 2874:32683938 2364:45576648 2197:Archived 1901:34381025 1627:26482358 1263:20947344 1142:Archived 1139:Table39b 972:See also 814:tri-gate 732:tri-gate 716:eSilicon 672:FinFETs 380:Motorola 3993:MOSFETs 3851:Ferrite 3819:Passive 3810:Varicap 3798:digital 3747:Krytron 3569:Tetrode 3554:Pentode 3408:Varicap 3389:(3D IC) 3365:RF CMOS 3269:devices 3043:(FGMOS) 2974:devices 2586:17 July 2556:17 July 2457:2116042 2387:Bibcode 2336:Bibcode 2095:5 April 2091:. Intel 1672:2225579 1460:Bibcode 852:Toshiba 795:leakage 787:Skylake 783:Haswell 736:Toshiba 720:tapeout 712:Samsung 478:FinFET 437:FlexFET 432:FlexFET 388:Hitachi 305:Hitachi 297:Toshiba 167:Portals 3883:Switch 3574:Triode 3538:Nonode 3503:Audion 3383:(SITh) 3267:Other 3234:(OLED) 3196:Diodes 3147:(LET) 3129:(FET) 3101:Other 3049:(IGBT) 3026:(CMOS) 3013:BioFET 3008:BiCMOS 2872:  2862:  2524:  2495:  2455:  2445:  2362:  2354:  2306:  2272:  2164:Nature 1971:  1961:  1928:  1899:  1866:  1670:  1625:  1615:  1470:  1431:9 July 1396:  1363:  1338:4 July 1302:4 July 1261:  1253:  1243:  1046:MOSFET 1021:(VLSI) 841:InGaAs 677:wafers 674:die-on 625:  574:, and 551:  531:and a 502:FinFET 495:Pascal 480:MOSFET 466:device 464:FinFET 454:FinFET 448:FinFET 421:MOSFET 417:planar 386:, and 369:high-Îş 353:planar 255:GAAFET 251:FinFET 247:MIGFET 230:MuGFET 3960:Relay 3933:types 3871:eFUSE 3642:(TWT) 3630:Maser 3621:(IOT) 3610:(CFA) 3599:(BWO) 3523:Diode 3470:SEPIC 3450:Boost 3403:TRIAC 3372:(SCR) 3335:(MOV) 3309:(LEC) 3228:(LED) 3187:(UJT) 3176:(SIT) 3170:(PUT) 3113:(BJT) 3082:(TFT) 3058:LDMOS 3053:ISFET 2870:S2CID 2493:S2CID 2453:S2CID 2425:arXiv 2417:(PDF) 2360:S2CID 2143:7 May 2120:7 May 1969:S2CID 1897:S2CID 1668:S2CID 1623:S2CID 1394:S2CID 1259:S2CID 1208:(PDF) 1185:(PDF) 1042:(SOI) 799:power 775:Intel 670:16 nm 596:omega 580:Intel 394:Types 337:KAIST 325:Intel 3903:Wire 3861:Fuse 3445:Buck 3298:(IC) 3286:DIAC 3222:(LD) 3091:UMOS 3086:VMOS 3003:PMOS 2998:NMOS 2983:MOS 2860:ISBN 2833:link 2613:2022 2588:2019 2558:2019 2522:ISBN 2443:ISBN 2352:ISSN 2304:ISBN 2270:ISBN 2145:2011 2122:2011 2097:2011 1959:ISBN 1926:ISBN 1864:ISBN 1613:ISBN 1433:2019 1361:ISBN 1340:2019 1304:2019 1251:ISSN 1241:ISBN 1076:JFET 1061:BSIM 902:3 nm 829:5 nm 785:and 768:Atom 757:SRAM 714:and 666:TSMC 659:TSMC 619:DRAM 592:TSMC 588:volt 525:TSMC 489:The 345:ITRS 313:TSMC 279:and 238:gate 105:NEMS 3465:Ćuk 2852:doi 2809:doi 2485:doi 2435:doi 2395:doi 2344:doi 2168:doi 1951:doi 1889:doi 1658:hdl 1650:doi 1603:hdl 1595:doi 1478:doi 1386:doi 1233:doi 839:of 752:AMD 744:IBM 704:AMD 694:cca 572:IBM 568:AMD 527:'s 519:by 476:SOI 474:An 329:AMD 309:IBM 270:MOS 224:or 3989:: 3839:RF 3588:RF 2868:. 2858:. 2829:}} 2825:{{ 2805:27 2803:. 2799:. 2752:. 2727:. 2709:. 2685:. 2667:. 2648:. 2630:. 2604:. 2574:, 2544:. 2516:. 2491:. 2451:. 2441:. 2433:. 2419:. 2393:. 2383:45 2381:. 2358:. 2350:. 2342:. 2332:27 2330:. 2298:. 2284:^ 2264:. 2237:. 2166:. 2162:. 2105:^ 2062:. 1967:. 1957:. 1920:. 1895:. 1858:. 1666:. 1656:. 1646:30 1644:. 1621:. 1611:. 1601:. 1581:^ 1567:, 1549:. 1476:. 1466:. 1456:47 1454:. 1421:. 1406:^ 1392:. 1326:. 1320:. 1294:. 1257:. 1249:. 1239:. 1160:. 781:, 740:Si 730:A 685:: 627:nm 623:90 570:, 553:nm 549:17 539:, 512:. 390:. 382:, 363:, 339:, 335:, 331:, 327:, 323:, 319:, 315:, 311:, 307:, 303:, 299:, 295:, 261:. 220:, 216:A 3590:) 3586:( 2956:e 2949:t 2942:v 2876:. 2854:: 2835:) 2811:: 2784:. 2770:. 2756:. 2737:. 2713:. 2695:. 2671:. 2652:. 2634:. 2615:. 2560:. 2530:. 2499:. 2487:: 2465:. 2437:: 2427:: 2401:. 2397:: 2389:: 2366:. 2346:: 2338:: 2312:. 2278:. 2247:. 2222:. 2182:. 2170:: 2147:. 2124:. 2099:. 2077:. 2047:. 2022:. 1975:. 1953:: 1934:. 1903:. 1891:: 1872:. 1813:. 1792:. 1771:. 1749:. 1724:. 1699:. 1674:. 1660:: 1652:: 1629:. 1605:: 1597:: 1553:. 1534:. 1509:. 1484:. 1480:: 1462:: 1435:. 1400:. 1388:: 1369:. 1342:. 1306:. 1265:. 1235:: 1216:. 1193:. 1170:. 617:( 245:( 228:( 205:e 198:t 191:v 20:)

Index

Trigate transistor

Nanoelectronics
Molecular scale electronics
Molecular logic gate
Molecular wires
Nanocircuitry
Nanowires
Nanolithography
NEMS
Nanosensor
Moore's law
Multigate device
Semiconductor device fabrication
List of semiconductor scale examples
Nanoionics
Nanophotonics
Nanomechanics
icon
Electronics portal
v
t
e
metal–oxide–semiconductor field-effect transistor
gate
FinFET
GAAFET
transistors
MOS
semiconductor

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑