Knowledge (XXG)

Ultra-high temperature ceramic

Source 📝

2648:. To achieve densification at lower temperatures, several techniques can be employed: additives such as SiC can be used in order to form a liquid phase at the sintering temperature, the surface oxide layer can be removed, or the defect concentration can be increased. SiC can react with the surface oxide layer in order to provide diboride surfaces with higher energy: adding 5–30 vol% SiC has demonstrated improved densification and oxidation resistance of UHTCs. SiC can be added as a powder or a polymer to diboride UHTCs. The addition of SiC as a polymer has several advantages over the more traditional addition of SiC as a powder because SiC forms along the grain boundaries when added as a polymer, which increases measures of fracture toughness (by ~24%). In addition to improved mechanical properties, less SiC needs to be added when using this method, which limits the pathways for oxygen to diffuse into the material and react. Although addition of additives such as SiC can improve densification of UHTC materials, these additives lower the maximum temperature at which UHTCs can operate due to the formation of 2880:
for use in space nuclear power applications. While boron carbide is the most popular material for fast breeder reactors due to its lack of expense, extreme hardness comparable to diamond, and high cross-section, it completely disintegrates after a 5% burnup and is reactive when in contact with refractory metals. Hafnium diboride also suffers from high susceptibility to material degradation with boron transmutation, but its high melting point of 3,380 °C and the large thermal neutron capture cross section of hafnium of 113
1614:
materials. However, the different methods of processing UHTCs can lead to great variation in hardness values. UHTCs exhibit high flexural strengths of > 200 MPa at 1,800 °C, and UHTCs with fine-grained particles exhibit higher flexural strengths than UHTCs with coarse grains. It has been shown that diboride ceramics synthesized as a composite with silicon carbide (SiC) exhibit increased fracture toughness (increase of 20% to 4.33 MPam) relative to the pure diborides. This is due to material
290: 2196:(SHS). This technique takes advantage of the high exothermic energy of the reaction to cause high temperature, fast combustion reactions. Advantages of SHS include higher purity of ceramic products, increased sinterability, and shorter processing times. However, the extremely rapid heating rates can result in incomplete reactions between Zr and B, the formation of stable oxides of Zr, and the retention of 77: 411:
them on modified nuclear ordnance Mk12A reentry vehicles and launching them on Minuteman III ICBMs. Sharp B-1 had a HfB2/SiC nosecone with a tip radius of 3.5 mm which experienced temperatures well above 2,815 °C during reentry, ablating away at an airspeed of 6.9 km/s as predicted; however, it was not recovered and its axially-symmetric cone shape did not provide
36: 2787:/20 vol%SiC can be prepared with 99% density at 2,000 °C in 5 min via spark plasma sintering. ZrB2-SiC composites have also been prepared by spark plasma sintering at 1,400 °C over a period of 9 min. Spark plasma sintering has proven to be a useful technique for the synthesis of UHTCs, especially for preparation of UHTCs with smaller grain sizes. 136: 2831:, and stoichiometric boron content. Boron acts as a "burnable" neutron absorber because its two isotopes, 10B and 11B, both transmute into stable nuclear reaction products upon neutron absorption (4He + 7Li and 12C, respectively) and therefore act as sacrificial materials which protect other components which become more 2766:/20 vol.% SiC by 25%. Sintered density has also been shown to increase with the addition of Fe (up to 10% w/w) and Ni (up to 50% w/w) to achieve densifications of up to 88% at 1,600 °C. More advances in pressureless sintering must be made before it can be considered a viable method for UHTC processing. 2668:
of UHTC pellets obtained from this method. In order to achieve >99% densification from hot pressing, temperatures of 1,800–2,000 °C and pressures of 30 MPa or greater are required. UHTC materials with 20 vol.% SiC and toughened with 5% carbon black as additives exhibit increased densification
1643:
A significant enhancement in hardness (~30%) of (Hf-Ta-Zr-Nb)C material compared to the monolithic UHTCs (HfC, TaC, ZrC, NbC) and in comparison to the hardest monocarbide (HfC) and the binary (Hf-Ta)C was recorded. The mechanism behind this enhancement in hardness maybe because of bonding behavior or
1242:
and HfN have similarly strong covalent bonds but their refractory nature makes them especially difficult to synthesize and process. The stoichiometric nitrogen content can be varied in these complexes based on the synthetic technique utilized; different nitrogen content will give different properties
2879:
Due to the combination of refractory properties, high thermal conductivity, and the advantages of large stoichiometric boron content outlined in the above discussion of integral neutron absorbing fuel pellet cladding, refractory diborides have been used as control rod materials and have been studied
2778:
is suppressed by rapid heating over the range 1,500–1,900 °C; this minimizes the time the material has to coarsen. Higher densities, cleaner grain boundaries, and elimination of surface impurities can all be achieved with spark plasma sintering. Spark plasma sintering also uses a pulsed current
2663:
Hot pressing is a popular method for obtaining densified UHTC materials that relies upon both high temperatures and pressures to produce densified materials. Powder compacts are heated externally and pressure is applied hydraulitically. In order to improve densification during hot pressing, diboride
2753:
by pressureless sintering is very difficult to obtain; Chamberlain et al. have only been able to obtain ~98% densification by heating at 2,150 °C for 9 h (Figure 3). Efforts to control grain size and improve densification have focused on adding third phases to the UHTCs, some examples of these
1624:
The UHTC composites show higher mechanical properties like Tensile strength, Young's modulus, hardness, flexural strength, and fracture toughness at high temperatures as compared to monolithic UHTCs. The high sintering temperature and pressure result in high residual stress in the composites, which
2398:
with B. At temperatures higher than 1600 °C, pure diborides can be obtained from this method. Due to the loss of some boron as boron oxide, excess boron is needed during borothermic reduction. Mechanical milling can lower the reaction temperature required during borothermic reduction. This is
2795:
UHTCs, specifically Hf and Zr based diboride, are being developed to handle the forces and temperatures experienced by leading vehicle edges in atmospheric reentry and sustained hypersonic flight. The surfaces of hypersonic vehicles experience extreme temperatures in excess of 2,500 °C while
1632:
The Young's modulus for TiC-WC (3.5 wt%) - CNT(2 wt%) at 1,600 °C is 428 GPa vs 300 GPa for TiC and the flexural toughness of TiC-WC (3.5 wt%) - CNT (2 wt%) at the same temperature is 8.1 MPa m as compared to TiC which is 3.7 MPa m. For ZrC the fracture toughness at 1,900 °C is 4 MPa m
415:
data needed to evaluate the performance of UHTCs in linear leading edges. To improve the characterization of UHTC mechanical strength and better study their performance, SHARP-B2, was recovered and included four retractable, sharp wedge-like protrusions called "strakes" which each contained three
410:
In order to test real world performance of UHTC materials in reentry environments, NASA Ames conducted two flight experiments in 1997 and 2000. The slender Hypersonic Aero-thermodynamic Research Probes (SHARP B1 and B2) briefly exposed the UHTC materials to actual reentry environments by mounting
2773:
is another method for the processing of UHTC materials. Spark plasma sintering often relies on slightly lower temperatures and significantly reduced processing times compared to hot pressing. During spark plasma sintering, a pulsed direct current passes through graphite punch rods and dies with
2896:
has been used as a drained cathode in the electroreduction of molten Al(III). In drained-cathode processes, aluminum can be produced with an electrode gap of only 0.25 m with an accompanying reduction in required voltage. However, implementation of such technology still faces hurdles: with a
1613:
Table 3 lists UHTC carbides and borides mechanical properties. It is extremely important that UHTCs are able to retain high bending strength and hardness at high temperatures (above 2000 °C). UHTCs generally exhibit hardness above 20 GPa due to the strong covalent bonds present in these
466:, though significant work has continued in characterizing the nitrides, oxides, and carbides of the group four and five elements. In comparison to carbides and nitrides, the diborides tend to have higher thermal conductivity but lower melting points, a tradeoff which gives them good thermal 1628:
At 1,200 °C, the flexural strength of SiC is 170 MPa vs SiC-ZrC (10 wt%) is 350 MPa. At 2,000 °C, Titanium Carbide's flexural strength is 410 MPa vs TiC-WC (5% vol) is 491 MPa vs TiC-SiC (40% vol) is 543 MPa. Similarly the flexural strength for TaC-SiC (20% vol) is 715 MPa at
1553:
resulting from bonding between boron 2p orbitals and metal d orbitals; before group (IV), the number of available electrons in a unit cell is insufficient to fill all bonding orbitals, and beyond it they begin to fill the antibonding orbitals. Both effects reduce the overall
2891:
Titanium diboride is a popular material for handling molten aluminum due to its electrical conductivity, refractory properties, and its ability to wet with molten aluminum providing a superior electrical interface while not contaminating the aluminum with boron or titanium.
2863:
at the end of a fuel cycle. In addition to this deleterious effect of integrating a neutron absorber on the surface of a fuel pellet, boron coatings have the effect of creating a power density bulge in the middle of a nuclear reactor fuel cycle through the superposition of
2664:
powders can undergo milling by attrition to obtain powders of <2μm. Milling also allows for more uniform dispersion of the additive SiC. Hot pressing temperature, pressure, heating rate, reaction atmosphere, and holding times are all factors that affect the density and
2643:
is only achieved at temperatures above 1800 °C once grain boundary diffusion mechanisms become active. Unfortunately, processing of UHTCs at these temperatures results in materials with larger grain sizes and poor mechanical properties including reduced toughness and
2796:
also being exposed to high-temperature, high-flow-rate oxidizing plasma. The material design challenges associated with developing such surfaces have so far limited the design of orbital re-entry bodies and hypersonic air-breathing vehicles such as scramjets and DARPA's
2733:
can lower densification temperatures and can react with surface oxides to promote densification. Hot pressing may result in improved densities for UHTCs, but it is an expensive technique that relies on high temperatures and pressures to provide useful materials.
2200:. Stoichiometric reactions have also been carried out by reaction of attrition milled (wearing materials by grinding) Zr and B powder (and then hot pressing at 600 °C for 6 h), and nanoscale particles have been obtained by reacting attrition milled Zr and B 2638:
Diboride-based UHTCs often require high-temperature and -pressure processing to produce dense, durable materials. The high melting points and strong covalent interactions present in UHTCs make it difficult to achieve uniform densification in these materials.
2803:
Sharp edges dramatically reduce drag, but the current generation of thermal protection system materials are unable to withstand the considerably higher forces and temperatures experienced by sharp leading edges in reentry conditions. The relation between
1515:
In comparison with carbide and nitride-based ceramics, diboride-based UHTCs exhibit higher thermal conductivity (refer to Table 2, where we can see that hafnium diboride has thermal conductivity of 105, 75, 70 W/m*K at different temperature while
2816:, enhancing the fuel efficiency of sustained flight vehicles such as DARPA's HTV-3 and the landing cross-range and operational flexibility of reusable orbital spaceplane concepts being developed such as the Reaction Engines Skylon and Boeing X-33. 382: 2937:
single crystals to 212.96 MPa, with flexural strength highly correlated to the size of grains in the annealed ceramic material. Conductivity at 500 °C was found to be 0.005 Ω cm for the 40% SiC composite, versus 0.16 Ω cm in pure SiC.
1647:
For applications based on combustion harsh environments and aerospace, Monolithic UHTCs are of concern because of their low fracture toughness and brittle behavior. UHTC composites are a potential approach to overcome these deficiencies.
2523:
UHTCs can be prepared from solution-based synthesis methods as well, although few substantial studies have been conducted. Solution-based methods allow for low temperature synthesis of ultrafine UHTC powders. Yan et al. have synthesized
3908:
Fattahi, M.; Asl, M.S.; Delbari, S.A.; Namini, A.S.; Ahmadi, Z.; Mohammadi, M. Role of nano-WC addition on microstructural, mechanical and thermal characteristics of TiC-SiCw composites. Int. J. Refract. Met. Hard Mater. 2020, 90,
2928:
allows for its conductivity to decrease with increasing temperature, preventing uncontrollable electrical discharge while maintaining high operational upper bounds for operation. It was also found that through incorporation of 40%
2897:
reduction in voltage, there is a concomitant reduction in heat generation and better insulation at the top of the reactor is required. In addition to improved insulation, the technology requires better bonding methods between TiB
2740:
is another method for processing and densifying UHTCs. Pressureless sintering involves heating powdered materials in a mold in order to promote atomic diffusion and create a solid material. Compacts are prepared by uniaxial die
2858:
fuel pellets in Westinghouse AP-1000 nuclear reactors. The high thermal neutron absorbance of boron also has the secondary effect of biasing the neutron spectrum to higher energies, so the fuel pellet retains more radioactive
2561:
soon follows. The polymer must be stable, processable, and contain boron and carbon in order to be useful for the reaction. Dinitrile polymers formed from the condensation of dinitrile with decaborane satisfy these criteria.
2207:(10 nm in size). Unfortunately, all of the stoichiometric reaction methods for synthesizing UHTCs employ expensive charge materials, and therefore these methods are not useful for large-scale or industrial applications. 378:, with research at the center continuing to the present through funding from the NASA Fundamental Aeronautics Program. UHTCs also saw expanded use in varied environments, from nuclear engineering to aluminum production. 4781:
Guron, Marta M., Myung Jong Kim, and Larry G. Sneddon. (2008). "A Simple Polymeric Precursor Strategy for the Syntheses of Complex Zirconium and Hafnium‐Based Ultra High‐Temperature Silicon‐Carbide Composite Ceramics".
2378:
phases have been formed using a plasma voltage and current of 50 V and 500 A, respectively. These coating materials exhibit uniform distribution of fine particles and porous microstructures, which increased hydrogen
474:
of many UHTCs are shown in Table 1. Despite the high melting points of pure UHTCs, they are unsuitable for many refractory applications because of their high susceptibility to oxidation at elevated temperatures.
1532:
sufficient for the failure of SiC; indeed, it was found that hollow cylinders could not be cracked by an applied radial thermal gradient without first being notched on the inner surface. UHTCs generally exhibit
2602:(PECVD) has also been used to prepare UHTC diborides. After plasma of the reacting gases is created (by radio frequency or direct current discharge between two electrodes) the reaction takes place, followed by 2139:
are greatly enhanced through the inclusion of 30% weight silicon carbide due to the formation of a protective glassy surface layer upon the application of temperatures in excess of 1,000 °C composed of
2144:. To determine the effect of SiC content on diboride oxidation, ManLabs conducted a series of furnace oxidation experiments, in which the oxidation scale thickness as a function of temperature for pure HfB 2552:
can be dispersed in boron carbide polymeric precursors prior to reaction. Heating the reaction mixture to 1,500 °C results in the in situ generation of boron carbide and carbon, and the reduction of
4152:
Liu, Han et al. "Microstructure and mechanical properties of the spark plasma sintered TaC/SiC composites: Effects of sintering temperatures". Journal of The European Ceramic Society 32 (2012): 3617-3625
446:
on the rear strakes was much higher than expected. The material failures were found to result from very large grain sizes in the composites and pure ceramics, with cracks following macroscopic crystal
2544:
at 1,500 °C. The synthesized powders exhibit 200 nm crystallite size and low oxygen content (~ 1.0 wt%). UHTC preparation from polymeric precursors has also been recently investigated. ZrO
2695:-SiC composites at 1800 °C. These additives react with impurities to form a transient liquid phase and promote sintering of the diboride composites. The addition of rare earth oxides such as Y 1267:(5–7.8 x 10 K) and improved oxidation resistance in comparison to other classes of UHTCs. Thermal expansion, thermal conductivity and other data are shown in Table 2. The crystal structures, 1562:
and therefore the enthalpy of formation and melting point. Experimental evidence shows that as one moves across the transition metal series in a given period, the enthalpy of formation of MB
4825:
Zhou, Shanbao; et al. (2010). "Microstructure, mechanical properties and thermal shock resistance of zirconium diboride containing silicon carbide ceramic toughened by carbon black".
2800:
because the bow shock in front of a blunt body protects the underlying surface from the full thermal force of the onrushing plasma with a thick layer of relatively dense and cool plasma.
2286:
mixture yields increased conversion to the diboride, and particle sizes of 25–40 nm at 800 °C. After metallothermic reduction and DSHS reactions, MgO can be separated from ZrB
386: 389: 388: 384: 383: 4095:
Ni, Dewei; Cheng, Yuan; Zhang, Jiaping; Liu, Ji-Xuan; Zou, Ji; Chen, Bowen; Wu, Haoyang; Li, Hejun; Dong, Shaoming; Han, Jiecai; Zhang, Xinghong; Fu, Qiangang; Zhang, Guo-Jun (2022).
390: 2669:
above 1,500 °C, but these materials still require temperatures of 1,900 °C and a pressure of 30 MPa in order to obtain near theoretical densities. Other additives such as
430:
as shown in Figure 1. The vehicle was successfully recovered, despite the fact that it impacted the sea at three times the predicted velocity. The four rear strake segments (HfB
3438:
Cedillos-Barraza, Omar; Manara, Dario; Boboridis, K.; Watkins, Tyson; Grasso, Salvatore; Jayaseelan, Daniel D.; Konings, Rudy J. M.; Reece, Michael J.; Lee, William E. (2016).
3027:
Lawson, John W., Murray S. Daw, and Charles W. Bauschlicher (2011). "Lattice thermal conductivity of ultra high temperature ceramics ZrB2 and HfB2 from atomistic simulations".
2160:/20% SiC has the best oxidation resistance. Extreme heat treatment leads to greater oxidation resistance as well as improved mechanical properties such as fracture resistance. 2749:
that hinders densification occurs during sintering due to the low-intrinsic sinterability and the strong covalent bonds of Ti, Zr, and Hf diborides. Full densification of ZrB
1566:
ceramics increases and peaks at Ti, Zr, and Hf before decaying as the metal gets heavier. As a result, the enthalpies of formation of several important UHTCs are as follows:
154: 2606:. The deposition takes place at lower temperatures compared to traditional CVD because only the plasma needs to be heated to provide sufficient energy for the reaction. ZrB 218:
and are highly resistant to thermal shock, meaning they can withstand sudden and extreme changes in temperature without cracking or breaking. Chemically, they are usually
289: 2363:
and better sinterability. Boron carbide must be subjected to grinding prior to the boron carbide reduction in order to promote oxide reduction and diffusion processes.
4992: 4945: 4811: 4633: 4335: 3822: 3745: 3613: 3424: 3370: 3082: 2218:
to their respective diborides can also be achieved via metallothermic reduction. Inexpensive precursor materials are used and reacted according to the reaction below:
2370:
if a UHTC coating is desired. Precursor or powder particles react with plasma at high temperatures (6,000–15,000 °C) which greatly reduces the reaction time. ZrB
4085:
Vinci A, Zoli L, Sciti D, et al. Mechanical behaviour of carbon fibre reinforced TaC/SiC and ZrC/SiC composites up to 2100 °C. J Eur Ceram Soc 2019, 39: 780–787
3838: 2267:
via SHS often leads to incomplete conversion of reactants, and therefore double SHS (DSHS) has been employed by some researchers. A second SHS reaction with Mg and
387: 49: 2783:
that cleans surface oxides off of the powder. This enhances grain boundary diffusion and migration as well as densification of the material. The UHTC composite ZrB
1243:
to the material, such as how if x exceeds 1.2 in ZrNx, a new optically transparent and electrically insulating phase appears to form. Ceramic borides such as HfB
4474:
Zoli, Luca; Costa, Anna Luisa; Sciti, Diletta (December 2015). "Synthesis of nanosized zirconium diboride powder via oxide-borohydride solid-state reaction".
4244:
Tului, Mario; et al. (2008). "Effects of heat treatments on oxidation resistance and mechanical properties of ultra high temperature ceramic coatings".
3662:
Fahrenholtz, W. G.; et al. (2004). "Processing and characterization of ZrB 2-based ultra-high temperature monolithic and fibrous monolithic ceramics".
2193: 2920:/60%SiC composites have been used as novel conducting ceramic heaters which display high oxidation resistance and melting points, and do not display the 2599: 1640:
The high strength of the materials is obtained due to the high homogeneities of the microstructures and the solute dispersion in the microstructures.
458:
Most research conducted in the last two decades has focused on improving the performance of the two most promising compounds developed by Manlabs, ZrB
4138:
Min-Haga, Eungi and William D. Scott. "Sintering and mechanical properties of ZrC-ZrO2 composites". Journal of Materials Science 23 (1988): 2865-2870
1549:
structures with alternating hexagonal sheets of metal and boride atoms. In such structures, the principal frontier electronic states are bonding and
5198: 5143: 5090: 3875: 3873:
K. Sairam; J.K. Sonber; T.S.R.Ch. Murthy; C. Subramanian; R.K. Fotedar; R.C. Hubli. (2014). "Reaction spark plasma sintering of niobium diboride".
5057: 4918: 4860: 4784: 4536: 4308: 4279: 3275: 2909:
capital cost of the former and the design difficulty of the latter. Composite materials must have each component degrade at the same rate, or the
4161:
Stanley R. Levine and Elizabeth J. OpilaGlenn Research Center, Cleveland, Ohio. Characterization of an Ultra-High Temperature Ceramic Composite.
1274:
Table 2. Thermal expansion coefficients across selected temperature ranges and thermal conductivity at a fixed temperature for selected UHTCs.
4534:
Yan, Yongjie; et al. (2006). "New Route to Synthesize Ultra‐Fine Zirconium Diboride Powders Using Inorganic–Organic Hybrid Precursors".
4355: 3768: 2990: 385: 374:
such as the National Aerospace Plane, Venturestar/X-33, Boeing X-37, and the Air Force's Blackstar program. New research in UHTCs was led by
5055:
Venkateswaran, T.; et al. (2006). "Densification and properties of transition metal borides-based cermets via spark plasma sintering".
4684:
Reich, Silvia; et al. (1992). "Deposition of thin films of Zirconium and Hafnium Boride by plasma enhanced chemical vapor deposition".
3534:
Barraud, Elodie; et al. (2008). "Mechanically activated solid-state synthesis of hafnium carbide and hafnium nitride nanoparticles".
3254:
Bargeron, C. B.; et al. (1993). "Oxidation Mechanisms of Hafnium Carbide and Hafnium Diboride in the Temperature Range 1400 to 21C".
4392:
Karuna Purnapu Rupa, P.; et al. (2010). "Microstructure and Phase Composition of Composite Coatings Formed by Plasma Spraying of ZrO
419:
The SHARP-B2 test that followed permitted recovery of four segmented strakes which had three sections, each consisting of a different HfB
5345: 5158:
Sironen, Charlton (2012). "Neutronic characteristics of using zirconium diboride and gadolinium in a Westinghouse 17x17 fuel assembly".
4402: 55: 2854:
creates a gap between coating and fuel, and increases the fuel's centerline temperature; such cladding materials have been used on the
2805: 4026:"High-temperature Mechanical Properties and Their Influence Mechanisms of ZRC-Modified C-SiC Ceramic Matrix Composites up to 1600 °C" 450:. Since this test, NASA Ames has continued refining production techniques for UHTC synthesis and performing basic research on UHTCs. 317:
properties of binary ceramics, they discovered that the early transition metal borides, carbides, and nitrides had surprisingly high
4447: 1234:
carbides have high melting points due to covalent carbon networks although carbon vacancies often exist in these materials; indeed,
190: 172: 117: 63: 301:
Materials Laboratory to begin funding the development of a new class of materials that could withstand the environment of proposed
5141:
Xu, Liang; et al. (2012). "Study on in-situ synthesis of ZrB2 whiskers in ZrB2 ZrC matrix powder for ceramic cutting tools".
3764:"Ultrahigh temperature ceramics (UHTCs) based on ZrB2 and HfB2 systems: Powder synthesis, densification and mechanical properties" 2986:"Ultrahigh temperature ceramics (UHTCs) based on ZrB2 and HfB2 systems: Powder synthesis, densification and mechanical properties" 2188:
via stoichiometric reaction is thermodynamically favorable (ΔG=−279.6 kJ mol) and therefore, this route can be used to produce ZrB
2921: 3805:
Rhodes, W. H., Clougherty, E. V. and Kalish, D. (1970). "Research and Development of Refractory Oxidation Resistant Diborides".
3730:
Rhodes, W. H., Clougherty, E. V. and Kalish, D. (1968). "Research and Development of Refractory Oxidation Resistant Diborides".
4889: 4827: 4766:
Kaufman, Larry & Edward V. Clougherty. (1963). "Investigation of Boride Compounds for Very High-Temperature Applications".
3536: 3168: 2797: 87: 4916:
Chamberlain, Adam L., William G. Fahrenholtz, and Gregory E. Hilmas. (2005). "Pressureless sintering of zirconium diboride".
3393: 2913:
and thermal conductivity of the surface will be lost with active material still remaining deeper within the electrode plate.
4306:
Chamberlain, Adam L., William G. Fahrenholtz, and Gregory E. Hilmas. (2009). "Reactive hot pressing of zirconium diboride".
2240:
Mg is used as a reactant in order to allow for acid leaching of unwanted oxide products. Stoichiometric excesses of Mg and B
5257:
Cheminant-Coatanlem, P.; et al. (1998). "Microstructure and nanohardness of hafnium diboride after ion irradiations".
4225: 2411:
and B after milling. This method is also not very useful for industrial applications due to the loss of expensive boron as
5118: 4887:
Zhang, Xinghong; et al. (2008). "Effects of Y2O3 on microstructure and mechanical properties of ZrB2- SiC ceramics".
1534: 371: 302: 2955:
Wuchina, E.; et al. (2007). "UHTCs: ultra-high temperature ceramic materials for extreme environment applications".
5390: 5380: 5259: 3664: 3227: 442:/SiC/C) failed. The actual heat flux was 60% less than expected, actual temperatures were much lower than expected, and 4176:"Introduction to H2020 project C3HARME – next generation ceramic composites for combustion harsh environment and space" 2100:, which is rapidly lost at the elevated temperatures UHTCs are most useful at; boron, for example, readily oxidizes to 214:
that can withstand extremely high temperatures without degrading, often above 2,000 °C. They also often have high
4445:
Peshev, P. & G. Bliznakov. (1968). "On the borothermic preparation of titanium, zirconium and hafnium diborides".
3986:
Mao, Haobo; Shen, Fuqiang; Zhang, Yingyi; Wang, Jie; Cui, Kunkun; Wang, Hong; Lv, Tao; Fu, Tao; Tan, Tianbiao (2021).
2568:(CVD) of titanium and zirconium diborides is another method for preparing coatings of UHTCs. These techniques rely on 1625:
can be released at high temperatures. Therefore, the mechanical properties increase with the increase in temperature.
4246: 3225:
Shimada, Shiro. (2002). "A thermoanalytical study on the oxidation of ZrC and HfC powders with formation of carbon".
4959:
Wang, Xin-Gang, Wei-Ming Guo, and Guo-Jun Zhang. (2009). "Pressureless sintering mechanism and microstructure of ZrB
3988:"Microstructure and Mechanical Properties of Carbide Reinforced TiC-Based Ultra-High Temperature Ceramics: A Review" 5385: 3029: 2876:
cermets are being studied which would extend fuel lifetime by superimposing three simultaneous degradation curves.
2808:
and temperature in a leading edge is inversely proportional, i.e. as radius decreases temperature increases during
297:
Beginning in the early 1960s, demand for high-temperature materials by the nascent aerospace industry prompted the
5012: 4723: 2088:
While UHTCs have desirable thermal and mechanical properties, they are susceptible to oxidation at their elevated
281:. However, ongoing research is focused on improving the processing techniques and mechanical properties of UHTCs. 5341:"The Development of an Electroconductive SiC-ZrB Composite through Spark Plasma Sintering under Argon Atmosphere" 2565: 375: 270: 242: 3317:
Jenkins, R.; et al. (1988). "Powder Diffraction File: from the International Center for Diffraction Data".
3273:
Levine, Stanley R.; et al. (2002). "Evaluation of ultra-high temperature ceramics for aeropropulsion use".
2746: 2301:
reduction is one of the most popular methods for UHTC synthesis. The precursor materials for this reaction (ZrO
366:
spaceplane development. Three decades later, however, research interest was rekindled by a string of 1990s era
358:
UHTC research was largely abandoned after the pioneering mid-century Manlabs work due to the completion of the
3214:. 2nd Annual Conference on Composites, Materials and Structures, Cocoa Beach, FL, United States. Vol. 22. 2351:
has also been observed as a product from the reaction, but if the reaction is carried out with 20–25% excess B
2184:. This reaction provides for precise stoichiometric control of the materials. At 2,000 K, the formation of ZrB 1218:
are brittle due to the strong bonds that exist between carbon atoms. The largest class of carbides, including
4647:
Pierson, J. F.; et al. (2000). "Low temperature ZrB2 remote plasma enhanced chemical vapor deposition".
4162: 298: 5173:
Sinclair, John (1974). "Compatibility of Refractory Materials for Nuclear Reactor Poison Control Systems".
4503:"Synthesis of group IV and V metal diboride nanocrystals via borothermal reduction with sodium borohydride" 3807: 5126: 4565: 2737: 2603: 2594:
for coating on metal (and other material) surfaces. Mojima et al. have used CVD to prepare coatings of ZrB
2573: 1252: 266: 5006:
Khanra, A. K. & M. M. Godkhindi. (2005). "Effect of Ni additives on pressureless sintering of SHS ZrB
3353:
Schwetz, K. A., Reinmoth, K. and Lipp (1981). "A. Production and Industrial Uses of Refractory Borides".
2905:
or applying composite coatings each present their own unique challenges, with the high cost and large TiB
2347:
This method requires a slight excess of boron, as some boron is oxidized during boron carbide reduction.
2111:
which becomes a liquid at 490 °C and vaporizes very rapidly above 1,100 °C; in addition, their
5230: 4986: 4939: 4805: 4627: 4329: 3816: 3739: 3607: 3418: 3364: 3326: 3076: 2615: 2610:
has been prepared via PECVD at temperatures lower than 600 °C as a coating on zircalloy. Zirconium
2291: 2201: 2089: 306: 2819:
Zirconium diboride is used in many boiling water reactor fuel assemblies due to its refractory nature,
3440:"Investigating the highest melting temperature materials: A laser melting study of the TaC-HFC system" 95: 5305: 5268: 5021: 4732: 4721:
Sonber, J. K. & A. K. Suri. (2011). "Synthesis and consolidation of zirconium diboride: review".
4695: 4658: 4607: 4411: 4364: 4187: 4037: 3935: 3847: 3777: 3712: 3673: 3451: 3409:
Pankratz, L. B., Stuve, J. M. and Gokcen, N. A. (1984). "Thermodynamic Data for Mineral Technology".
3355: 3137: 3110: 3038: 2999: 2820: 2780: 2723: 2124: 1550: 1211: 676: 521: 318: 215: 5225:
Ewing, Robert A. & Duane Neuman Sunderman. (1961). "Effects of Radiation Upon Hafnium Diboride".
4596:
coated on copper plate by chemical vapour deposition, and its corrosion and oxidation stabilities".
2844: 1621:
Table. 3 Flexural strength, hardness, and Young's Modulus at given temperatures for selected UHTCs.
3199:. 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. 3164:"Overview of United States space propulsion technology and associated space transportation systems" 3133: 2957: 2152:
20 v% SiC were compared. At temperatures greater than 2,100 K the oxide scale thickness on pure HfB
326: 1263:. Borides exhibit high thermal conductivity (on the order of 75–105 W/mK) and low coefficients of 5321: 5037: 4965: 4748: 4686: 4427: 4205: 4118: 3689: 3644: 3064: 2824: 2813: 2681: 1581: 1251:
benefit from very strong bonding between boron atoms as well as strong metal to boron bonds; the
427: 348: 334: 250: 211: 1255:
structure with alternating two-dimensional boron and metal sheets give these materials high but
293:
Figure 1. An UHTC strake composed of three different sections with different UHTC compositions.
17: 4065: 3961: 3516: 3477: 3389: 2809: 2580: 2348: 2261: 2169: 1268: 1264: 1239: 1032: 936: 645: 416:
different UHTC compositions which were extended into the reentry flow at different altitudes.
412: 254: 4854:
Zhu, Tao; et al. (2009). "Densification, microstructure and mechanical properties of ZrB
4174:
Sciti, Diletta; Silvestroni, Laura; Monteverde, Frédéric; Vinci, Antonio; Zoli, Luca (2018).
5354: 5313: 5276: 5207: 5099: 5066: 5029: 4974: 4927: 4898: 4869: 4836: 4793: 4740: 4703: 4666: 4649: 4615: 4598: 4574: 4545: 4514: 4483: 4456: 4419: 4372: 4317: 4288: 4255: 4195: 4108: 4055: 4045: 3999: 3951: 3943: 3884: 3855: 3785: 3681: 3636: 3595: 3584:"Mechanical, Thermal and Oxidation Properties of Refractory Hafnium and Zirconium Compounds" 3545: 3508: 3467: 3459: 3284: 3236: 3177: 3054: 3046: 3007: 2966: 2836: 2380: 1595: 1567: 1555: 1529: 1190: 1166: 1066: 1022: 998: 905: 840: 809: 741: 583: 467: 395: 341: 235: 27:
Type of refractory ceramics that can withstand extremely high temperatures without degrading
5243: 3339: 2742: 2712: 2670: 2367: 2120: 1517: 1260: 1235: 1128: 1097: 967: 871: 775: 614: 552: 258: 5084:
Zhao, Yuan; et al. (2009). "Effect of holding time and pressure on properties of ZrB
4377: 4350: 3790: 3763: 3685: 3012: 2985: 2329:
is prepared at greater than 1,600 °C for at least 1 hour by the following reaction:
2248:
are often required during metallothermic reductions in order to consume all available ZrO
2176:
can be synthesized by stoichiometric reaction between constituent elements, in this case
5309: 5272: 5025: 4736: 4699: 4662: 4611: 4415: 4368: 4191: 4041: 3939: 3851: 3781: 3716: 3677: 3455: 3141: 3114: 3042: 3003: 2359:
remains. Lower synthesis temperatures (~1,600 °C) produce UHTCs that exhibit finer
5070: 4873: 4321: 4292: 4060: 4025: 3956: 3923: 3472: 3439: 3318: 2665: 2587: 2541: 2400: 2322: 2101: 707: 447: 5280: 4840: 4670: 4563:
Su, Kai & Larry G. Sneddon. (1993). "A polymer precursor route to metal borides".
4024:
Sha, Jianjun; Wang, Shouhao; Dai, Jixiang; Zu, Yufei; Li, Wenqiang; Sha, Ruyi (2020).
3922:
Castle, Elinor; Csanádi, Tamás; Grasso, Salvatore; Dusza, Ján; Reece, Michael (2018).
3599: 3582:
Opeka, M. M., Talmy, I. G., Wuchina, E. J., Zaykoski, J. A. and Causey, S. J. (1999).
3288: 3240: 5374: 5325: 5296: 5041: 4978: 4931: 4797: 4752: 4619: 4549: 4487: 4460: 4431: 4209: 4122: 3693: 3648: 3068: 2860: 2855: 2745:, and then the compacts are fired at chosen temperatures in a controlled atmosphere. 2640: 2404: 2314: 2298: 1615: 1207: 471: 359: 310: 5088:-SiC composite fabricated by the spark plasma sintering reactive synthesis method". 1629:
1,900 °C which is about 40% higher than TaC (500 MPa) at the same temperature.
4744: 4501:
Zoli, Luca; Galizia, Pietro; Silvestroni, Laura; Sciti, Diletta (23 January 2018).
4259: 3568: 2843:
must be enriched in 11B because the gaseous helium evolved by 10B strains the fuel
2775: 2569: 262: 5119:"Ultra High Temperature Ceramics: Densification, Properties and Thermal Stability" 4902: 4200: 4175: 3549: 2172:
and thus can be prepared by a wide variety of synthetic methods. UHTCs such as ZrB
2123:, the incorporation of fibers, and the addition of rare-earth hexaborides such as 1545:
UHTCs results from the occupancy of bonding and antibonding levels in hexagonal MB
1528:
was investigated by ManLabs and it was found that these materials did not fail at
5211: 5103: 3888: 2115:
makes them poor engineering materials. Current research targets increasing their
2910: 2865: 2832: 2828: 2611: 2412: 2204: 2112: 1256: 403: 399: 274: 3947: 3627:
Samsonov, G. V. & Serebryakova, T. I. (1978). "Classification of Borides".
3195:
S. M. Johnson; Matt Gasch; J. W. Lawson; M. I. Gusman; M. M. Stackpole (2009).
2888:
makes it an attractive control rod material when clad with a refractory metal.
2470:
using a molar ratio M:B of 1:4 at 700 °C for 30 minutes under argon flow.
5359: 5340: 5317: 4423: 4113: 4096: 3512: 2924:
resistance property of pure silicon carbide. The metal-like conductance of ZrB
2873: 2626:
can occur at temperatures in the range of 150–400 °C in order to prepare
2591: 2537: 2360: 2268: 2253: 1644:
some solid solution hardening effects arising from localized lattice strains.
478:
Table 1. Crystal structures, densities, and melting points of selected UHTCs.
330: 314: 246: 4707: 4273:Çamurlu, H. Erdem & Filippo Maglia. (2009). "Preparation of nano-size ZrB 4223:
Paul, A.; et al. (2012). "UHTC composites for hypersonic applications".
4004: 3987: 3520: 3212:
SHARP-B 2: Flight Test Objectives, Project Implementation and Initial Results
2386:
Another method for the synthesis of UHTCs is the borothermic reduction of ZrO
1520:
and nitride have values only around 20W/m*K). Thermal shock resistance of HfB
5033: 4351:"Preparation of ultrafine boride powders by metallothermic reduction method" 3496: 3059: 2881: 2770: 2627: 2177: 2116: 1559: 1223: 443: 363: 322: 278: 273:. Despite their advantages, UHTCs also have some limitations, such as their 4069: 3965: 3924:"Processing and Properties of High-Entropy Ultra-High Temperature Carbides" 3495:
Li, JinPing; Meng, SongHe; Han, JieCai; Zhang, XingHong (1 November 2008).
3481: 5294:
Welch, Barry J (1999). "Aluminum production paths in the new millennium".
1537:
in the range of 5.9–8.3 × 10 K.The structural and thermal stability of ZrB
4163:
https://ntrs.nasa.gov/api/citations/20040074335/downloads/20040074335.pdf
2885: 2649: 2645: 2197: 1271:, densities, and melting points of different UHTCs are shown in Table 1. 1231: 1227: 470:
and makes them ideal for many high-temperature thermal applications. The
434:) fractured between 14 and 19 seconds into reentry, two mid segments (ZrB 4578: 2590:. This synthesis route can be employed at low temperatures and produces 1238:
has one of the highest melting points of any material. Nitrides such as
4519: 4097:"Advances in ultra-high temperature ceramics, composites, and coatings" 4050: 3640: 2970: 2759: 2755: 1219: 1215: 227: 223: 5188:
Sonber, J. K.; et al. (2010). "Investigations on synthesis of HfB
3463: 3050: 2868:
depletion and faster burning of 11B. To help level out this bulge, ZrB
261:
components. They can be fabricated through various methods, including
4592:
Motojima, Seiji, Kimie Funahashi, and Kazuyuki Kurosawa. (1990). "ZrB
3859: 2933:
flexural strength was reduced from 500 MPa and 359 MPa in SiC and ZrB
219: 4502: 3836:
Munro, R. G. (1997). "Material Properties of a Sintered alpha-SiC".
3583: 3181: 3163: 3197:
Recent Developments in Ultra High Temperature Ceramics at NASA Ames
313:
at Manlabs Incorporated. Through a systematic investigation of the
3304:
Ultra High Temperature Ceramics: Application, Issues and Prospects
2438:
were successfully synthesized by Zoli's Reaction, reduction of TiO
2256:
and can be used to produce the diborides by SHS. Production of ZrB
2181: 380: 231: 241:
UHTCs are used in various high-temperature applications, such as
2812:. Vehicles with "sharp" leading edges have significantly higher 1588: 1574: 367: 2901:
and the bulk graphite electrode substrate. Bonding tiles of TiB
2848: 2366:
Boron carbide reductions can also be carried out via reactive
352: 129: 70: 29: 5199:
International Journal of Refractory Metals and Hard Materials
5144:
International Journal of Refractory Metals and Hard Materials
5091:
International Journal of Refractory Metals and Hard Materials
3876:
International Journal of Refractory Metals and Hard Materials
2762:
in particular has shown an increase in the toughness of HfB
2418:
Nanocrystals of group IV and V metal diborides such as TiB
2131:). It has been found that the oxidative resistance of HfB 4277:
powder by self-propagating high-temperature synthesis".
3497:"Valence electron structure and properties of the ZrO2" 150: 99: 2119:
and oxidation resistance by exploring composites with
5297:
Journal of the Minerals, Metals and Materials Society
3732:
Part II, AFML-TR-68-190, ManLabs Inc., Cambridge, MA
3629:
Sov. Powder Metall. Met.Ceram. (English Translation)
2528:
powders using the inorganic-organic precursors ZrOCl
145:
may be too technical for most readers to understand
5346:Journal of Electrical Engineering & Technology 2884:and low reactivity with refractory metals such as 2774:uniaxial pressure exerted on the sample material. 2691:have also been used during the hot pressing of ZrB 2092:. The metal component oxidizes to a gas such as CO 3501:Science in China Series E: Technological Sciences 438:/SiC) fractured, and no fore strake segments (ZrB 3839:Journal of Physical and Chemical Reference Data 3563:Samsonov, G. V. & Vinitskii, I. M. (1980). 3306:. 2nd Ceramic Leadership Summit, Baltimore, MD. 1618:and a reduction in grain size upon processing. 3757: 3755: 2321:are less expensive than those required by the 370:programs aimed at developing a fully reusable 3157: 3155: 3153: 3151: 3100: 3098: 3096: 3094: 3092: 8: 5192:and development of a new composite with TiSi 4991:: CS1 maint: multiple names: authors list ( 4944:: CS1 maint: multiple names: authors list ( 4810:: CS1 maint: multiple names: authors list ( 4632:: CS1 maint: multiple names: authors list ( 4334:: CS1 maint: multiple names: authors list ( 3821:: CS1 maint: multiple names: authors list ( 3744:: CS1 maint: multiple names: authors list ( 3612:: CS1 maint: multiple names: authors list ( 3423:: CS1 maint: multiple names: authors list ( 3369:: CS1 maint: multiple names: authors list ( 3081:: CS1 maint: multiple names: authors list ( 3386:Ceramic Science for Materials Technologists 2634:Processing of UHTCs and the addition of SiC 2194:self-propagating high-temperature synthesis 64:Learn how and when to remove these messages 4349:Nishiyama, Katsuhiro; et al. (2009). 2614:can also be used as a precursor in PECVD. 5358: 4518: 4376: 4199: 4112: 4059: 4049: 4003: 3955: 3789: 3471: 3058: 3011: 2754:phases include the addition of boron and 2399:due to the increased particle mixing and 2355:C, the ZrC phase disappears, and only ZrB 2156:is thinner than that on pure SiC, and HfB 191:Learn how and when to remove this message 173:Learn how and when to remove this message 157:, without removing the technical details. 118:Learn how and when to remove this message 3388:. Chapman & Hall. pp. 330–343. 2164:Synthesis of diboride (Zr, Hf, Ti) UHTCs 1650: 1633:which increases to 5.8 MPa m for ZrC-ZrO 1276: 480: 288: 94:Relevant discussion may be found on the 5160:University of South California, 1509920 5058:Journal of the European Ceramic Society 4919:Journal of the American Ceramic Society 4861:Journal of the European Ceramic Society 4785:Journal of the American Ceramic Society 4537:Journal of the American Ceramic Society 4507:Journal of the American Ceramic Society 4309:Journal of the European Ceramic Society 4280:Journal of the European Ceramic Society 3276:Journal of the European Ceramic Society 2947: 2656:lowers the operating temperature of ZrB 2586:) in the gaseous phase and use H2 as a 5239: 5228: 4984: 4937: 4803: 4625: 4327: 3814: 3737: 3605: 3416: 3362: 3335: 3324: 3074: 355:were found to be the best performing. 4356:Journal of Physics: Conference Series 4226:The American Ceramic Society Bulletin 4148: 4146: 4144: 4134: 4132: 4081: 4079: 4019: 4017: 4015: 3981: 3979: 3977: 3975: 3917: 3915: 3904: 3902: 3900: 3898: 3769:Journal of Physics: Conference Series 2991:Journal of Physics: Conference Series 2958:The Electrochemical Society Interface 2660:from 3,245 °C to 2,270 °C. 2598:on Cu at 700–900 °C (Figure 2). 2572:and boron halide precursors (such as 155:make it understandable to non-experts 7: 3762:Zhang, Guo-Jun; et al. (2009). 2984:Zhang, Guo-Jun; et al. (2009). 406:technique. 0.41 mm nozzle, 4x speed. 362:missions and the elimination of the 351:containing approximately 20% volume 4403:Journal of Thermal Spray Technology 2652:liquids. The addition of SiC to ZrB 5117:J.F. Justin; A. Jankowiak (2011). 5071:10.1016/j.jeurceramsoc.2005.05.011 4874:10.1016/j.jeurceramsoc.2009.03.008 4322:10.1016/j.jeurceramsoc.2009.07.006 4293:10.1016/j.jeurceramsoc.2008.09.006 3686:10.1023/b:jmsc.0000041691.41116.bf 3411:Bulletin 677, U.S. Bureau of Mines 3256:Johns Hopkins APL Technical Digest 3210:Salute, Joan; et al. (2001). 25: 4963:–SiC ceramics doped with boron". 4841:10.1016/j.matchemphys.2010.03.028 4448:Journal of the Less Common Metals 3707:Bansal, Narottam P., ed. (2004). 3128:Bansal, Narottam P., ed. (2004). 3105:Bansal, Narottam P., ed. (2004). 98:. Please help Knowledge (XXG) by 45:This article has multiple issues. 4979:10.1016/j.scriptamat.2009.03.030 4932:10.1111/j.1551-2916.2005.00739.x 4798:10.1111/j.1551-2916.2007.02217.x 4550:10.1111/j.1551-2916.2006.01269.x 4488:10.1016/j.scriptamat.2015.07.029 3565:Handbook of Refractory Compounds 2922:negative temperature coefficient 2839:. However, the boron in ZrB2|ZrB 134: 75: 34: 4890:Journal of Alloys and Compounds 4828:Materials Chemistry and Physics 4247:Surface and Coatings Technology 3537:Journal of Alloys and Compounds 3169:Journal of Propulsion and Power 2278:as reactants along with the ZrB 204:Ultra-high-temperature ceramics 90:of non-free copyrighted sources 53:or discuss these issues on the 18:Ultra high temperature ceramics 4768:ManLabs. Inc., Cambridge, Mass 4745:10.1179/1743676111y.0000000008 4378:10.1088/1742-6596/176/1/012043 4260:10.1016/j.surfcoat.2008.04.015 3791:10.1088/1742-6596/176/1/012041 3709:Handbook of Ceramic Composites 3130:Handbook of Ceramic Composites 3107:Handbook of Ceramic Composites 3013:10.1088/1742-6596/176/1/012041 2325:and borothermic reactions. ZrB 1535:thermal expansion coefficients 1: 5281:10.1016/s0022-3115(98)00059-2 4903:10.1016/j.jallcom.2007.10.137 4671:10.1016/s0040-6090(99)00721-x 4201:10.1080/17436753.2018.1509822 3600:10.1016/s0955-2219(99)00129-6 3550:10.1016/j.jallcom.2007.02.017 3289:10.1016/s0955-2219(02)00140-1 3241:10.1016/s0167-2738(02)00180-7 5260:Journal of Nuclear Materials 5212:10.1016/j.ijrmhm.2009.09.005 5104:10.1016/j.ijrmhm.2008.02.003 5013:Advances in Applied Ceramics 4724:Advances in Applied Ceramics 4620:10.1016/0040-6090(90)90028-c 4461:10.1016/0022-5088(68)90199-9 4180:Advances in Applied Ceramics 4101:Journal of Advanced Ceramics 3889:10.1016/j.ijrmhm.2013.12.011 3734:. IV: Mechanical Properties. 3665:Journal of Materials Science 3162:Sackheim, Robert L. (2006). 1214:at high temperatures. Metal 4858:–SiCw ceramic composites". 2403:that result from decreased 5407: 3948:10.1038/s41598-018-26827-1 3030:Journal of Applied Physics 5360:10.5370/jeet.2010.5.2.342 5318:10.1007/s11837-999-0036-4 4424:10.1007/s11666-010-9479-y 4114:10.1007/s40145-021-0550-6 3711:. Springer. p. 211. 3513:10.1007/s11431-008-0119-4 3109:. Springer. p. 192. 2566:Chemical vapor deposition 1206:UHTCs all exhibit strong 498: 495: 492: 489: 486: 483: 271:chemical vapor deposition 5339:Shin, Yong-Deok (2010). 4708:10.1002/adma.19920041005 4005:10.3390/coatings11121444 3302:Johnson, Sylvia (2011). 2747:Exaggerated grain growth 1511:Thermodynamic properties 1283:Thermal expansion (10/K) 5034:10.1179/174367606x69898 299:United States Air Force 5238:Cite journal requires 4566:Chemistry of Materials 3334:Cite journal requires 3037:(8): 083507–083507–4. 2738:Pressureless sintering 2297:Synthesis of UHTCs by 2252:. These reactions are 2090:operating temperatures 1663:Flexural Strength(MPa) 1253:hexagonal close-packed 493:Lattice parameters (Å) 407: 294: 267:spark plasma sintering 216:thermal conductivities 100:rewriting this article 3808:Mechanical Properties 3384:McColm, I.C. (1983). 2827:cross-section of 759 2616:Thermal decomposition 2415:during the reaction. 2168:UHTCs possess simple 1609:Mechanical properties 393: 372:hypersonic spaceplane 333:were used. Of these, 307:Boeing X-20 Dyna-Soar 292: 5127:Journal AerospaceLab 3594:(13–14): 2405–2414. 3283:(14–15): 2757–2767. 2821:corrosion resistance 2781:electrical discharge 2630:, conductive films. 2512:+ 4Na(g,l) + 2.5NaBO 2125:lanthanum hexaboride 1660:Young's Modulus(GPa) 1551:antibonding orbitals 1289:Thermal cond. (W/mK) 1212:structural stability 522:Hafnium carbonitride 319:thermal conductivity 102:with your own words. 5391:Composite materials 5381:Aerospace materials 5310:1999JOM....51e..24W 5273:1998JNuM..256..180C 5026:2005AdApC.104..273K 4737:2011AdApC.110..321S 4700:1992AdM.....4..650R 4663:2000TSF...359...68P 4612:1990TSF...189...73M 4579:10.1021/cm00035a013 4416:2010JTST...19..816K 4369:2009JPhCS.176a2043N 4192:2018AdApC.117S..70S 4042:2020Mate...13.1581S 3940:2018NatSR...8.8609C 3852:1997JPCRD..26.1195M 3811:. Part II, Vol. IV. 3782:2009JPhCS.176a2041Z 3717:2005hcc..book.....B 3678:2004JMatS..39.5951F 3456:2016NatSR...637962C 3142:2005hcc..book.....B 3115:2005hcc..book.....B 3043:2011JAP...110h3507L 3004:2009JPhCS.176a2041Z 2814:lift to drag ratios 2806:radius of curvature 2600:Plasma enhanced CVD 2493:(g) (M=Ti, Zr, Hf) 2084:Chemical properties 454:Physical properties 327:mechanical strength 303:hypersonic vehicles 255:hypersonic aircraft 212:refractory ceramics 4966:Scripta Materialia 4687:Advanced Materials 4520:10.1111/jace.15401 4476:Scripta Materialia 4051:10.3390/ma13071581 3928:Scientific Reports 3641:10.1007/bf00796340 3588:J. Eur. Ceram. Soc 3444:Scientific Reports 3228:Solid State Ionics 2971:10.1149/2.F04074IF 2825:neutron-absorption 2170:empirical formulas 1269:lattice parameters 408: 295: 277:and difficulty in 88:close paraphrasing 5386:Ceramic materials 5065:(13): 2431–2440. 4868:(13): 2893–2901. 4573:(11): 1659–1668. 4544:(11): 3585–3588. 4316:(16): 3401–3408. 4254:(18): 4394–4398. 3672:(19): 5951–5957. 3507:(11): 1858–1866. 3464:10.1038/srep37962 3051:10.1063/1.3647754 2835:with exposure to 2810:hypersonic flight 2485:+ 2Na(g,l) + NaBO 2081: 2080: 1530:thermal gradients 1508: 1507: 1292:Temperature (°C) 1265:thermal expansion 1210:which gives them 1199: 1198: 1033:Zirconium dioxide 937:Zirconium nitride 646:Zirconium carbide 490:Crystal structure 413:flexural strength 391: 325:, and reasonable 236:transition metals 201: 200: 193: 183: 182: 175: 128: 127: 120: 68: 16:(Redirected from 5398: 5365: 5364: 5362: 5336: 5330: 5329: 5291: 5285: 5284: 5267:(2–3): 180–188. 5254: 5248: 5247: 5241: 5236: 5234: 5226: 5222: 5216: 5215: 5185: 5179: 5178: 5170: 5164: 5163: 5155: 5149: 5148: 5138: 5132: 5131: 5123: 5114: 5108: 5107: 5081: 5075: 5074: 5052: 5046: 5045: 5003: 4997: 4996: 4990: 4982: 4956: 4950: 4949: 4943: 4935: 4913: 4907: 4906: 4897:(1–2): 506–511. 4884: 4878: 4877: 4851: 4845: 4844: 4835:(2–3): 470–473. 4822: 4816: 4815: 4809: 4801: 4792:(5): 1412–1415. 4778: 4772: 4771: 4763: 4757: 4756: 4718: 4712: 4711: 4681: 4675: 4674: 4650:Thin Solid Films 4644: 4638: 4637: 4631: 4623: 4599:Thin Solid Films 4589: 4583: 4582: 4560: 4554: 4553: 4531: 4525: 4524: 4522: 4513:(6): 2627–2637. 4498: 4492: 4491: 4471: 4465: 4464: 4442: 4436: 4435: 4389: 4383: 4382: 4380: 4346: 4340: 4339: 4333: 4325: 4303: 4297: 4296: 4287:(8): 1501–1506. 4270: 4264: 4263: 4241: 4235: 4234: 4220: 4214: 4213: 4203: 4171: 4165: 4159: 4153: 4150: 4139: 4136: 4127: 4126: 4116: 4092: 4086: 4083: 4074: 4073: 4063: 4053: 4021: 4010: 4009: 4007: 3983: 3970: 3969: 3959: 3919: 3910: 3906: 3893: 3892: 3870: 3864: 3863: 3860:10.1063/1.556000 3846:(5): 1195–1203. 3833: 3827: 3826: 3820: 3812: 3802: 3796: 3795: 3793: 3759: 3750: 3749: 3743: 3735: 3727: 3721: 3720: 3704: 3698: 3697: 3659: 3653: 3652: 3624: 3618: 3617: 3611: 3603: 3579: 3573: 3572: 3560: 3554: 3553: 3544:(1–2): 224–233. 3531: 3525: 3524: 3492: 3486: 3485: 3475: 3435: 3429: 3428: 3422: 3414: 3406: 3400: 3399: 3381: 3375: 3374: 3368: 3360: 3350: 3344: 3343: 3337: 3332: 3330: 3322: 3314: 3308: 3307: 3299: 3293: 3292: 3270: 3264: 3263: 3251: 3245: 3244: 3235:(3–4): 319–326. 3222: 3216: 3215: 3207: 3201: 3200: 3192: 3186: 3185: 3159: 3146: 3145: 3125: 3119: 3118: 3102: 3087: 3086: 3080: 3072: 3062: 3060:2060/20110015597 3024: 3018: 3017: 3015: 2981: 2975: 2974: 2952: 2837:thermal neutrons 2210:Reduction of ZrO 1651: 1556:bonding strength 1286:Temp. range (°C) 1277: 1208:covalent bonding 1167:Vanadium nitride 1067:Tantalum nitride 999:Vanadium carbide 906:Titanium nitride 810:Titanium carbide 742:Zirconium boride 584:Tantalum carbide 481: 468:shock resistance 448:grain boundaries 398:set of fins via 396:hafnium diboride 394:Production of a 392: 321:, resistance to 210:) are a type of 196: 189: 178: 171: 167: 164: 158: 138: 137: 130: 123: 116: 112: 109: 103: 79: 78: 71: 60: 38: 37: 30: 21: 5406: 5405: 5401: 5400: 5399: 5397: 5396: 5395: 5371: 5370: 5369: 5368: 5338: 5337: 5333: 5293: 5292: 5288: 5256: 5255: 5251: 5237: 5227: 5224: 5223: 5219: 5195: 5191: 5187: 5186: 5182: 5172: 5171: 5167: 5157: 5156: 5152: 5140: 5139: 5135: 5121: 5116: 5115: 5111: 5087: 5083: 5082: 5078: 5054: 5053: 5049: 5009: 5005: 5004: 5000: 4983: 4962: 4958: 4957: 4953: 4936: 4915: 4914: 4910: 4886: 4885: 4881: 4857: 4853: 4852: 4848: 4824: 4823: 4819: 4802: 4780: 4779: 4775: 4765: 4764: 4760: 4720: 4719: 4715: 4694:(10): 650–653. 4683: 4682: 4678: 4646: 4645: 4641: 4624: 4595: 4591: 4590: 4586: 4562: 4561: 4557: 4533: 4532: 4528: 4500: 4499: 4495: 4473: 4472: 4468: 4444: 4443: 4439: 4399: 4395: 4391: 4390: 4386: 4348: 4347: 4343: 4326: 4305: 4304: 4300: 4276: 4272: 4271: 4267: 4243: 4242: 4238: 4222: 4221: 4217: 4173: 4172: 4168: 4160: 4156: 4151: 4142: 4137: 4130: 4094: 4093: 4089: 4084: 4077: 4023: 4022: 4013: 3985: 3984: 3973: 3921: 3920: 3913: 3907: 3896: 3872: 3871: 3867: 3835: 3834: 3830: 3813: 3804: 3803: 3799: 3761: 3760: 3753: 3736: 3729: 3728: 3724: 3706: 3705: 3701: 3661: 3660: 3656: 3626: 3625: 3621: 3604: 3581: 3580: 3576: 3562: 3561: 3557: 3533: 3532: 3528: 3494: 3493: 3489: 3437: 3436: 3432: 3415: 3408: 3407: 3403: 3396: 3383: 3382: 3378: 3361: 3356:Radex Rundschau 3352: 3351: 3347: 3333: 3323: 3316: 3315: 3311: 3301: 3300: 3296: 3272: 3271: 3267: 3253: 3252: 3248: 3224: 3223: 3219: 3209: 3208: 3204: 3194: 3193: 3189: 3182:10.2514/1.23257 3161: 3160: 3149: 3136:. p. 198. 3127: 3126: 3122: 3104: 3103: 3090: 3073: 3026: 3025: 3021: 2983: 2982: 2978: 2954: 2953: 2949: 2944: 2936: 2932: 2927: 2919: 2908: 2904: 2900: 2895: 2871: 2852: 2842: 2793: 2786: 2779:to generate an 2765: 2752: 2731: 2727: 2720: 2716: 2710: 2706: 2702: 2698: 2694: 2689: 2685: 2678: 2674: 2659: 2655: 2636: 2625: 2621: 2609: 2597: 2584: 2577: 2560: 2556: 2551: 2547: 2535: 2531: 2527: 2519: 2515: 2511: 2507: 2503: 2499: 2492: 2488: 2484: 2480: 2476: 2469: 2465: 2461: 2457: 2453: 2449: 2445: 2441: 2437: 2433: 2429: 2425: 2421: 2410: 2401:lattice defects 2397: 2393: 2389: 2377: 2373: 2368:plasma spraying 2358: 2354: 2343: 2339: 2335: 2328: 2318: 2312: 2308: 2304: 2289: 2285: 2281: 2276: 2272: 2265: 2259: 2251: 2247: 2243: 2236: 2232: 2228: 2224: 2217: 2213: 2191: 2187: 2175: 2166: 2159: 2155: 2151: 2147: 2143: 2138: 2134: 2130: 2121:silicon carbide 2109: 2105: 2099: 2095: 2086: 1968: 1949: 1930: 1866: 1802: 1738: 1674: 1657:Temperature(°C) 1636: 1611: 1604: 1599: 1592: 1585: 1578: 1571: 1565: 1548: 1544: 1540: 1527: 1523: 1518:hafnium carbide 1513: 1430: 1412: 1394: 1374: 1319: 1300: 1261:single crystals 1250: 1246: 1204: 1191:unstable ? 1140: 1136: 1098:Niobium nitride 1040: 968:Silicon carbide 879: 872:Tantalum boride 848: 783: 776:Titanium boride 749: 715: 677:Hafnium nitride 615:Niobium carbide 553:Hafnium carbide 465: 461: 456: 441: 437: 433: 426: 422: 381: 345: 338: 287: 259:nuclear reactor 257:components and 197: 186: 185: 184: 179: 168: 162: 159: 151:help improve it 148: 139: 135: 124: 113: 107: 104: 93: 80: 76: 39: 35: 28: 23: 22: 15: 12: 11: 5: 5404: 5402: 5394: 5393: 5388: 5383: 5373: 5372: 5367: 5366: 5353:(2): 342–351. 5331: 5286: 5249: 5240:|journal= 5217: 5206:(2): 201–210. 5193: 5189: 5180: 5175:NASA Tm X-2963 5165: 5150: 5133: 5109: 5085: 5076: 5047: 5020:(6): 273–276. 5007: 4998: 4973:(2): 177–180. 4960: 4951: 4926:(2): 450–456. 4908: 4879: 4855: 4846: 4817: 4773: 4758: 4731:(6): 321–334. 4713: 4676: 4639: 4593: 4584: 4555: 4526: 4493: 4466: 4437: 4410:(4): 816–823. 4397: 4393: 4384: 4341: 4298: 4274: 4265: 4236: 4215: 4166: 4154: 4140: 4128: 4087: 4075: 4011: 3971: 3911: 3894: 3865: 3828: 3797: 3751: 3722: 3699: 3654: 3635:(2): 116–120. 3619: 3574: 3555: 3526: 3487: 3430: 3401: 3394: 3376: 3345: 3336:|journal= 3319:Swarthmore, PA 3309: 3294: 3265: 3246: 3217: 3202: 3187: 3147: 3120: 3088: 3019: 2976: 2946: 2945: 2943: 2940: 2934: 2930: 2925: 2917: 2906: 2902: 2898: 2893: 2869: 2850: 2840: 2792: 2789: 2784: 2763: 2758:. Addition of 2750: 2729: 2725: 2718: 2714: 2708: 2704: 2700: 2696: 2692: 2687: 2683: 2676: 2672: 2666:microstructure 2657: 2653: 2635: 2632: 2623: 2619: 2607: 2595: 2588:reducing agent 2582: 2575: 2558: 2554: 2549: 2545: 2542:phenolic resin 2533: 2529: 2525: 2520:(g) (M=Nb,Ta) 2517: 2513: 2509: 2505: 2501: 2497: 2490: 2486: 2482: 2478: 2474: 2467: 2463: 2459: 2455: 2451: 2447: 2443: 2439: 2435: 2431: 2427: 2423: 2419: 2408: 2405:particle sizes 2395: 2391: 2387: 2375: 2371: 2356: 2352: 2341: 2337: 2333: 2326: 2323:stoichiometric 2316: 2310: 2306: 2302: 2287: 2283: 2279: 2274: 2270: 2263: 2257: 2249: 2245: 2241: 2234: 2230: 2226: 2222: 2215: 2211: 2189: 2185: 2173: 2165: 2162: 2157: 2153: 2149: 2145: 2141: 2136: 2132: 2128: 2107: 2103: 2097: 2093: 2085: 2082: 2079: 2078: 2075: 2072: 2069: 2066: 2063: 2062: 2059: 2056: 2053: 2050: 2046: 2045: 2042: 2040: 2037: 2034: 2030: 2029: 2026: 2024: 2021: 2018: 2014: 2013: 2010: 2008: 2005: 2002: 1998: 1997: 1994: 1992: 1989: 1986: 1982: 1981: 1978: 1975: 1972: 1969: 1966: 1962: 1961: 1958: 1956: 1953: 1950: 1947: 1943: 1942: 1939: 1937: 1934: 1931: 1928: 1924: 1923: 1921: 1918: 1916: 1913: 1910: 1909: 1907: 1904: 1901: 1898: 1895: 1894: 1892: 1889: 1886: 1883: 1880: 1879: 1877: 1874: 1871: 1868: 1864: 1860: 1859: 1857: 1854: 1852: 1849: 1846: 1845: 1843: 1840: 1837: 1834: 1831: 1830: 1828: 1825: 1822: 1819: 1816: 1815: 1812: 1809: 1806: 1803: 1800: 1796: 1795: 1793: 1790: 1788: 1785: 1782: 1781: 1779: 1776: 1773: 1770: 1767: 1766: 1764: 1761: 1758: 1755: 1752: 1751: 1749: 1746: 1743: 1740: 1736: 1732: 1731: 1729: 1726: 1724: 1721: 1718: 1717: 1715: 1712: 1709: 1706: 1703: 1702: 1700: 1697: 1694: 1691: 1688: 1687: 1684: 1681: 1678: 1675: 1672: 1668: 1667: 1666:Hardness(GPa) 1664: 1661: 1658: 1655: 1634: 1610: 1607: 1602: 1597: 1590: 1583: 1576: 1569: 1563: 1546: 1542: 1538: 1525: 1521: 1512: 1509: 1506: 1505: 1502: 1499: 1496: 1493: 1489: 1488: 1486: 1484: 1481: 1478: 1474: 1473: 1471: 1469: 1466: 1463: 1459: 1458: 1456: 1454: 1451: 1448: 1444: 1443: 1440: 1437: 1434: 1431: 1428: 1424: 1423: 1421: 1419: 1416: 1413: 1410: 1406: 1405: 1403: 1401: 1398: 1395: 1392: 1388: 1387: 1384: 1381: 1378: 1375: 1372: 1368: 1367: 1364: 1361: 1358: 1355: 1351: 1350: 1347: 1344: 1341: 1338: 1334: 1333: 1330: 1327: 1324: 1321: 1317: 1313: 1312: 1309: 1306: 1304: 1302: 1298: 1294: 1293: 1290: 1287: 1284: 1281: 1248: 1244: 1203: 1200: 1197: 1196: 1193: 1187: 1184: 1181: 1178: 1175: 1172: 1169: 1163: 1162: 1159: 1156: 1153: 1150: 1147: 1144: 1141: 1138: 1134: 1131: 1129:Aluminum oxide 1125: 1124: 1121: 1118: 1115: 1112: 1109: 1106: 1103: 1100: 1094: 1093: 1090: 1087: 1084: 1081: 1078: 1075: 1072: 1069: 1063: 1062: 1059: 1056: 1053: 1050: 1047: 1044: 1041: 1038: 1035: 1029: 1028: 1025: 1019: 1016: 1013: 1010: 1007: 1004: 1001: 995: 994: 991: 988: 985: 982: 979: 976: 973: 970: 964: 963: 960: 957: 954: 951: 948: 945: 942: 939: 933: 932: 929: 926: 923: 920: 917: 914: 911: 908: 902: 901: 898: 895: 892: 889: 886: 883: 880: 877: 874: 868: 867: 864: 861: 858: 855: 852: 849: 846: 843: 841:Niobium boride 837: 836: 833: 830: 827: 824: 821: 818: 815: 812: 806: 805: 802: 799: 796: 793: 790: 787: 784: 781: 778: 772: 771: 768: 765: 762: 759: 756: 753: 750: 747: 744: 738: 737: 734: 731: 728: 725: 722: 719: 716: 713: 710: 708:Hafnium boride 704: 703: 700: 697: 694: 691: 688: 685: 682: 679: 673: 672: 669: 666: 663: 660: 657: 654: 651: 648: 642: 641: 638: 635: 632: 629: 626: 623: 620: 617: 611: 610: 607: 604: 601: 598: 595: 592: 589: 586: 580: 579: 576: 573: 570: 567: 564: 561: 558: 555: 549: 548: 545: 542: 539: 536: 533: 530: 527: 524: 518: 517: 514: 511: 508: 505: 501: 500: 499:Melting point 497: 496:Density (g/cm) 494: 491: 488: 485: 472:melting points 463: 459: 455: 452: 439: 435: 431: 424: 420: 343: 336: 286: 283: 199: 198: 181: 180: 142: 140: 133: 126: 125: 83: 81: 74: 69: 43: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5403: 5392: 5389: 5387: 5384: 5382: 5379: 5378: 5376: 5361: 5356: 5352: 5348: 5347: 5342: 5335: 5332: 5327: 5323: 5319: 5315: 5311: 5307: 5303: 5299: 5298: 5290: 5287: 5282: 5278: 5274: 5270: 5266: 5262: 5261: 5253: 5250: 5245: 5232: 5221: 5218: 5213: 5209: 5205: 5201: 5200: 5184: 5181: 5176: 5169: 5166: 5161: 5154: 5151: 5146: 5145: 5137: 5134: 5130:. 3, AL03-08. 5129: 5128: 5120: 5113: 5110: 5105: 5101: 5097: 5093: 5092: 5080: 5077: 5072: 5068: 5064: 5060: 5059: 5051: 5048: 5043: 5039: 5035: 5031: 5027: 5023: 5019: 5015: 5014: 5002: 4999: 4994: 4988: 4980: 4976: 4972: 4968: 4967: 4955: 4952: 4947: 4941: 4933: 4929: 4925: 4921: 4920: 4912: 4909: 4904: 4900: 4896: 4892: 4891: 4883: 4880: 4875: 4871: 4867: 4863: 4862: 4850: 4847: 4842: 4838: 4834: 4830: 4829: 4821: 4818: 4813: 4807: 4799: 4795: 4791: 4787: 4786: 4777: 4774: 4769: 4762: 4759: 4754: 4750: 4746: 4742: 4738: 4734: 4730: 4726: 4725: 4717: 4714: 4709: 4705: 4701: 4697: 4693: 4689: 4688: 4680: 4677: 4672: 4668: 4664: 4660: 4656: 4652: 4651: 4643: 4640: 4635: 4629: 4621: 4617: 4613: 4609: 4605: 4601: 4600: 4588: 4585: 4580: 4576: 4572: 4568: 4567: 4559: 4556: 4551: 4547: 4543: 4539: 4538: 4530: 4527: 4521: 4516: 4512: 4508: 4504: 4497: 4494: 4489: 4485: 4481: 4477: 4470: 4467: 4462: 4458: 4454: 4450: 4449: 4441: 4438: 4433: 4429: 4425: 4421: 4417: 4413: 4409: 4405: 4404: 4388: 4385: 4379: 4374: 4370: 4366: 4363:(1): 012043. 4362: 4358: 4357: 4352: 4345: 4342: 4337: 4331: 4323: 4319: 4315: 4311: 4310: 4302: 4299: 4294: 4290: 4286: 4282: 4281: 4269: 4266: 4261: 4257: 4253: 4249: 4248: 4240: 4237: 4232: 4228: 4227: 4219: 4216: 4211: 4207: 4202: 4197: 4193: 4189: 4185: 4181: 4177: 4170: 4167: 4164: 4158: 4155: 4149: 4147: 4145: 4141: 4135: 4133: 4129: 4124: 4120: 4115: 4110: 4106: 4102: 4098: 4091: 4088: 4082: 4080: 4076: 4071: 4067: 4062: 4057: 4052: 4047: 4043: 4039: 4035: 4031: 4027: 4020: 4018: 4016: 4012: 4006: 4001: 3997: 3993: 3989: 3982: 3980: 3978: 3976: 3972: 3967: 3963: 3958: 3953: 3949: 3945: 3941: 3937: 3933: 3929: 3925: 3918: 3916: 3912: 3905: 3903: 3901: 3899: 3895: 3890: 3886: 3882: 3878: 3877: 3869: 3866: 3861: 3857: 3853: 3849: 3845: 3841: 3840: 3832: 3829: 3824: 3818: 3810: 3809: 3801: 3798: 3792: 3787: 3783: 3779: 3776:(1): 012041. 3775: 3771: 3770: 3765: 3758: 3756: 3752: 3747: 3741: 3733: 3726: 3723: 3718: 3714: 3710: 3703: 3700: 3695: 3691: 3687: 3683: 3679: 3675: 3671: 3667: 3666: 3658: 3655: 3650: 3646: 3642: 3638: 3634: 3630: 3623: 3620: 3615: 3609: 3601: 3597: 3593: 3589: 3585: 3578: 3575: 3570: 3566: 3559: 3556: 3551: 3547: 3543: 3539: 3538: 3530: 3527: 3522: 3518: 3514: 3510: 3506: 3502: 3498: 3491: 3488: 3483: 3479: 3474: 3469: 3465: 3461: 3457: 3453: 3449: 3445: 3441: 3434: 3431: 3426: 3420: 3412: 3405: 3402: 3397: 3391: 3387: 3380: 3377: 3372: 3366: 3358: 3357: 3349: 3346: 3341: 3328: 3320: 3313: 3310: 3305: 3298: 3295: 3290: 3286: 3282: 3278: 3277: 3269: 3266: 3261: 3257: 3250: 3247: 3242: 3238: 3234: 3230: 3229: 3221: 3218: 3213: 3206: 3203: 3198: 3191: 3188: 3183: 3179: 3175: 3171: 3170: 3165: 3158: 3156: 3154: 3152: 3148: 3143: 3139: 3135: 3131: 3124: 3121: 3116: 3112: 3108: 3101: 3099: 3097: 3095: 3093: 3089: 3084: 3078: 3070: 3066: 3061: 3056: 3052: 3048: 3044: 3040: 3036: 3032: 3031: 3023: 3020: 3014: 3009: 3005: 3001: 2998:(1): 012041. 2997: 2993: 2992: 2987: 2980: 2977: 2972: 2968: 2964: 2960: 2959: 2951: 2948: 2941: 2939: 2923: 2914: 2912: 2889: 2887: 2883: 2877: 2875: 2867: 2862: 2857: 2856:uranium oxide 2853: 2846: 2838: 2834: 2830: 2826: 2822: 2817: 2815: 2811: 2807: 2801: 2799: 2790: 2788: 2782: 2777: 2772: 2769:Spark plasma 2767: 2761: 2757: 2748: 2744: 2739: 2735: 2732: 2721: 2690: 2679: 2667: 2661: 2651: 2647: 2642: 2641:Densification 2633: 2631: 2629: 2617: 2613: 2605: 2601: 2593: 2589: 2585: 2578: 2571: 2567: 2563: 2543: 2539: 2521: 2494: 2471: 2416: 2414: 2406: 2402: 2384: 2382: 2369: 2364: 2362: 2350: 2345: 2340:C + 3C → 2ZrB 2330: 2324: 2320: 2300: 2299:boron carbide 2295: 2293: 2292:acid leaching 2277: 2266: 2255: 2238: 2219: 2208: 2206: 2203: 2199: 2195: 2183: 2179: 2171: 2163: 2161: 2148:, SiC and HfB 2126: 2122: 2118: 2114: 2110: 2091: 2083: 2076: 2073: 2070: 2067: 2065: 2064: 2060: 2057: 2054: 2051: 2048: 2047: 2043: 2041: 2038: 2035: 2032: 2031: 2027: 2025: 2022: 2019: 2016: 2015: 2011: 2009: 2006: 2003: 2000: 1999: 1995: 1993: 1990: 1987: 1984: 1983: 1979: 1976: 1973: 1970: 1964: 1963: 1959: 1957: 1954: 1951: 1945: 1944: 1940: 1938: 1935: 1932: 1926: 1925: 1922: 1919: 1917: 1914: 1912: 1911: 1908: 1905: 1902: 1899: 1897: 1896: 1893: 1890: 1887: 1884: 1882: 1881: 1878: 1875: 1872: 1869: 1862: 1861: 1858: 1855: 1853: 1850: 1848: 1847: 1844: 1841: 1838: 1835: 1833: 1832: 1829: 1826: 1823: 1820: 1818: 1817: 1813: 1810: 1807: 1804: 1798: 1797: 1794: 1791: 1789: 1786: 1784: 1783: 1780: 1777: 1774: 1771: 1769: 1768: 1765: 1762: 1759: 1756: 1754: 1753: 1750: 1747: 1744: 1741: 1734: 1733: 1730: 1727: 1725: 1722: 1720: 1719: 1716: 1713: 1710: 1707: 1705: 1704: 1701: 1698: 1695: 1692: 1690: 1689: 1685: 1682: 1679: 1676: 1670: 1669: 1665: 1662: 1659: 1656: 1653: 1652: 1649: 1645: 1641: 1638: 1630: 1626: 1622: 1619: 1617: 1616:densification 1608: 1606: 1600: 1593: 1586: 1579: 1572: 1561: 1557: 1552: 1536: 1531: 1519: 1510: 1503: 1500: 1497: 1494: 1491: 1490: 1487: 1485: 1482: 1479: 1476: 1475: 1472: 1470: 1467: 1464: 1461: 1460: 1457: 1455: 1452: 1449: 1446: 1445: 1441: 1438: 1435: 1432: 1426: 1425: 1422: 1420: 1417: 1414: 1408: 1407: 1404: 1402: 1399: 1396: 1390: 1389: 1385: 1382: 1379: 1376: 1370: 1369: 1365: 1362: 1359: 1356: 1353: 1352: 1348: 1345: 1342: 1339: 1336: 1335: 1331: 1328: 1325: 1322: 1315: 1314: 1310: 1307: 1305: 1303: 1296: 1295: 1291: 1288: 1285: 1282: 1279: 1278: 1275: 1272: 1270: 1266: 1262: 1258: 1254: 1241: 1237: 1233: 1229: 1225: 1221: 1217: 1213: 1209: 1201: 1194: 1192: 1188: 1185: 1182: 1179: 1176: 1173: 1170: 1168: 1165: 1164: 1160: 1157: 1154: 1151: 1148: 1145: 1142: 1132: 1130: 1127: 1126: 1122: 1119: 1116: 1113: 1110: 1107: 1104: 1101: 1099: 1096: 1095: 1091: 1088: 1085: 1082: 1079: 1076: 1073: 1070: 1068: 1065: 1064: 1060: 1057: 1054: 1051: 1048: 1045: 1042: 1036: 1034: 1031: 1030: 1026: 1024: 1020: 1017: 1014: 1011: 1008: 1005: 1002: 1000: 997: 996: 992: 989: 986: 983: 980: 977: 974: 971: 969: 966: 965: 961: 958: 955: 952: 949: 946: 943: 940: 938: 935: 934: 930: 927: 924: 921: 918: 915: 912: 909: 907: 904: 903: 899: 896: 893: 890: 887: 884: 881: 875: 873: 870: 869: 865: 862: 859: 856: 853: 850: 844: 842: 839: 838: 834: 831: 828: 825: 822: 819: 816: 813: 811: 808: 807: 803: 800: 797: 794: 791: 788: 785: 779: 777: 774: 773: 769: 766: 763: 760: 757: 754: 751: 745: 743: 740: 739: 735: 732: 729: 726: 723: 720: 717: 711: 709: 706: 705: 701: 698: 695: 692: 689: 686: 683: 680: 678: 675: 674: 670: 667: 664: 661: 658: 655: 652: 649: 647: 644: 643: 639: 636: 633: 630: 627: 624: 621: 618: 616: 613: 612: 608: 605: 602: 599: 596: 593: 590: 587: 585: 582: 581: 577: 574: 571: 568: 565: 562: 559: 556: 554: 551: 550: 546: 543: 540: 537: 534: 531: 528: 525: 523: 520: 519: 515: 512: 509: 506: 503: 502: 482: 479: 476: 473: 469: 453: 451: 449: 445: 429: 417: 414: 405: 401: 397: 379: 377: 373: 369: 365: 361: 360:Space Shuttle 356: 354: 350: 346: 339: 332: 328: 324: 320: 316: 312: 311:Space Shuttle 308: 304: 300: 291: 284: 282: 280: 276: 272: 268: 264: 260: 256: 252: 248: 244: 239: 237: 233: 229: 225: 221: 217: 213: 209: 205: 195: 192: 177: 174: 166: 156: 152: 146: 143:This article 141: 132: 131: 122: 119: 111: 101: 97: 91: 89: 84:This article 82: 73: 72: 67: 65: 58: 57: 52: 51: 46: 41: 32: 31: 19: 5350: 5344: 5334: 5304:(5): 24–28. 5301: 5295: 5289: 5264: 5258: 5252: 5231:cite journal 5220: 5203: 5197: 5183: 5174: 5168: 5159: 5153: 5142: 5136: 5125: 5112: 5095: 5089: 5079: 5062: 5056: 5050: 5017: 5011: 5001: 4987:cite journal 4970: 4964: 4954: 4940:cite journal 4923: 4917: 4911: 4894: 4888: 4882: 4865: 4859: 4849: 4832: 4826: 4820: 4806:cite journal 4789: 4783: 4776: 4767: 4761: 4728: 4722: 4716: 4691: 4685: 4679: 4657:(1): 68–76. 4654: 4648: 4642: 4628:cite journal 4606:(1): 73–79. 4603: 4597: 4587: 4570: 4564: 4558: 4541: 4535: 4529: 4510: 4506: 4496: 4479: 4475: 4469: 4452: 4446: 4440: 4407: 4401: 4400:C Powders". 4387: 4360: 4354: 4344: 4330:cite journal 4313: 4307: 4301: 4284: 4278: 4268: 4251: 4245: 4239: 4230: 4224: 4218: 4183: 4179: 4169: 4157: 4104: 4100: 4090: 4033: 4029: 3998:(12): 1444. 3995: 3991: 3931: 3927: 3880: 3874: 3868: 3843: 3837: 3831: 3817:cite journal 3806: 3800: 3773: 3767: 3740:cite journal 3731: 3725: 3708: 3702: 3669: 3663: 3657: 3632: 3628: 3622: 3608:cite journal 3591: 3587: 3577: 3569:Plenum Press 3564: 3558: 3541: 3535: 3529: 3504: 3500: 3490: 3447: 3443: 3433: 3419:cite journal 3410: 3404: 3385: 3379: 3365:cite journal 3354: 3348: 3327:cite journal 3312: 3303: 3297: 3280: 3274: 3268: 3259: 3255: 3249: 3232: 3226: 3220: 3211: 3205: 3196: 3190: 3173: 3167: 3129: 3123: 3106: 3077:cite journal 3034: 3028: 3022: 2995: 2989: 2979: 2965:(4): 30–36. 2962: 2956: 2950: 2915: 2890: 2878: 2818: 2802: 2794: 2791:Applications 2776:Grain growth 2768: 2736: 2662: 2637: 2570:metal halide 2564: 2522: 2495: 2472: 2417: 2385: 2365: 2346: 2331: 2296: 2239: 2220: 2209: 2205:crystallites 2167: 2087: 1646: 1642: 1639: 1631: 1627: 1623: 1620: 1612: 1514: 1273: 1259:strength as 1205: 477: 457: 418: 409: 357: 305:such as the 296: 263:hot pressing 243:heat shields 240: 207: 203: 202: 187: 169: 163:January 2023 160: 144: 114: 108:January 2023 105: 85: 61: 54: 48: 47:Please help 44: 5098:: 177–180. 4482:: 100–103. 4186:: s70–s75. 4036:(7): 1581. 3934:(1): 8609. 3883:: 259–262. 2911:wettability 2833:radioactive 2612:borohydride 2413:boron oxide 2361:grain sizes 2233:+ 5Mg → ZrB 2113:brittleness 1637:(40 wt.%). 1453:1,027–2,027 1436:1,027–2,027 1257:anisotropic 1043:Monoclinic 975:Polymorphic 404:3D Printing 400:robocasting 331:grain sizes 329:when small 275:brittleness 5375:Categories 3395:0412003511 3359:: 568–585. 2942:References 2743:compaction 2604:deposition 2592:thin films 2538:boric acid 2381:flow rates 2254:exothermic 1686:21.2–28.4 349:composites 315:refractory 247:spacecraft 50:improve it 5326:110543047 5042:137453717 4753:136927764 4455:: 23–32. 4432:136019792 4210:139891152 4123:245426945 4030:Materials 3694:135860255 3649:137246182 3521:1862-281X 3450:: 37962. 3413:: 98–102. 3069:121755388 2771:sintering 2628:amorphous 2618:of Zr(BH) 2504:+ 6.5NaBH 2466:with NaBH 2202:precursor 2117:toughness 1560:unit cell 1326:400–1,600 1202:Structure 882:Hexagonal 851:Hexagonal 786:Hexagonal 752:Hexagonal 718:Hexagonal 444:heat flux 428:composite 376:NASA Ames 364:Air force 323:oxidation 279:machining 253:linings, 234:of early 96:talk page 86:contains 56:talk page 4233:: 22–28. 4107:: 1–56. 4070:32235467 3992:Coatings 3966:29872126 3482:27905481 3262:: 29–35. 3176:: 1310. 3134:Springer 2886:tungsten 2650:eutectic 2646:hardness 2394:, or HfO 2290:by mild 2198:porosity 1654:Material 1498:20–1,500 1483:20–1,500 1468:20–1,500 1418:20–2,205 1400:20–2,205 1380:20–2,205 1360:20–1,500 1343:20–1,000 1280:Material 1216:carbides 1023:unstable 484:Material 309:and the 228:nitrides 224:carbides 5306:Bibcode 5269:Bibcode 5022:Bibcode 4733:Bibcode 4696:Bibcode 4659:Bibcode 4608:Bibcode 4412:Bibcode 4365:Bibcode 4188:Bibcode 4061:7177464 4038:Bibcode 3957:5988827 3936:Bibcode 3909:105248. 3848:Bibcode 3778:Bibcode 3713:Bibcode 3674:Bibcode 3473:5131352 3452:Bibcode 3138:Bibcode 3111:Bibcode 3039:Bibcode 3000:Bibcode 2823:, high- 2756:iridium 2548:and HfO 2477:+ 3NaBH 2374:and ZrO 2237:+ 5MgO 2214:and HfO 2135:and ZrB 1867:–20%SiC 1739:–20%SiC 1601:> VB 1558:in the 1541:and HfB 1524:and ZrB 1495:1.1–5.5 1320:–20%SiC 1301:–20%SiC 1247:and ZrB 981:Various 487:Formula 462:and HfB 285:History 251:furnace 220:borides 149:Please 5324:  5040:  4751:  4430:  4208:  4121:  4068:  4058:  3964:  3954:  3692:  3647:  3519:  3480:  3470:  3392:  3067:  2845:pellet 2622:to ZrB 2557:to ZrB 2407:of ZnO 2344:+ 4CO 1960:20.25 1504:1,500 1442:2,027 1332:1,000 1311:1,000 1189:2,050 1155:3.987 1152:4.750 1149:4.750 1146:4.750 1092:4,892 1061:4,919 1058:2,715 1021:2,810 993:4,613 962:5,342 931:5,342 900:5,504 866:3,050 835:5,612 804:5,837 770:5,873 736:6,116 702:6,125 671:6,152 609:6,814 578:7,156 547:7,430 544:4,110 541:12.65 529:Cubic 423:or ZrB 269:, and 232:oxides 230:, and 5322:S2CID 5122:(PDF) 5038:S2CID 4749:S2CID 4428:S2CID 4396:and B 4206:S2CID 4119:S2CID 3690:S2CID 3645:S2CID 3065:S2CID 2882:barns 2829:barns 2516:+ 13H 2508:→ 2MB 2446:, HfO 2442:, ZrO 2434:, TaB 2430:, NbB 2426:, HfB 2422:, ZrB 2390:, TiO 2260:from 2096:or NO 2068:1,000 2044:18.2 2028:30.0 2012:27.0 1996:26.0 1980:33.0 1941:25.0 1915:1,800 1900:1,400 1851:1,800 1836:1,400 1814:28.0 1787:1,800 1772:1,400 1723:1,800 1708:1,400 1594:> 1587:> 1580:> 1573:> 1323:5–7.8 1174:Cubic 1161:3762 1158:2072 1120:2,573 1117:8.470 1105:Cubic 1089:2,700 1086:14.30 1083:4.330 1080:4.330 1077:4.330 1074:Cubic 1055:5.68 1006:Cubic 990:2,545 959:2,950 953:4.578 950:4.578 947:4.578 928:2,950 922:4.242 919:4.242 916:4.242 897:3,040 894:12.54 891:3.227 885:3.098 860:3.311 854:3.085 832:3,100 826:4.327 823:4.327 820:4.327 817:Cubic 801:3,225 795:3.230 789:3.030 767:3,245 761:3.530 755:3.169 733:3,380 730:11.19 727:3.476 721:3.142 699:3,385 693:4.525 690:4.525 687:4.525 668:3,400 662:4.693 659:4.693 656:4.693 653:Cubic 637:3,490 634:7.820 622:Cubic 606:3,768 603:14.50 600:4.455 597:4.455 594:4.455 591:Cubic 575:3,958 572:12.76 569:4.638 566:4.638 563:4.638 526:HfCN 516:(°F) 208:UHTCs 5244:help 4993:link 4946:link 4812:link 4634:link 4336:link 4066:PMID 3962:PMID 3823:link 3746:link 3614:link 3517:ISSN 3478:PMID 3425:link 3390:ISBN 3371:link 3340:help 3083:link 2722:and 2703:, Yb 2680:and 2579:and 2574:TiCl 2540:and 2489:+ 6H 2481:→ MB 2458:, Ta 2450:, Nb 2332:2ZrO 2313:and 2309:/HfO 2305:/TiO 2282:/ZrO 2180:and 2127:(LaB 2077:8.9 1501:26.3 1439:36.2 1386:800 1366:800 1349:800 1230:and 1186:6.13 1143:HCP 1018:5.77 987:3.21 956:7.29 925:5.39 863:6.97 829:4.94 798:4.52 764:6.10 696:13.9 665:6.56 513:(°C) 402:, a 368:NASA 340:and 245:for 5355:doi 5314:doi 5277:doi 5265:256 5208:doi 5196:". 5100:doi 5067:doi 5030:doi 5018:104 5010:". 4975:doi 4928:doi 4899:doi 4895:465 4870:doi 4837:doi 4833:122 4794:doi 4741:doi 4729:110 4704:doi 4667:doi 4655:359 4616:doi 4604:189 4575:doi 4546:doi 4515:doi 4511:101 4484:doi 4480:109 4457:doi 4420:doi 4373:doi 4361:176 4318:doi 4289:doi 4256:doi 4252:202 4196:doi 4184:117 4109:doi 4056:PMC 4046:doi 4000:doi 3952:PMC 3944:doi 3885:doi 3856:doi 3786:doi 3774:176 3682:doi 3637:doi 3596:doi 3546:doi 3542:456 3509:doi 3468:PMC 3460:doi 3285:doi 3237:doi 3233:149 3178:doi 3055:hdl 3047:doi 3035:110 3008:doi 2996:176 2967:doi 2929:ZrB 2916:ZrB 2892:TiB 2864:235 2859:239 2847:of 2798:HTV 2581:BCl 2553:ZrO 2536:O, 2532:•8H 2524:ZrB 2349:ZrC 2336:+ B 2262:ZrO 2225:+ B 2221:ZrO 2192:by 2140:SiO 2074:397 2071:392 2061:32 2058:359 2055:415 2049:SiC 2039:285 2033:TaC 2023:451 2017:TiC 2007:348 2001:ZrC 1991:352 1985:HfC 1977:370 1974:551 1965:TiB 1955:539 1946:NbB 1936:257 1927:TaB 1920:270 1906:340 1903:430 1891:450 1888:500 1885:800 1876:400 1873:540 1863:ZrB 1856:200 1842:150 1839:360 1827:430 1824:480 1821:800 1811:380 1808:500 1799:ZrB 1792:280 1778:180 1775:410 1763:380 1760:530 1757:800 1748:420 1745:540 1735:HfB 1728:280 1714:170 1711:300 1699:570 1696:485 1693:800 1683:480 1680:530 1671:HfB 1596:NbB 1589:TaB 1582:ZrB 1575:TiB 1568:HfB 1492:SiC 1480:6.3 1477:TaC 1465:7.7 1462:TiC 1450:5.2 1447:ZrC 1433:8.4 1427:TaB 1415:8.3 1409:ZrB 1397:8.6 1391:TiB 1377:7.6 1371:HfB 1357:6.6 1354:HfC 1340:6.5 1337:HfN 1316:ZrB 1297:HfB 1240:ZrN 1236:HfC 1102:NbN 1071:TaN 1037:ZrO 972:SiC 944:FCC 941:ZrN 913:FCC 910:TiN 876:TaB 845:NbB 814:TiC 780:TiB 746:ZrB 712:HfB 684:FCC 681:HfN 650:ZrC 619:NbC 588:TaC 560:FCC 557:HfC 353:SiC 347:in 342:HfB 335:ZrB 153:to 5377:: 5349:. 5343:. 5320:. 5312:. 5302:51 5300:. 5275:. 5263:. 5235:: 5233:}} 5229:{{ 5204:28 5202:. 5124:. 5096:27 5094:. 5063:26 5061:. 5036:. 5028:. 5016:. 4989:}} 4985:{{ 4971:61 4969:. 4942:}} 4938:{{ 4924:89 4922:. 4893:. 4866:29 4864:. 4831:. 4808:}} 4804:{{ 4790:91 4788:. 4747:. 4739:. 4727:. 4702:. 4690:. 4665:. 4653:. 4630:}} 4626:{{ 4614:. 4602:. 4569:. 4542:89 4540:. 4509:. 4505:. 4478:. 4453:14 4451:. 4426:. 4418:. 4408:19 4406:. 4371:. 4359:. 4353:. 4332:}} 4328:{{ 4314:29 4312:. 4285:29 4283:. 4250:. 4231:91 4229:. 4204:. 4194:. 4182:. 4178:. 4143:^ 4131:^ 4117:. 4105:11 4103:. 4099:. 4078:^ 4064:. 4054:. 4044:. 4034:13 4032:. 4028:. 4014:^ 3996:11 3994:. 3990:. 3974:^ 3960:. 3950:. 3942:. 3930:. 3926:. 3914:^ 3897:^ 3881:43 3879:. 3854:. 3844:26 3842:. 3819:}} 3815:{{ 3784:. 3772:. 3766:. 3754:^ 3742:}} 3738:{{ 3688:. 3680:. 3670:39 3668:. 3643:. 3633:17 3631:. 3610:}} 3606:{{ 3592:19 3590:. 3586:. 3567:. 3540:. 3515:. 3505:51 3503:. 3499:. 3476:. 3466:. 3458:. 3446:. 3442:. 3421:}} 3417:{{ 3367:}} 3363:{{ 3331:: 3329:}} 3325:{{ 3281:22 3279:. 3260:14 3258:. 3231:. 3174:22 3172:. 3166:. 3150:^ 3132:. 3091:^ 3079:}} 3075:{{ 3063:. 3053:. 3045:. 3033:. 3006:. 2994:. 2988:. 2963:16 2961:. 2874:Gd 2861:Pu 2849:UO 2760:Ir 2724:Nd 2713:La 2711:, 2671:Al 2473:MO 2454:BO 2383:. 2319:C) 2294:. 2273:BO 2178:Zr 2052:23 2036:23 2020:23 2004:23 1988:23 1971:23 1952:23 1933:23 1870:23 1805:23 1742:23 1677:23 1605:. 1383:70 1363:30 1346:22 1329:78 1308:62 1232:Ta 1228:Ti 1226:, 1224:Zr 1222:, 1220:Hf 1195:- 1171:VN 1133:Al 1123:- 1052:- 1049:- 1046:- 1027:- 1003:VC 640:- 538:– 535:– 532:– 265:, 249:, 238:. 226:, 222:, 59:. 5363:. 5357:: 5351:5 5328:. 5316:: 5308:: 5283:. 5279:: 5271:: 5246:) 5242:( 5214:. 5210:: 5194:2 5190:2 5177:. 5162:. 5147:. 5106:. 5102:: 5086:2 5073:. 5069:: 5044:. 5032:: 5024:: 5008:2 4995:) 4981:. 4977:: 4961:2 4948:) 4934:. 4930:: 4905:. 4901:: 4876:. 4872:: 4856:2 4843:. 4839:: 4814:) 4800:. 4796:: 4770:. 4755:. 4743:: 4735:: 4710:. 4706:: 4698:: 4692:4 4673:. 4669:: 4661:: 4636:) 4622:. 4618:: 4610:: 4594:2 4581:. 4577:: 4571:5 4552:. 4548:: 4523:. 4517:: 4490:. 4486:: 4463:. 4459:: 4434:. 4422:: 4414:: 4398:4 4394:2 4381:. 4375:: 4367:: 4338:) 4324:. 4320:: 4295:. 4291:: 4275:2 4262:. 4258:: 4212:. 4198:: 4190:: 4125:. 4111:: 4072:. 4048:: 4040:: 4008:. 4002:: 3968:. 3946:: 3938:: 3932:8 3891:. 3887:: 3862:. 3858:: 3850:: 3825:) 3794:. 3788:: 3780:: 3748:) 3719:. 3715:: 3696:. 3684:: 3676:: 3651:. 3639:: 3616:) 3602:. 3598:: 3571:. 3552:. 3548:: 3523:. 3511:: 3484:. 3462:: 3454:: 3448:6 3427:) 3398:. 3373:) 3342:) 3338:( 3321:. 3291:. 3287:: 3243:. 3239:: 3184:. 3180:: 3144:. 3140:: 3117:. 3113:: 3085:) 3071:. 3057:: 3049:: 3041:: 3016:. 3010:: 3002:: 2973:. 2969:: 2935:2 2931:2 2926:2 2918:2 2907:2 2903:2 2899:2 2894:2 2872:/ 2870:2 2866:U 2851:2 2841:2 2785:2 2764:2 2751:2 2730:3 2728:O 2726:2 2719:3 2717:O 2715:2 2709:3 2707:O 2705:2 2701:3 2699:O 2697:2 2693:2 2688:3 2686:O 2684:2 2682:Y 2677:3 2675:O 2673:2 2658:2 2654:2 2624:2 2620:4 2608:2 2596:2 2583:3 2576:4 2559:2 2555:2 2550:2 2546:2 2534:2 2530:2 2526:2 2518:2 2514:2 2510:2 2506:4 2502:5 2500:O 2498:2 2496:M 2491:2 2487:2 2483:2 2479:4 2475:2 2468:4 2464:5 2462:O 2460:2 2456:5 2452:2 2448:2 2444:2 2440:2 2436:2 2432:2 2428:2 2424:2 2420:2 2409:2 2396:2 2392:2 2388:2 2376:2 2372:2 2357:2 2353:4 2342:2 2338:4 2334:2 2327:2 2317:4 2315:B 2311:2 2307:2 2303:2 2288:2 2284:2 2280:2 2275:3 2271:3 2269:H 2264:2 2258:2 2250:2 2246:3 2244:O 2242:2 2235:2 2231:3 2229:O 2227:2 2223:2 2216:2 2212:2 2190:2 2186:2 2182:B 2174:2 2158:2 2154:2 2150:2 2146:2 2142:2 2137:2 2133:2 2129:6 2108:3 2106:O 2104:2 2102:B 2098:2 2094:2 1967:2 1948:2 1929:2 1865:2 1801:2 1737:2 1673:2 1635:2 1603:2 1598:2 1591:2 1584:2 1577:2 1570:2 1564:2 1547:2 1543:2 1539:2 1526:2 1522:2 1429:2 1411:2 1393:2 1373:2 1318:2 1299:2 1249:2 1245:2 1183:- 1180:- 1177:- 1139:3 1137:O 1135:2 1114:- 1111:- 1108:- 1039:2 1015:- 1012:- 1009:- 984:– 978:– 888:– 878:2 857:- 847:2 792:– 782:2 758:– 748:2 724:– 714:2 631:- 628:- 625:- 510:c 507:b 504:a 464:2 460:2 440:2 436:2 432:2 425:2 421:2 344:2 337:2 206:( 194:) 188:( 176:) 170:( 165:) 161:( 147:. 121:) 115:( 110:) 106:( 92:. 66:) 62:( 20:)

Index

Ultra high temperature ceramics
improve it
talk page
Learn how and when to remove these messages
close paraphrasing
talk page
rewriting this article
Learn how and when to remove this message
help improve it
make it understandable to non-experts
Learn how and when to remove this message
Learn how and when to remove this message
refractory ceramics
thermal conductivities
borides
carbides
nitrides
oxides
transition metals
heat shields
spacecraft
furnace
hypersonic aircraft
nuclear reactor
hot pressing
spark plasma sintering
chemical vapor deposition
brittleness
machining

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.