Knowledge (XXG)

Ultrasound avoidance

Source πŸ“

132:
localization and a wider range of sensitivity to sound. The movement of the wings during flight also plays a role, since sound thresholds change with wing position. The neural mechanisms for triggering the acoustic startle response are partially understood. However, there is little known about the motor control of flight that ultrasound initiates.
151: 245:
In praying mantises, ultrasound avoidance behaviors are non-directional turns or power dives that are very effective in preventing capture by bats. The mantis ear, located in the midline between the metathoracic (third) legs, comprises two tympana within an auditory chamber that enhances sensitivity.
163:
Crickets are preyed on by bats during the night while they fly from one place to another. Avoidance behaviors by crickets were first reported in 1977 by A. V. Popov and V. F. Shuvalov. They also demonstrated that crickets, like moths, fly away from bats once they've heard their echolocating calls, an
135:
Further research has shown that many species of moths are sensitive to ultrasound. Sensitivities for ultrasound change according to the environment the moth thrives in, and the moth can even change its own sensitivity if it is preyed upon by bats with different echolocating calls. Such is the case of
246:
A bilaterally symmetrical pair of auditory interneurons, 501-T3, accurately track the ultrasonic calls during the early stages of a bat attack. Because 501-T3 stops firing just before the evasive response starts, it may be involved in triggering the behavior. The praying mantis ear first appeared
206:
of sorts; in the cricket, int-1 is a bat detector when the cricket is in flight and the interneuron's activity reaches a specific threshold. If these conditions are met, the magnitude of the sound is linearly proportional to the magnitude of the avoidance response. This research also demonstrated
175:
fashion. This is understandable since crickets don't only need to listen to bats, but also to each other. Crickets have broad frequency sensitivity to different types of echolocating calls. One specific auditory interneuron, the AN2 interneuron, exhibits remarkably rapid responses to echolocating
131:
The moth's body axis allows it to be more sensitive to sounds coming from particular directions. Their ears, on either side of the metathorax, have two sensory cells within the membranes. Though the tuning curves of these cells are identical, the sensitivity thresholds differ, allowing for sound
168:. The cricket will steer itself away from the source of the sound within a very short time frame (40–80 ms). The response is evoked by brief ultrasonic pulses in the 20 to 100 kHz range, pulses which fall within the range of bat ultrasonic echolocating calls (20–100 kHz). 253:
Arctiid moths use a very different, but highly effective defense against bats. They produce loud ultrasonic clicks in response to ultrasound. Depending on the species of moth and its ecology, the clicks may work by startling the bat, by jamming its echolocation system, or by warning of
193:
cricket, two ascending interneurons carry information to the brain - one carries information about cricket song (around 5 kHz) while the other gets excited at ultrasound and other high frequencies (15–100 kHz). The ultrasound-sensitive interneuron - labeled
115:
It was found that the moths' responses vary according to ultrasound intensity, diving towards the ground if the pulse was of a high amplitude, or flying directly away from the sound source if the sound amplitude was low (if the sound was softer). Acoustic
265:) have sensitive ears on their wings. Ultrasound causes flying lacewings to fold their wings and drop, an effective maneuver for evading capture by bats. Some tettigoniids use a similar strategy, although other species respond much like crickets. 92:
made the association between the moth's high-pitched sounds and the high-pitched bat calls and wondered whether the moths would be able to hear it. However, it was not until the early 1960s that Kenneth Roeder et al. made the first
112:; they fly away from the source of the sound and will only have the diving behavior considered above when the sound is too loudβ€”or when, in a natural setting, the bat would be presumably too close to simply fly away. 201:
Stimulating int-1 by current injection is sufficient to initiate negative phonotaxis, while hyperpolarizing int-1 effectively cancels the turning response to ultrasound. Due to this, int-1 has been proposed to be a
423: 268:
Several other insects have sensitive ultrasonic hearing that probably is used in bat evasion, but direct evidence is not yet available. These include scarab beetles, tiger beetles and a parasitoid fly (
222:. Furthermore, it has been found that the ultrasound avoidance response is restricted to when the crickets are in flight: that is, the response is extinguished when the crickets are on the ground. 104:
Later research showed that moths responded to ultrasound with evasive movements. Moths, as do crickets and most insects that display bat avoidance behaviors, have tympanic organs that display
561:
Fullard, J. H.; Jackson, M. E.; Jacobs, D. S.; Pavey, C. R. & Burwell, C. J. (2008). "Surviving cave bats: auditory and behavioural defences in the Australian noctuid moth,
225:
It has also been shown that short-winged crickets are less sensitive to ultrasound, but not to low frequencies, than their long-winged counterparts in a wing-dimorphic cricket,
237:(JH), is believed to play a role in whether the individual develops shorter or longer wings: if the individual has a higher level of JH, its wings will be shorter. 685:
Fullard, J. H.; Ratcliffe, J. M. & Guignion, C. (2005). "Sensory ecology of predator–prey interactions: responses of the AN2 interneuron in the field cricket,
250:
120 million years ago, predating the appearance of echolocating bats by c. 50 million years, so its original function must be different from its current one.
778:
Hofstede, H. M.; Killow, J. & Fullard, J. H. (2009). "Gleaning bat echolocation calls do not elicit antipredator behaviour in the Pacific field cricket,
1257:
Robert, D. & Hoy, R. R. (1998). "The evolutionary innovation of tympanal hearing in Diptera". In: Hoy, R. R.; Popper, A. N. & Fay, R. R., editors.
1080:
Yager, D. D. & Svenson, G. J. (2008). "A phylogeny of mantis auditory systems based on morphological, molecular, physiological, and behavioral data".
37:
Although ultrasonic signals are used for echolocation by toothed whales, no known examples of ultrasonic avoidance in their prey have been found to date.
1270:
Boyan, G. S. & Miller, L. A. (1991). "Parallel processing of afferent input by identified interneurones in the auditory pathway of the noctuid moth
1005:
Triblehorn, J. D. & Yager, D. D. (2002). "Implanted electrode recordings from a praying mantis auditory interneuron during flying bat attacks".
88:
The idea that moths were able to hear the cries of echolocating bats dates back to the late 19th century. F. Buchanan White, in an 1877 letter to
34:
tuned to sense the bat's echolocating calls. The ultrasonic hearing is coupled to a motor response that causes evasion of the bat during flight.
1106:
Miller, L. A. (1984). "Hearing in green lacewings and their responses to the cries of bats". In: Canard, M.; SΓ©mΓ©ria, Y.; New, T. R., editors.
825:
Narbonne, R. & Pollack, G. S. (2008). "Developmental control of ultrasound sensitivity by a juvenile hormone analog in crickets (
1325: 216:
cricket, its broad sensitivity can be circumvented by the use of frequency-mismatched calls by part of bats like the gleaning bat,
207:
that the brain is necessary for the response, since decapitated crickets will fly, but show no avoidance response behaviors.
124:
located in a chamber formed by the wall of the abdomen and the tympanic membrane, are most sensitive to lower frequencies of
142:, which adapts its acoustic sensitivity according to the characteristics of the call of the bat inside the cave with them. 1320: 332:"Intense ultrasonic clicks from echolocating toothed whales do not elicit anti-predator responses or debilitate the squid 1093:
Conner, W. E. & Corcoran, A. J. (2012). "Sound strategies: the 65-million-year-old battle between bats and insects".
44:
era, (about 50 million years ago); antibat tactics should have evolved then. Antibat tactics are known in four orders of
171:
As opposed to moths, the cricket ear, located in the foreleg, is complex - having 70 receptors that are arranged in a
26:
predators. Ultrasound avoidance is known for several groups of insects that have independently evolved mechanisms for
735:
Nolen, T. G. & Hoy, R. R. (1984). "Initiation of behavior by single neurons: the role of behavioral context".
408: 391: 1119:
Libersat, F. & Hoy, R. R. (1991). "Ultrasonic startle behavior in bushcrickets Orthoptera; Tettigoniidae".
1042:"Timing of praying mantis evasive responses during simulated bat attack sequences. When does the mantis dive?" 435:
Payne, R. S.; Roeder, K. D. & Wallman, J. (1966). "Directional Sensitivity of the Ears of Noctuid Moths".
198:- has been demonstrated as both necessary and sufficient for negative phonotaxis by Nolen and Hoy in 1984: 80:). There are hypotheses of ultrasound avoidance being present in Diptera (flies) and Coleoptera (beetles). 212: 184: 643:
Boyan, G. S. & Fullard, J. H. (1986). "Interneurones responding to sound in the tobacco budworm moth
392:"How Some Insects Detect and Avoid Being Eaten by Bats: Tactics and Countertactics of Prey and Predator" 218: 744: 479: 138: 94: 40:
Ultrasonic hearing has evolved multiple times in insects: a total of 19 times. Bats appeared in the
1330: 165: 156: 109: 23: 1299: 987: 807: 714: 664: 625: 590: 27: 1291: 1240: 1195: 1154: 1063: 1022: 979: 940: 891: 846: 799: 760: 706: 582: 543: 495: 452: 365: 312: 117: 31: 183:
on a far lower number of interneurons that relay the receptors' information to the cricket's
22:
is an escape or avoidance reflex displayed by certain animal species that are preyed upon by
1283: 1230: 1185: 1146: 1053: 1014: 971: 930: 881: 838: 791: 752: 698: 656: 617: 574: 533: 487: 444: 403: 355: 347: 304: 234: 121: 57: 958:
Yager, D. D. & Hoy, R. R. (1987). "The midline metathoracic ear of the praying mantis,
195: 748: 483: 1133:
Schulze, W. & Schul, J. (2001). "Ultrasound avoidance behavior in the bush cricket
360: 331: 291:
Schulze, W. & Schul, J. (2001). "Ultrasound avoidance behaviour in the bushcricket
203: 98: 73: 1314: 30:. Insects have evolved a variety of ultrasound-sensitive ears based upon a vibrating 1303: 991: 811: 718: 668: 629: 842: 189: 594: 262: 255: 105: 69: 53: 909:
Triblehorn, J. D.; Ghose, K.; Bohn, K.; Moss, C. M. & Yager, D. D. (2008).
608:
Popov, A. V. & Shuvalov, V. F. (1977). "Phonotactic behavior of crickets".
795: 702: 125: 77: 61: 866:"Ultrasound-triggered, flight-gated evasive maneuvers in the praying mantis, 1190: 1173: 756: 172: 1158: 1067: 1026: 944: 850: 803: 710: 586: 491: 470:
Roeder, K. D. (1975). "Neural factors and evitability in insect behavior".
369: 351: 316: 1295: 1244: 1235: 1214: 1199: 1150: 1018: 983: 895: 764: 547: 538: 521: 499: 456: 308: 150: 886: 865: 65: 448: 1287: 975: 935: 910: 660: 621: 578: 230: 180: 45: 1058: 1041: 41: 522:"The Neuroethology of Acoustic Startle and Escape in Flying insects" 330:
Wilson, M.; Hanlon, R. T.; Tyack, P. L. & Madsen, P. T. (2007).
270: 149: 49: 647:(Noctuidae): morphological and physiological characteristics". 409:
10.1641/0006-3568(2001)051[0570:HSIDAA]2.0.CO;2
210:
Bats may have found ways to get around this system. In the
1174:"Ultrasound acoustic startle responses in scarab beetles" 1215:"Behavioral response to ultrasound in the tiger beetle, 1172:
Forrest, T. G.; Farris, H. E. & Hoy, R. R. (1995).
16:
Animal reflex to escape or avoid echolocating predators
1219:
Dow combines aerodynamic changes and sound production"
422:
White's reference can be found in the following link:
1261:. Heidelberg and New York: Springer-Verlag. p 197-227 864:
Yager, D. D.; May, M. L. & Fenton, M. B. (1990).
425:. His question is close to the ending of the letter. 911:"Free-flight encounters between the praying mantis 520:Hoy, R.; Nolen, T. & Brodfuehrer, P. (1989). 154:An adult male and a juvenile male of the species 689:to the echolocation calls of sympatric bats". 1110:. The Hague: Dr W. Junk Publishers, p 134-149 1040:Triblehorn, J. D. & Yager, D. D. (2005). 8: 1213:Yager, D. D. & Spangler, H. G. (1997). 680: 678: 1234: 1189: 1082:Biological Journal of the Linnean Society 1057: 934: 885: 537: 407: 390:Miller, L. A. & Surlykke, A. (2001). 359: 101:and were able to confirm this suspicion. 730: 728: 385: 383: 381: 379: 283: 515: 513: 511: 509: 241:Ultrasound avoidance in other insects 7: 1276:Journal of Comparative Physiology A 1223:The Journal of Experimental Biology 1178:The Journal of Experimental Biology 1139:The Journal of Experimental Biology 1121:Journal of Comparative Physiology A 1046:The Journal of Experimental Biology 1007:The Journal of Experimental Biology 923:The Journal of Experimental Biology 874:The Journal of Experimental Biology 784:Journal of Comparative Physiology A 691:Journal of Comparative Physiology A 567:The Journal of Experimental Biology 526:The Journal of Experimental Biology 472:The Journal of Experimental Biology 437:The Journal of Experimental Biology 14: 649:Journal of Comparative Physiology 610:Journal of Comparative Physiology 146:Ultrasound avoidance in crickets 297:Journal of Experimental Biology 128:(between 20 and 30 kHz.). 97:recordings of a noctuid moth's 843:10.1016/j.jinsphys.2008.09.004 295:(Orthoptera: Tettigoniidae)". 1: 247: 136:the Australian noctuid moth, 84:Ultrasound avoidance in moths 1259:Comparative Hearing: Insects 831:Journal of Insect Physiology 1095:Annual Review of Entomology 1347: 782:(Orthoptera: Gryllidae)". 870:(Gerst.). I. Free flight" 796:10.1007/s00359-009-0454-3 703:10.1007/s00359-005-0610-3 1326:Antipredator adaptations 964:Cell and Tissue Research 1191:10.1242/jeb.198.12.2593 913:Parasphendale agrionina 868:Parasphendale agrionina 757:10.1126/science.6505681 1135:Tettigonia viridissima 1108:Biology of Chrysopidae 827:Teleogryllus oceanicus 780:Teleogryllus oceanicus 687:Teleogryllus oceanicus 492:10.1002/jez.1401940106 352:10.1098/rsbl.2007.0005 293:Tettigonia viridissima 213:Teleogryllus oceanicus 185:central nervous system 160: 1236:10.1242/jeb.200.3.649 1151:10.1242/jeb.204.4.733 1019:10.1242/jeb.205.3.307 539:10.1242/jeb.146.1.287 309:10.1242/jeb.204.4.733 219:Nyctophilus geoffroyi 153: 120:in noctuid moths are 1321:Animal communication 1184:(Pt 12): 2593–2598. 1052:(Pt 10): 1867–1876. 887:10.1242/jeb.152.1.17 563:Speiredonia spectans 179:All these receptors 139:Speiredonia spectans 95:electrophysiological 20:Ultrasound avoidance 749:1984Sci...226..992N 645:Heliothis virescens 484:1975JEZ...194...75R 449:10.1242/jeb.44.1.17 166:negative phonotaxis 157:Gryllus bimaculatus 110:directional hearing 1288:10.1007/bf00224361 976:10.1007/bf00218944 936:10.1242/jeb.005736 661:10.1007/BF00603623 622:10.1007/BF00655876 579:10.1242/jeb.023978 573:(Pt 24): 3808–15. 161: 28:ultrasonic hearing 1229:(Pt 3): 649–659. 1217:Cicindela marutha 1059:10.1242/jeb.01565 1013:(Pt 3): 307–320. 929:(Pt 4): 555–562. 743:(4677): 992–994. 261:Green lacewings ( 254:distastefulness ( 118:sensory receptors 32:tympanic membrane 1338: 1307: 1262: 1255: 1249: 1248: 1238: 1210: 1204: 1203: 1193: 1169: 1163: 1162: 1130: 1124: 1117: 1111: 1104: 1098: 1091: 1085: 1078: 1072: 1071: 1061: 1037: 1031: 1030: 1002: 996: 995: 960:Mantis religiosa 955: 949: 948: 938: 917:Eptesicus fuscus 906: 900: 899: 889: 861: 855: 854: 822: 816: 815: 775: 769: 768: 732: 723: 722: 682: 673: 672: 640: 634: 633: 605: 599: 598: 558: 552: 551: 541: 517: 504: 503: 467: 461: 460: 432: 426: 420: 414: 413: 411: 387: 374: 373: 363: 327: 321: 320: 288: 249: 235:juvenile hormone 227:Grillus texensis 122:mechanoreceptors 1346: 1345: 1341: 1340: 1339: 1337: 1336: 1335: 1311: 1310: 1269: 1266: 1265: 1256: 1252: 1212: 1211: 1207: 1171: 1170: 1166: 1132: 1131: 1127: 1123:. 169: 507-514. 1118: 1114: 1105: 1101: 1092: 1088: 1079: 1075: 1039: 1038: 1034: 1004: 1003: 999: 957: 956: 952: 908: 907: 903: 863: 862: 858: 824: 823: 819: 777: 776: 772: 734: 733: 726: 684: 683: 676: 642: 641: 637: 607: 606: 602: 560: 559: 555: 519: 518: 507: 469: 468: 464: 434: 433: 429: 421: 417: 389: 388: 377: 340:Biology Letters 329: 328: 324: 290: 289: 285: 280: 243: 148: 86: 74:green lacewings 17: 12: 11: 5: 1344: 1342: 1334: 1333: 1328: 1323: 1313: 1312: 1309: 1308: 1272:Noctua pronuba 1264: 1263: 1250: 1205: 1164: 1125: 1112: 1099: 1086: 1084:. 94: 541-568. 1073: 1032: 997: 970:(3): 531–541. 950: 901: 856: 837:(12): 1552–6. 817: 770: 724: 674: 655:(3): 391–404. 635: 600: 553: 505: 462: 427: 415: 402:(7): 570–581. 375: 346:(3): 225–227. 334:Loligo pealeii 322: 303:(4): 733–740. 282: 281: 279: 276: 242: 239: 204:command neuron 176:call stimuli. 147: 144: 99:auditory nerve 85: 82: 15: 13: 10: 9: 6: 4: 3: 2: 1343: 1332: 1329: 1327: 1324: 1322: 1319: 1318: 1316: 1305: 1301: 1297: 1293: 1289: 1285: 1282:(6): 727–38. 1281: 1277: 1273: 1268: 1267: 1260: 1254: 1251: 1246: 1242: 1237: 1232: 1228: 1224: 1220: 1218: 1209: 1206: 1201: 1197: 1192: 1187: 1183: 1179: 1175: 1168: 1165: 1160: 1156: 1152: 1148: 1144: 1140: 1136: 1129: 1126: 1122: 1116: 1113: 1109: 1103: 1100: 1096: 1090: 1087: 1083: 1077: 1074: 1069: 1065: 1060: 1055: 1051: 1047: 1043: 1036: 1033: 1028: 1024: 1020: 1016: 1012: 1008: 1001: 998: 993: 989: 985: 981: 977: 973: 969: 965: 961: 954: 951: 946: 942: 937: 932: 928: 924: 920: 918: 914: 905: 902: 897: 893: 888: 883: 879: 875: 871: 869: 860: 857: 852: 848: 844: 840: 836: 832: 828: 821: 818: 813: 809: 805: 801: 797: 793: 790:(8): 769–76. 789: 785: 781: 774: 771: 766: 762: 758: 754: 750: 746: 742: 738: 731: 729: 725: 720: 716: 712: 708: 704: 700: 697:(7): 605–18. 696: 692: 688: 681: 679: 675: 670: 666: 662: 658: 654: 650: 646: 639: 636: 631: 627: 623: 619: 615: 611: 604: 601: 596: 592: 588: 584: 580: 576: 572: 568: 564: 557: 554: 549: 545: 540: 535: 531: 527: 523: 516: 514: 512: 510: 506: 501: 497: 493: 489: 485: 481: 477: 473: 466: 463: 458: 454: 450: 446: 442: 438: 431: 428: 424: 419: 416: 410: 405: 401: 397: 393: 386: 384: 382: 380: 376: 371: 367: 362: 357: 353: 349: 345: 341: 337: 335: 326: 323: 318: 314: 310: 306: 302: 298: 294: 287: 284: 277: 275: 273: 272: 266: 264: 259: 257: 251: 240: 238: 236: 232: 228: 223: 221: 220: 215: 214: 208: 205: 199: 197: 192: 191: 186: 182: 177: 174: 169: 167: 159: 158: 152: 145: 143: 141: 140: 133: 129: 127: 123: 119: 113: 111: 107: 102: 100: 96: 91: 83: 81: 79: 75: 71: 67: 63: 59: 55: 51: 47: 43: 38: 35: 33: 29: 25: 21: 1279: 1275: 1271: 1258: 1253: 1226: 1222: 1216: 1208: 1181: 1177: 1167: 1142: 1138: 1134: 1128: 1120: 1115: 1107: 1102: 1094: 1089: 1081: 1076: 1049: 1045: 1035: 1010: 1006: 1000: 967: 963: 959: 953: 926: 922: 916: 915:and the bat 912: 904: 877: 873: 867: 859: 834: 830: 826: 820: 787: 783: 779: 773: 740: 736: 694: 690: 686: 652: 648: 644: 638: 613: 609: 603: 570: 566: 562: 556: 529: 525: 478:(1): 75–88. 475: 471: 465: 443:(1): 17–31. 440: 436: 430: 418: 399: 395: 343: 339: 333: 325: 300: 296: 292: 286: 269: 267: 260: 252: 244: 226: 224: 217: 211: 209: 200: 190:Teleogryllus 188: 178: 170: 162: 155: 137: 134: 130: 114: 103: 89: 87: 39: 36: 24:echolocating 19: 18: 1145:: 733–740. 1097:. 57: 21-39 616:: 111–126. 532:: 287–306. 263:Chrysopidae 256:aposematism 164:example of 106:phonotactic 70:Dictyoptera 54:Lepidoptera 1331:Ultrasound 1315:Categories 396:BioScience 278:References 126:ultrasound 78:Neuroptera 62:Orthoptera 880:: 17–39. 187:. In the 173:tonotopic 1304:25041932 1159:11171355 1068:15879067 1027:11854368 992:37360392 945:18245632 851:18938172 812:27518636 804:19529946 719:24223092 711:15886992 669:35880694 630:20410596 587:19043053 370:17412672 317:11171355 233:, named 66:mantises 58:crickets 1296:1920166 1274:(L.)". 1245:9057313 1200:8576685 984:3690633 896:2230635 765:6505681 745:Bibcode 737:Science 548:2689567 500:1194872 480:Bibcode 457:5922736 361:2464686 231:hormone 181:synapse 72:), and 46:Insecta 1302:  1294:  1243:  1198:  1157:  1066:  1025:  990:  982:  943:  894:  849:  810:  802:  763:  717:  709:  667:  628:  595:566358 593:  585:  546:  498:  455:  368:  358:  315:  90:Nature 42:Eocene 1300:S2CID 988:S2CID 808:S2CID 715:S2CID 665:S2CID 626:S2CID 591:S2CID 274:sp.) 271:Ormia 196:INT-1 50:moths 1292:PMID 1241:PMID 1196:PMID 1155:PMID 1064:PMID 1023:PMID 980:PMID 941:PMID 892:PMID 847:PMID 829:)". 800:PMID 761:PMID 707:PMID 583:PMID 544:PMID 496:PMID 453:PMID 366:PMID 313:PMID 229:. A 108:and 1284:doi 1280:168 1231:doi 1227:200 1186:doi 1182:198 1147:doi 1143:204 1137:". 1054:doi 1050:208 1015:doi 1011:205 972:doi 968:250 962:". 931:doi 927:211 882:doi 878:152 839:doi 792:doi 788:195 753:doi 741:226 699:doi 695:191 657:doi 653:158 618:doi 614:119 575:doi 571:211 565:". 534:doi 530:146 488:doi 476:194 445:doi 404:doi 356:PMC 348:doi 305:doi 301:204 258:). 64:), 56:), 1317:: 1298:. 1290:. 1278:. 1239:. 1225:. 1221:. 1194:. 1180:. 1176:. 1153:. 1141:. 1062:. 1048:. 1044:. 1021:. 1009:. 986:. 978:. 966:. 939:. 925:. 921:. 890:. 876:. 872:. 845:. 835:54 833:. 806:. 798:. 786:. 759:. 751:. 739:. 727:^ 713:. 705:. 693:. 677:^ 663:. 651:. 624:. 612:. 589:. 581:. 569:. 542:. 528:. 524:. 508:^ 494:. 486:. 474:. 451:. 441:44 439:. 400:51 398:. 394:. 378:^ 364:. 354:. 342:. 338:. 311:. 299:. 248:c. 48:: 1306:. 1286:: 1247:. 1233:: 1202:. 1188:: 1161:. 1149:: 1070:. 1056:: 1029:. 1017:: 994:. 974:: 947:. 933:: 919:" 898:. 884:: 853:. 841:: 814:. 794:: 767:. 755:: 747:: 721:. 701:: 671:. 659:: 632:. 620:: 597:. 577:: 550:. 536:: 502:. 490:: 482:: 459:. 447:: 412:. 406:: 372:. 350:: 344:3 336:" 319:. 307:: 76:( 68:( 60:( 52:(

Index

echolocating
ultrasonic hearing
tympanic membrane
Eocene
Insecta
moths
Lepidoptera
crickets
Orthoptera
mantises
Dictyoptera
green lacewings
Neuroptera
electrophysiological
auditory nerve
phonotactic
directional hearing
sensory receptors
mechanoreceptors
ultrasound
Speiredonia spectans

Gryllus bimaculatus
negative phonotaxis
tonotopic
synapse
central nervous system
Teleogryllus
INT-1
command neuron

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑