Knowledge (XXG)

User:Elcap/Electrolytic capacitor

Source šŸ“

3681:, load life or useful life of electrolytic capacitors is a special characteristic of non-solid aluminum electrolytic capacitors, whose liquid electrolyte can evaporate over time. Lowering the electrolyte level influences the electrical parameters of the capacitors. The capacitance decreases and the impedance and ESR increase with decreasing amounts of electrolyte. This very slow electrolyte drying-out depends on the temperature, the applied ripple current load, and the applied voltage. The lower these parameters compared with their maximum values the longer the capacitor's ā€œlifeā€. The ā€œend of lifeā€ point is defined by the appearance of wear-out failures or degradation failures when either capacitance, impedance, ESR or leakage current exceed their specified change limits. 624: 1584: 3246:
electrolytes. For non-solid aluminum electrolytic capacitors the leakage current includes all weakened imperfections of the dielectric caused by unwanted chemical processes taking place during the time without applied voltage (storage time) between operating cycles. These unwanted chemical processes depend on the kind of electrolyte. Electrolytes with water content or water based electrolytes are more aggressive to the aluminum oxide layer than are electrolytes based on organic liquids. This is why different electrolytic capacitor series specify different storage time without reforming instructions.
672: 1900:
Niobium as raw material is much more abundant in nature than tantalum and is less expensive. It was a question of the availability of the base metal in the late 1960s which led to development and implementation of niobium electrolytic capacitors in the former Soviet Union instead of tantalum capacitors as in the West. The materials and processes used to produce niobium-dielectric capacitors are essentially the same as for existing tantalum-dielectric capacitors. The characteristics of niobium electrolytic capacitors and tantalum electrolytic capacitors are roughly comparable.
4115:
stability of the electrolytic system and the protecting aluminum oxide layer because all chemical reactions are accelerated by high temperatures. Since decades nearly all todayā€™s series of non-solid e-caps fulfill the 1000 hours shelf life test which comply with minimum fife years storage at room temperature. However, many e-cap series are specified only for a two years storage time. This is a standard storage time for electronic components for storing at room temperature caused by the oxidation of the terminals to ensure the solderability of the terminals.
4158: 2731: 1704:. He introduce a separated second foil to contact the electrolyte adjacent to the anode foil instead of using the electrolyte-filled container as the capacitor's cathode. The stacked second foil got its own terminal additional to the anode terminal and the container no longer had an electrical function. This type of electrolytic capacitor combined with an liquid or gel-like electrolyte of a non-aqueous nature, which is therefore dry in the sense of having a very low water content, became known as the ā€œdryā€ type of electrolytic capacitor. 660: 1504: 4138: 2274: 1516: 684: 2719: 1492: 636: 1480: 612: 1798: 1559: 3665: 1677: 1721: 78: 2215: 2167: 4107:
aluminum electrolytic capacitors may occur after storage or unused times without voltage applied. During storage or unused times potentially chemical processes (corrosion) can weaken the oxide layer, which may lead to a higher leakage current. However, todayā€™s most electrolytic systems are chemically inert and donā€™t generate any corrosion problems, even after storage times of two years or longer. Especially non-solid electrolytic capacitors using organic solvents like
1936: 1535: 3497: 1576: 1547: 3700:. It characterizes the change of thermic reaction speed. For every 10 Ā°C lower temperature the evaporation is reduced by half. That means for every 10 Ā°C lower temperature the lifetime of capacitors doubles. If a lifetime specification of an electrolytic capacitor is, for example, 2000  h/105 Ā°C, the capacitor's lifetime at 45 Ā°C can be ā€calculatedā€ as 128,000 hoursā€”that is roughly 15 yearsā€”by using the 10-degrees-rule. 2880: 515: 1644: 1468: 3227: 212: 4098:
inverse of the individual capacitorā€™s leakage current. Since every capacitor differs a little bit in individual leakage current, the capacitors with a higher leakage current will get less voltage. The voltage balance over the series-connected capacitors is not symmetrical. Passive or active voltage balance has to be provided in order to stabilize the voltage over each individual capacitor .
268: 3648:. Tantalum capacitors with solid electrolyte have no wear-out mechanism so that the constant failure rate is least, up to the point when all capacitors fail. Electrolytic capacitors with non-solid electrolyte, however, have a limited time of constant random failures up to that point when the wear-out failures start. This time of the constant random failure rate corresponds with the 2086: 3597:. For other conditions of applied voltage, current load, temperature, capacitance value, circuit resistance (for tantalum capacitors), mechanical influences and humidity, the FIT figure can be recalculated with acceleration factors standardized for industrial or military contexts. The higher the temperature and applied voltage the higher the failure rate, for example. 3704:
conductivity decreases as a function of time, in agreement with a granular metal type structure, in which aging is due to the shrinking of the conductive polymer grains. The lifetime of polymer electrolytic capacitors is specified in terms similar to non-solid e-caps but its lifetime calculation follows other rules, leading to much longer operational lifetimes.
1457:
electrolytic capacitors and are used in devices with limited space or flat design such as laptops. They are also used in military technology, mostly in axial style, hermetically sealed. Niobium electrolytic chip capacitors are a new development in the market and are intended as a replacement for tantalum electrolytic chip capacitors.
32: 1781:, Sprague's Director of Research, is considered to be the actual inventor of tantalum capacitors in 1954. His invention was supported by R. J. Millard, who introduced the ā€œreformā€ step in 1955, a significant improvement in which the dielectric of the capacitor was repaired after each dip-and-convert cycle of MnO 2206:
cycles, one of the oxides on the foil acts as a blocking dielectric, preventing reverse current from damaging the electrolyte of the other one. But these bipolar electrolytic capacitors are not adaptable for main AC applications instead of power capacitors with metallized polymer film or paper dielectric.
1713:, whose first patent for electrolytic capacitors was filed in 1928, industrialized the new ideas for electrolytic capacitors and started the first large commercial production in 1931 in the Cornell-Dubilier (CD) factory in Plainfield, New Jersey. At the same time in Berlin, Germany, the "Hydra-Werke", an 3257:
current in solid electrolyte capacitors cannot be reduced by ā€œhealingā€, because under normal conditions solid electrolytes cannot provide oxygen for forming processes. This statement should not be confused with the self-healing process during field crystallization, see below, Reliability (Failure rate).
3668:
The electrical values of aluminum electrolytic capacitors with non-solid electrolyte change over time due to evaporation of electrolyte. Reaching the specified limits of the electrical parameters, the time of the constant failure rate ends and it is the end of the capacitor's lifetime. The graph show
3615:
It should be noted that industrially produced tantalum capacitors nowadays are very reliable components. Continuous improvement in tantalum powder and capacitor technologies have resulted in a significant reduction in the amount of impurities which formerly caused most field crystallization failures.
3213:
Aluminum electrolytic capacitors with non-solid electrolytes normally can be charged up to the rated voltage without any current surge, peak or pulse limitation. This property is a result of the limited ion movability in the liquid electrolyte, which slows down the voltage ramp across the dielectric,
2205:
Special bipolar aluminum electrolytic capacitors designed for bipolar operation are available, and usually referred to as "non-polarized" or "bipolar" types. In these, the capacitors have two anode foils with full-thickness oxide layers connected in reverse polarity. On the alternate halves of the AC
2178:
Nevertheless, electrolytic capacitors can withstand for short instants a reverse voltage for a limited number of cycles. In detail, aluminum electrolytic capacitors with non-solid electrolyte can withstand a reverse voltage of about 1 V to 1.5 V. This reverse voltage should never be used to
2149:
Aluminum electrolytic capacitors with non-solid electrolyte are relatively insensitive to high and short-term transient voltages higher than surge voltage, if the frequency and the energy content of the transients are low. This ability depends on rated voltage and component size. Low energy transient
1655:
electrolyte dissolved in water, in which a folded aluminum anode plate was inserted. Applying a DC voltage from outside, an oxide layer was formed on the surface of the anode. The advantage of these capacitors was that they were significantly smaller and cheaper than all other capacitors at this time
922:
The non-solid or so-called "wet" aluminum electrolytic capacitors were and are the cheapest among all other conventional capacitors. They not only provide the cheapest solutions for high capacitance or voltage values for decoupling and buffering purposes but are also insensitive to low ohmic charging
207:
As to the basic construction principles of electrolytic capacitors, there are three different types: aluminum, tantalum, and niobium capacitors. Each of these three capacitor families uses non-solid and solid manganese dioxide or solid polymer electrolytes, so a great spread of different combinations
3692:
The lifetime of non-solid aluminum electrolytic capacitors is specified in terms of ā€œhours per temperature", like ā€œ2,000h/105 Ā°Cā€. With this specification the lifetime at operational conditions can be estimated by special formulas or graphs specified in the data sheets of serious manufacturers.
3688:
But even after exceeding the specified limits and the capacitors having reached their ā€œend of lifeā€ the electronic circuit is not in immediate danger; only the functionality of the capacitors is reduced. With today's high levels of purity in the manufacture of electrolytic capacitors it is not to be
3639:
as reference conditions. Also for aluminum electrolytic capacitors it should be noted that they are very reliable components. Published figures show for low voltage types (6.3ā€¦160 V) FIT rates in the range of 1 to 20 FIT and for high voltage types (>160 ā€¦550 V) FIT rates in the range of
3416:
Dielectric absorption occurs when a capacitor that has remained charged for a long time discharges only incompletely when briefly discharged. Although an ideal capacitor would reach zero volts after discharge, real capacitors develop a small voltage from time-delayed dipole discharging, a phenomenon
2018:
The standardized measuring condition for e-caps is an AC measuring method with 0.5 V at a frequency of 100/120 Hz and a temperature of 20 Ā°C. For tantalum capacitors a DC bias voltage of 1.1 to 1.5  V for types with a rated voltage ā‰¤2.5 V, or 2.1 to 2.5 V for types with
1769:
These first sintered tantalum capacitors used a non-solid electrolyte, which does not fit the concept of solid electronics. In 1952 a targeted search at Bell Labs by D. A. McLean and F. S. Power for a solid electrolyte led to the invention of manganese dioxide as a solid electrolyte for a sintered
1741:
One of the first tantalum electrolytic capacitors were developed in 1930 by Tansitor Electronic Inc. USA, for military purposes. The basic construction of a wound cell was adopted and a tantalum anode foil was used together with a tantalum cathode foil, separated with a paper spacer impregnated with
1659:
The first more common application of wet aluminum electrolytic capacitors was in large telephone exchanges, to reduce relay hash (noise) on the 48 volt DC power supply. The development of AC-operated domestic radio receivers in the late 1920s created a demand for large-capacitance (for the time) and
591:
All etched or sintered anodes have a much higher surface compared to a smooth surface of the same area or the same volume. That increases the later capacitance value, depending on the rated voltage, by a factor of up to 200 for non-solid aluminum electrolytic capacitors as well as for solid tantalum
502:
Comparing the permittivities of the different oxide materials it is seen that tantalum pentoxide has a permittivity approximately three times higher than aluminum oxide. Tantalum electrolytic capacitors of a given CV value theoretically are therefore smaller than aluminum electrolytic capacitors. In
333:
All anode materials are either etched or sintered and have a rough surface structure with a much higher surface compared to a smooth surface of the same area or the same volume. By applying a positive voltage to the above mentioned anode material in an electrolytic bath an oxide barrier layer with a
4106:
All electrolytic capacitors with non-solid as well as with solid electrolyte are "aged" during manufacturing by applying rated voltage at high temperature for a sufficient time to repair all cracks and weaknesses that may have occurred during production. However, a particular problem with non-solid
3566:
Billions of tested capacitor unit-hours would be needed to establish failure rates in the very low level range which are required today to ensure the production of large quantities of components without failures. This requires about a million units over a long time period, which means a large staff
3217:
Solid tantalum electrolytic capacitors with manganese dioxide electrolyte or polymer electrolyte are damaged by peak or pulse currents. Solid Tantalum capacitors which are exposed to surge, peak or pulse currents, for example, in in highly inductive circuits, should be used with a voltage derating.
2136:
The surge voltage indicates the maximum peak voltage value that may be applied to electrolytic capacitors during their application for a limited number of cycles. The surge voltage is standardized in IEC/EN 60384-1. For aluminum electrolytic capacitors with a rated voltage of up to 315 V, the
2112:
The voltage proof of electrolytic capacitors decreases with increasing temperature. For some applications it is important to use a higher temperature range. Lowering the voltage applied at a higher temperature maintains safety margins. For some capacitor types therefore the IEC standard specifies a
1999:
The electrical characteristics of electrolytic capacitors depend on the structure of the anode and the electrolyte used. This influences the capacitance value of electrolytic capacitors, which depends on measuring frequency and temperature. Electrolytic capacitors with non-solid electrolytes show a
1913:
was a leader in the development of new water-based electrolyte systems with enhanced conductivity in the late 1990s. The new series of non-solid e-caps with water-based electrolyte was described in the data sheets as having "Low-ESR", "Low-Impedance", "Ultra-Low-Impedance" or "High-Ripple Current".
1732:
For aluminum electrolytic capacitors the decades from 1970 to 1990 were marked by the development of various new professional series specifically suited to certain industrial applications, for example with very low leakage currents or with long life characteristics, or for higher temperatures up to
926:
Tantalum electrolytic capacitors with solid electrolyte as surface-mountable chip capacitors are mainly used in electronic devices in which little space is available or a low profile is required. They operate reliably over a wide temperature range without large parameter deviations. In military and
474:
After forming a dielectric oxide on the rough anode structure, a counter electrode has to match the rough insulating oxide surface. This is accomplished by the electrolyte, which acts as the cathode electrode of an electrolytic capacitor. There are many different electrolytes in use. Generally they
4118:
Only for antique radio equipment or for very old e-caps built in the 1970s or earlier, "pre-conditioning" may be recommended. For this purpose, the rated voltage is applied to the capacitor via a series resistance of approximately 1 kĪ© for a period of one hour. Applying a voltage via a safety
3703:
However, solid polymer electrolytic capacitors, aluminum as well as tantalum and niobium electrolytic capacitors also have a lifetime specification. The polymer electrolyte has a small deterioration of conductivity caused by a thermal degradation mechanism in the conductive polymer. The electrical
3471:
But especially for electrolytic capacitors with high rated voltage the voltage at the terminals generated by the dielectric absorption can be a safety risk to personnel or circuits. In order to prevent shocks most very large capacitors are shipped with shorting wires that need to be removed before
2127:
Applying a lower voltage may have a positive influence on electrolytic capacitors. For aluminum electrolytic capacitors a lower applied voltage can in some cases extend the lifetime.For tantalum electrolytic capacitors lowering the voltage applied increases the reliability and reduces the expected
1908:
With the goal of reducing ESR for inexpensive non-solid e-caps from the mid-1980s in Japan, new water-based electrolytes for aluminum electrolytic capacitors were developed. Water is inexpensive, an effective solvent for electrolytes, and significantly improves the conductivity of the electrolyte.
1805:
The first solid electrolyte of manganese dioxide developed 1952 for tantalum capacitors had a conductivity 10 times better than all other types of non-solid electrolytes. It also influenced the development of aluminum electrolytic capacitors. In 1964 the first aluminum electrolytic capacitors with
3707:
Tantalum electrolytic capacitors with solid manganese dioxide electrolyte do not have wear-out failures so they do not have a lifetime specification in the sense of non-solid aluminum electrolytic capacitors. Also, tantalum capacitors with non-solid electrolyte, the ā€œwet tantalumsā€, do not have a
3562:
ime]. This is the number of failures that can be expected in one billion (10) component-hours of operation (e.g., 1000 components for 1 million hours, or 1  million components for 1000 hours which is 1 ppm/1000 hours) at fixed working conditions during the period of constant random
3256:
The main causes of DCL for solid tantalum capacitors include electrical breakdown of the dielectric, conductive paths due to impurities or poor anodization, bypassing of dielectric due to excess manganese dioxide, to moisture paths, or to cathode conductors (carbon, silver). This ā€œnormalā€ leakage
1899:
Another price explosion for tantalum in 2000/2001 forced the development of niobium electrolytic capacitors with manganese dioxide electrolyte, which have been available since 2002. Niobium is a sister metal to tantalum and serves as valve metal generating an oxide layer during anodic oxidation.
4080:
Smaller or low voltage electrolytic capacitors may be connected in parallel without any safety correction action. Large size capacitors, especially large sizes and high voltage types should be individually guarded against sudden energy charge of the whole capacitor bank due to a failed specimen.
3719:
The many different types of electrolytic capacitors show differences in electrical long-term behavior, their inherent failure modes, and their self-healing mechanism. Application rules for types with an inherent failure mode are specified to ensure capacitors with high reliability and long life.
1788:
Although solid tantalum capacitors offered capacitors with lower ESR and leakage current values than the aluminum e-caps, 1980 a price shock for tantalum in the industry reduces the applications of Ta-e-caps especially in the entertainment industry dramatically. The industry switched back to use
1765:
in the early 1950s as a miniaturized, more reliable low-voltage support capacitor to complement their newly invented transistor. The solution found by R. L. Taylor and H. E. Haring of the Bell labs in early 1950 was based on experiences with ceramics. They ground tantalum to a powder, which they
4114:
The ability to reach longer storage times can be tested using an accelerated shelf-life testing, which requires the storage of capacitors without applied voltage at its upper category temperature for a certain period, usually 1000 hours. This shelf life test is a good indicator for the chemical
1728:
Already in his patent from 1896 Pollak wrote that the capacitance of the capacitor increase by roughening the surface of the anode foil. Today (2014), electrochemically etched low voltage foils can achieve an up to 200-fold increase in surface area compared to a smooth surface. Advances in the
941:
In order to compare the different characteristics of the different electrolytic capacitor types, capacitors with the same dimensions and of similar capacitance and voltage are compared in the following table. In such a comparison the values for ESR and ripple current load are the most important
595:
All electrolytic capacitors have one special advantage. Because the forming voltage defines the oxide layer thickness, the voltage proof of the later electrolytic capacitor can be produced very simply for the desired rated value. Therefore, the volume of a capacitor is defined by the product of
587:
per volt. On the other hand, the voltage strengths of these oxide layers are quite high. With this very thin dielectric oxide layer combined with a sufficient high dielectric strength the electrolytic capacitors can already achieve a high volumetric capacitance. This is one reason for the high
4097:
need the higher voltages aluminum electrolytic capacitors usually offer. For such applications electrolytic capacitors can be connected in series for increased voltage-withstanding capability. During charging, the voltage across each of the capacitors connected in series is proportional to the
4245:
Version 2: coding with year code/month code. The year codes are: "R" = 2003, "S"= 2004, "T" = 2005, "U" = 2006, "V" = 2007, "W" = 2008, "X" = 2009, "A" = 2010, "B" = 2011, "C" = 2012, "D" = 2013, ā€œEā€ = 2014 etc. Month codes are: "1" to "9" = Jan. to Sept., "O" = October, "N" = November, "D" =
6221:
E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, S.A. Choulis, Thermal degradation mechanisms of PEDOT:PSS, Organic Electronics Volume 10, Issue 1, February 2009, Pages 61ā€“66, Organic ElectronicsVolume 10, Issue 1, February 2009, Pages 61ā€“66,
3600:
The most often cited source for recalculation of failure rate is the MIL-HDBK-217F, the ā€œbibleā€ of failure rate calculations for electronic components. SQC Online, the online statistical calculator for acceptance sampling and quality control, provides an online tool for short examination to
1943:
The electrical characteristics of capacitors are harmonized by the international generic specification IEC 60384-1. In this standard, the electrical characteristics of capacitors are described by an idealized series-equivalent circuit with electrical components which model all ohmic losses,
190:
voltage. Voltages with reverse polarity, or voltage or ripple current higher than specified, can destroy the dielectric and thus the capacitor. A possible ripple voltage must not cause reversal. The destruction of electrolytic capacitors can have catastrophic consequences (explosion, fire).
3245:
The reasons for leakage current are different between electrolytic capacitors with non-solid and with solid electrolyte or more common for ā€œwetā€ aluminum and for ā€œsolidā€ tantalum electrolytic capacitors with manganese dioxide electrolyte as well as for electrolytic capacitors with polymer
1456:
Aluminum electrolytic capacitors form the bulk of the electrolytic capacitors used in electronics because of the large diversity of sizes and the inexpensive production. Tantalum electrolytic capacitors, usually used in the SMD version, have a higher specific capacitance than the aluminum
1656:
relative to the realized capacitance value. This construction with different styles of anode construction but with a case as cathode and container for the electrolyte was used up to the 1930s and was called a ā€œwetā€ electrolytic capacitor, in the sense of its having a high water content.
3693:
They use different ways for specification, some give special formulas, others specify their e-caps lifetime calculation with graphs that consider the influence of applied voltage.. Basic principle for calculating the time under operational conditions is the so called ā€œ10-degree-ruleā€.
2293:; it describes the phase difference and the ratio of amplitudes between sinusoidally varying voltage and sinusoidally varying current at a given frequency. In this sense impedance is a measure of the ability of the capacitor to pass alternating currents and can be used like Ohm's law. 4219:
Smaller capacitors use a shorthand notation. The most commonly used format is: XYZ J/K/M ā€œVā€, where XYZ represents the capacitance (calculated as XY Ɨ 10 pF), the letters K or M indicate the tolerance (Ā±10 % and Ā±20 % respectively) and ā€œVā€ represents the working voltage.
3393: 623: 4182:
Electrolytic capacitors, like most other electronic components and if enough space is available, have imprinted markings to indicate manufacturer, type, electrical and thermal characteristics, and date of manufacture. If they are large enough the capacitor is marked with:
1631:), a producer of accumulators, found out that that the oxide layer on an aluminum anode remained stable in a neutral or alkaline electrolyte, even when the power was switched off. In 1896 he filed a patent for an "Electric liquid capacitor with aluminium electrodes" (de: 942:
parameters for the use of electrolytic capacitors in modern electronic equipment. The lower the ESR, the higher the ripple current per volume and better functionality of the capacitor in the circuit. However, better electrical parameters are combined with higher prices.
3200:
In solid tantalum electrolytic capacitors with manganese dioxide electrolyte the heat generated by the ripple current influences the reliability of the capacitors. Exceeding the limit tends to result in catastrophic failures with short circuits and burning components.
2157:
Electrolytic capacitors with solid manganese oxide or polymer electrolyte, and aluminum as well as tantalum electrolytic capacitors can not withstand transients or peak voltages higher than surge voltage. Transients for this type of e-caps may destroy the components.
1890:
A new conductive polymer for tantalum polymer capacitors was presented by Kemet at the "1999 Carts" conference. This capacitor used the newly developed organic conductive polymer PEDT Poly(3,4-ethylenedioxythiophene), also known as PEDOT (trade name BaytronĀ®)
6083: 3643:
The published figures show that both capacitor types, tantalum and aluminum, are reliable components, comparable with other electronic components and achieving safe operation for decades under normal conditions. But a great difference exists in the case of
705:
Combinations of anode materials for electrolytic capacitors and the electrolytes used have given rise to a wide variety of capacitor types with different properties. An outline of the main characteristics of the different types is shown in the table below.
3534:
and is divided into three areas: early failures or infant mortality failures, constant random failures and wear out failures. Failures totalized in a failure rate are short circuit, open circuit, and degradation failures (exceeding electrical parameters).
1886:
Tantalum electrolytic capacitors with PPy polymer electrolyte cathode followed three years later. In 1993 NEC introduced its SMD polymer tantalum electrolytic capacitors, called "NeoCap". In 1997 Sanyo followed with the "POSCAP" polymer tantalum chips.
3567:
and considerable financing. The tested failure rates are often complemented with figures resulting from feedback from the field from big users concerning failed components (field failure rate), which mostly results in a lower failure rate than tested.
3073:
The ripple current is specified as an effective (RMS) value at 100 or 120 Hz or at 10 kHz at upper category temperature. Non-sinusoidal ripple currents have to be analyzed and separated into their single sinusoidal frequencies by means of
1917:
A stolen recipe for such a water-based electrolyte, in which important stabilizing substances were absent,, led in the years 2000 to 2005 to the problem of mass-bursting capacitors in computers and power supplies, which became known under the term
671: 166:
The large capacitance of electrolytic capacitors makes them particularly suitable for passing or bypassing low-frequency signals up to some mega-hertz and storing large amounts of energy. They are widely used for decoupling or noise filtereng in
3252:
Although the leakage current of non-solid e-caps is higher than current flow over insulation resistance in ceramic or film capacitors, the self-discharge of modern non-solid electrolytic capacitors with organic electrolytes takes several weeks.
2387: 2775:
accounts for internal heat generation if a ripple current flows over the capacitor. This internal heat reduces the lifetime of non-solid aluminum electrolytic capacitors or influences the reliability of solid tantalum electrolytic capacitors.
1817:
With the beginning of digitalization, Intel launched in 1971 its first microcomputer, MCS 4, and in 1972 Hewlett Packard launched one of the first pocket calculators, HP 35. The requirements for capacitors increased in terms of lowering the
3684:
The lifetime is a specification of a collection of tested capacitors and delivers an expectation of the behavior of similar types. This lifetime definition corresponds with the time of the constant random failure rate in the bathtub curve.
4215:
Polarized capacitors have polarity markings, usually a "āˆ’" (minus) sign on the side of the negative electrode for electrolytic capacitors or a stripe or a "+" (plus) sign. Also, the negative lead for leaded "wet" e-caps is usually shorter.
3204:
The heat generated by the ripple current also influences the lifetime of aluminum and tantalum electrolytic capacitors with solid polymer electrolytes. Exceeding the limit tends to result in catastrophic failures with short components.
5807:
Y. K. ZHANG, J. LINļ¼ŒY. CHEN, Polymer Aluminum Electrolytic Capacitors with Chemically-Polymerized Polypyrrole (PPy) as Cathode Materials Part I. Effect of Monomer Concentration and Oxidant on Electrical Properties of the Capacitors,
2034:
Measured with an AC measuring method with 100/120 Hz the capacitance value is the closest value to the electrical charge stored in the e-caps. The stored charge is measured with a special discharge method and is called the
6558:
E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, S.A. Choulis, Thermal degradation mechanisms of PEDOT:PSS, Organic Electronics, Volume 10, Issue 1, February 2009, Pages 61ā€“66,
2046:
The percentage of allowed deviation of the measured capacitance from the rated value is called the capacitance tolerance. Electrolytic capacitors are available in different tolerance series, whose values are specified in the
2022:
The capacitance value measured at the frequency of 1 kHz is about 10% less than the 100/120 Hz value. Therefore the capacitance values of electrolytic capacitors are not directly comparable and differ from those of
2660: 3196:
In non-solid electrolytic capacitors the heat generated by the ripple current forces the evaporation of electrolytes, shortening the lifetime of the capacitors. Exceeding the limit tends to result in explosive failure.
3611:
as reference conditions and expressed as percent failed components per thousand hours (n %/1000 h). That is, ā€œnā€ number of failed components per 10 hours, or in FIT the ten-thousand-fold value per 10 hours.
3191: 2140:
For tantalum electrolytic capacitors the surge voltage can be 1.3 times the rated voltage, rounded off to the nearest volt. The surge voltage applied to tantalum capacitors may influence the capacitor's failure rate.
4234:
Capacitance, tolerance and date of manufacture can be indicated with a short code specified in IEC/EN 60062. Examples of short-marking of the rated capacitance (microfarads): Āµ47 = 0,47 ĀµF, 4Āµ7 = 4,7 ĀµF, 47Āµ = 47 ĀµF
2174:
Standard electrolytic capacitors, and aluminum as well as tantalum and niobium electrolytic capacitors are polarized and generally require the anode electrode voltage to be positive relative to the cathode voltage.
482:
caused by moving ions, non-solid electrolytes can easily fit the rough structures. Solid electrolytes which have electron conductivity can fit the rough structures with the help of special chemical processes like
2750:) summarizes all resistive losses of the capacitor. These are the terminal resistances, the contact resistance of the electrode contact, the line resistance of the electrodes, the electrolyte resistance, and the 334:
thickness corresponding to the applied voltage will be formed (formation). This oxide layer acts as dielectric in an electrolytic capacitor. The properties of this oxide layers are given in the following table:
5762:
Shinichi Niwa, Yutaka Taketani, Development of new series of aluminium solid capacitors with organic Semiconductive electrolyte (OS-CON), Journal of Power Sources, Volume 60, Issue 2, June 1996, Pages 165ā€“171,
3280: 2407:
Regarding the IEC/EN 60384-1 standard, the impedance values of electrolytic capacitors are measured and specified at 10 kHz or 100 kHz depending on the capacitance and voltage of the capacitor.
1922:". In these e-caps the water reacts quite aggressively and even violently with aluminum, accompanied by strong heat and gas development in the capacitor, and often led to the explosion of the capacitor. 2894:
value of a superimposed AC current of any frequency and any waveform of the current curve for continuous operation within the specified temperature range. It arises mainly in power supplies (including
1620:
etc. in an electrochemical process, which blocks an electric current from flowing in one direction but allow to flow in the other direction, was discovered in 1875 by the French researcher and founder
592:
electrolytic capacitors. The large surface compared to a smooth one is the second reason for the relatively high capacitance values of electrolytic capacitors compared with other capacitor families.
6548: 4137: 2858: 2202:
To minimize the likelihood of a polarized electrolytic being incorrectly inserted into a circuit, polarity has to be very clearly indicated on the case, see the section on "Polarity marking" below.
5916:
J.L. Stevens, T. R. Marshall, A.C. Geiculescu m, C.R. Feger, T.F. Strange, Carts USA 2006, The Effects of Electrolyte Composition on the Deformation Characteristics of Wet Aluminum ICD Capacitors,
4157: 5928: 3503:
with times of ā€œearly failuresā€, ā€œrandom failuresā€, and wear-out failuresā€. The time of random failures is the time of constant failure rate and corresponds with the lifetime of non-solid e-caps.
659: 3053: 578: 635: 5927:
Alfonso Berduque, Zongli Dou, Rong Xu, KEMET, Electrochemical Studies for Aluminium Electrolytic Capacitor Applications: Corrosion Analysis of Aluminium in Ethylene Glycol-Based Electrolytes
2553: 923:
and discharging as well as to low-energy transients. Non-solid electrolytic capacitors can be found in nearly all areas of electronic devices, with the exception of military applications.
683: 2486: 2982:
This internally generated heat, additional to the ambient temperature and possibly other external heat sources, leads to a capacitor body temperature having a temperature difference of
3249:
Applying a positive voltage to a "wet" capacitor causes a reforming (self-healing) process which repairs all weakened dielectric layers, and the leakage current remain at a low level.
2154:. An unambiguous and general specification of tolerable transients or peak voltages is not possible. In every case transients arise, the application has to be approved very carefully. 4119:
resistor repairs the oxide layer by self-healing. If the capacitors donā€™t meet the leakage current requirements after preconditioning, it may be an indication of a mechanical damage.
3616:
Commercially available industrially produced tantalum capacitors now have reached as standard products the high MIL standard ā€œCā€ level, which is 0.01 %/1000h at 85 Ā°C and U
2977: 930:
Niobium electrolytic capacitors are in direct competition with industrial tantalum electrolytic capacitors because niobium is more readily available. Their properties are comparable.
4297:
The tests and requirements to be met by aluminum and tantalum electrolytic capacitors for use in electronic equipment for approval as standardized types are set out in the following
3711:
Electrolytic capacitors with solid electrolyte do not have wear-out failures so they do not have a lifetime specification in the sense of non-solid aluminum electrolytic capacitors.
6701: 4111:
as electrolyte do not have problems with high leakage current after longer storage times. They can be specified with storage times up to 10 years without leakage current problems
1707:
With Rubens invention, together with the invention of wound foils separated with a paper spacer 1927 by A. Eckel of Hydra-Werke (Germany), the actual development of e-caps began.
2117:". The category voltage is the maximum DC voltage or peak pulse voltage that may be applied continuously to a capacitor at any temperature within the category temperature range T 5595:
Elektrolytischer Kondensator mit aufgerollten MetallbƤndern als Belegungen, Alfred Eckel Hydra-Werke, Berlin-Charlottenburg, DRP 498 794, filed 12.Mai 1927, granted 8.Mai 1930
3515:
and can be described qualitatively and quantitatively; it is not directly measurable. The reliability of electrolytic capacitors is empirically determined by identifying the
2299: 50: 2883:
The superimposed (DC biased) AC ripple current flow across the smoothing capacitor C1 of a power supply causes internal heat generation corresponding to the capacitor's
629:
Closeup cross-section of an aluminum electrolytic capacitor design, showing capacitor anode foil with oxide layer, paper spacer soaked with electrolyte, and cathode foil
2863:
The dissipation factor is used for capacitors with very low losses in frequency-determining circuits where the reciprocal value of the dissipation factor is called the
1773:
Although fundamental inventions came from Bell Labs, the inventions for manufacturing commercially viable tantalum electrolytic capacitors came from researchers at the
3070:. The temperature of the capacitor, which is the net balance between heat produced and distributed, must not exceed the capacitor's maximum specified temperature. 6070:
P. Vasina, T. Zednicek, Z. Sita, J. Sikula, J. Pavelka, AVX, Thermal and Electrical Breakdown Versus Reliability of Ta2O5 Under Both ā€“ Bipolar Biasing Conditions
1503: 5641: 2137:
surge voltage is 1.15 times the rated voltage, and for capacitors with a rated voltage exceeding 315 V, the surge voltage is 1.10 times the rated voltage.
1515: 2039:
capacitance. The DC capacitance is about 10% higher than the 100/120 Hz AC capacitance. The DC capacitance is of interest for discharge applications like
1491: 611: 2730: 2196:
These guidelines apply for short excursion and should never be used to determine the maximum reverse voltage under which a capacitor can be used permanently.
6248: 2718: 2411:
Besides measuring, the impedance can be calculated using the idealized components of a capacitor's series-equivalent circuit, including an ideal capacitor
3563:
failures. This failure rate model implicitly assumes the idea of "random failure". Individual components fail at random times but at a predictable rate.
247:
in principle is the cathode, which thus forms the second electrode of the capacitor. This and the storage principle distinguish them from electrochemical
5894:
Shigeru Uzawa, Akihiko Komat-u, Tetsushi Ogawara, Rubycon Corporation, Ultra Low Impedance Aluminum Electrolytic Capacitor with Water based Electrolyte
2199:
But in no case, for aluminum as well as for tantalum and niobium electrolytic capacitors, may a reverse voltage be used for a permanent AC application.
1766:
pressed into a cylindrical form and then sintered at high a temperature between 1500 and 2000Ā°C under vacuum conditions to produce a pellet (ā€œslugā€).
5833: 4267: 2568: 6008:
Imam, A.M., Condition Monitoring of Electrolytic Capacitors for Power Electronics Applications, Dissertation, Georgia Institute of Technology (2007)
1479: 282:(forming) an insulating oxide layer originates and serves as dielectric. There are three different anode metals in use for electrolytic capacitors: 6479: 5622:
D. F. Tailor, Tantalum and Tantalum Compounds, Fansteel Inc., Encyclopedia of Chemical Technology, Vol. 19, 2nd ed. 1969 John Wiley & sons, Inc.
3628:
is the failure rate. For a 100 ĀµF/25 V tantalum chip capacitor used with a series resistance of 0.1 Ī© the failure rate is 0.02 FIT.
2247:
In general, a capacitor is seen as a storage component for electric energy. But this is only one capacitor function. A capacitor can also act as an
6547:
Gregory Mirsky, Determining end-of-life, ESR, and lifetime calculations for electrolytic capacitors at higher temperatures, EDN, August 20, 2008,
5741: 4043: 4036: 4029: 1558: 5844: 3398:
The leakage current value depends on the voltage applied, on the temperature of the capacitor, and on measuring time. Leakage current in solid MnO
271:
Basic principle of anodic oxidation (forming), in which, by applying a voltage with a current source, an oxide layer is formed on a metallic anode
4022: 3084: 677:
Schematic representation of the structure of a sintered tantalum electrolytic capacitor with solid electrolyte and the cathode contacting layers
5533:
I.Horacek, T.Zednicek, S.Zednicek, T.Karnik, J.Petrzilek, P.Jacisko, P.Gregorova, AVX, High CV Tantalum Capacitors - Challenges and Limitations
5884: 194:
Bipolar electrolytic capacitors which may be operated with AC voltage are special constructions with two anodes connected in reverse polarity.
3724:
Long-term electrical behavior, failure modes, self-healing mechanism, and application rules of the different types of electrolytic capacitors
3402:
tantalum electrolytic capacitors generally drops very much faster than for non-solid electrolytic capacitors but remain at the level reached.
2182:
Solid tantalum capacitors can also withstand reverse voltages for short periods. The most common guidelines for tantalum reverse voltage are:
3457:
Dielectric absorption may be a problem in circuits where very small currents are used in the function of an electronic circuit, such as long-
6270: 5786: 4250:
For very small capacitors no marking is possible. Here only the traceability of the manufacturers can ensure the identification of a type.
3388:{\displaystyle I_{\mathrm {Leak} }=0{,}01\,\mathrm {{A} \over {V\cdot F}} \cdot U_{\mathrm {R} }\cdot C_{\mathrm {R} }+3\,\mathrm {\mu A} } 1647:
Various forms of historical anode structures for wet capacitors. For all of these anodes the outer metallic container served as the cathode
933:
The electrical properties of aluminum, tantalum and niobium electrolytic capacitors have been greatly improved by the polymer electrolyte.
1467: 534:
Every electrolytic capacitor forms on principle a "plate capacitor" whose capacitance is greater, the larger the electrode area A and the
5508: 2105:
is the maximum DC voltage or peak pulse voltage that may be applied continuously at any temperature within the rated temperature range T
143:
Due to their very thin dielectric oxide layer and enlarged anode surface electrolytic capacitors haveā€”based on the volumeā€”a much higher
6430: 5775: 2277:
Typical impedance curves for different capacitance values over frequency. The higher the capacitance the lower the resonance frequency.
1635:) based on his idea of using the oxide layer in a polarized capacitor in combination with a neutral or slightly alkaline electrolyte. 1546: 5863:
Ch. Schnitter, A. Michaelis, U. Merker, H.C. Starck, Bayer, New Niobium Based Materials for Solid Electrolyte Capacitors, Carts 2002
2007:(Ī¼F, or less correctly, uF). The capacitance value specified in the data sheets of the manufacturers is called the rated capacitance C 3511:
of a component is a property that indicates how reliably this component performs its function in a time interval. It is subject to a
1583: 59: 3214:
and of the capacitor's ESR. Only the frequency of peaks integrated over time must not exceed the maximal specified ripple current.
5883:
Y. Pozdeev-Freeman, P. Maden, Vishay, Solid-Electrolyte Niobium Capacitors Exhibit Similar Performance to Tantalum, Feb 1, 2002,
5797: 2093:
Referring to the IEC/EN 60384-1 standard, the allowed operating voltage for electrolytic capacitors is called the "rated voltage U
2065:
The required capacitance tolerance is determined by the particular application. Electrolytic capacitors, which are often used for
6211: 6095: 3689:
expected that short circuits occur after the end-of-life-point with progressive evaporation combined with parameter degradation.
3607:
It is good to know that for tantalum capacitors the failure rate is often specified in essence at 85 Ā°C and rated voltage U
251:, in which the electrolyte generally is the conductive connection between two electrodes and the storage occurs with statically 5996:
A. Teverovsky, Perot Systems Code 562, NASA GSFCE, Effect of Surge Current Testing on Reliability of Solid Tantalum Capacitors
5433: 3468:
circuits. In most electrolytic capacitor applications supporting power supply lines, dielectric absorption is not a problem.
3238:(DCL) is a special characteristic that other conventional capacitors do not have. This current is represented by the resistor R 286: 92: 2218:
Simplified series-equivalent circuit of a capacitor for higher frequencies (above); vector diagram with electrical reactances
1651:
The first industrially realized electrolytic capacitors consisted of a metallic box used as the cathode. It was filled with a
1534: 6454: 2818: 2051:
specified in IEC 60063. For abbreviated marking in tight spaces, a letter code for each tolerance is specified in IEC 60062.
5299: 215:
Depending on the nature of the anode metal used and the electrolyte used, there is a wide variety of electrolytic capacitors
42: 5820:
U. Merker, K. Wussow, W. Lƶvenich, H. C. Starck GmbH, New Conducting Polymer Dispersions for Solid Electrolyte Capacitors,
5809: 5640:
E. K. Reed, Jet Propulsion Laboratory, Characterization of Tantalum Polymer Capacitors, NEPP Task 1.21.5, Phase 1, FY05]
5113: 2898:) after rectifying an AC voltage and flows as charge and discharge current through the decoupling or smoothing capacitor. 5631:
R. L. Taylor and H. E. Haring, ā€œA metal semi-conductor capacitor,ā€ J. Electrochem. Soc., vol. 103, p. 611, November, 1956.
2868: 2073:, do not have the need for narrow tolerances because they are mostly not used for accurate frequency applications like in 6442: 4372:
In number of pieces, these capacitors cover about 10% of the total capacitor market, or about 100 to 120 billion pieces.
3218:
If possible the voltage profile should be a ramp turn-on, as this reduces the peak current experienced by the capacitor.
3260:
The specification of the leakage current in data sheets is often given by multiplication of the rated capacitance value
3007: 2743: 1974: 1961: 1833:" aluminum electrolytic capacitors. These capacitors used a solid organic conductor, the charge transfer salt TTF-TCNQ ( 1819: 544: 6326:
IEC/EN 61709, Electric components. Reliability. Reference conditions for failure rates and stress models for conversion
5545: 1668:
were available, but devices with that order of capacitance and voltage rating were bulky and prohibitively expensive.
6009: 1871:. These aluminum electrolytic capacitors with polymer electrolytes reached very low ESR values directly comparable to 6336: 5680:
A. Fraioli, Recent Advances in the Solid-State Electrolytic Capacitor, IRE Transactions on Component Parts, June 1958
2507: 1729:
etching process are the reason for the dimension reductions in aluminum electrolytic capacitors over recent decades.
6347: 1837:), which provided an improvement in conductivity by a factor of 10 compared with the manganese dioxide electrolyte. 5710: 5699: 5448: 4094: 3571: 2895: 1807: 6260: 6233:
Vishay, Aluminium capacitors, Introduction, Revision: 10-Sep-13 1 Document Number: 28356, Chapter Storage, page 7
3604:
Some manufacturers may have their own FIT calculation tables for tantalum capacitors. or for aluminum capacitors
2443: 275:
Electrolytic capacitors use a chemical feature of some special metals, earlier called ā€œvalve metalsā€, on which by
6510: 5476:
J.L. Stevens, A.C. Geiculescu, T.F. Strange, Dielectric Aluminum Oxides: Nano-Structural Features and Composites
6690: 6413:
T.Zednicek, AVX, A Study of Field Crystallization in Tantalum Capacitors and its effect on DCL and Reliability,
2273: 1834: 1774: 252: 172: 5872:
T. Zednicek, S. Sita, C. McCracken, W. A. Millman, J. Gill, AVX, Niobium Oxide Technology Roadmap, CARTS 2002
5586:
P. McK. Deeley, Electrolytic Capacitors, The Cornell-Dubilier Electric Corp. South Plainfield New Jersey, 1938
2925: 186:
Electrolytic capacitors are polarized components by the manufacturing principle and may only be operated with
5943:
Identification of Missing or Insufficient Electrolyte Constituents in Failed Aluminum Electrolytic Capacitors
506:
The anodically generated insulating oxide layer is destroyed if the polarity of the applied voltage changes.
5175: 4271: 3624:. Recalculated in FIT with the acceleration factors coming from MIL HDKB 217F at 40 Ā°C and 0.5 , U 3539: 3524: 3508: 5489: 6571: 6522: 5751:
Larry E. Mosley, Intel Corporation, Capacitor Impedance Needs For Future Microprocessors, CARTS USA 2006,
5720:
J.Both, Valvo, SAL contra Tantal, ZuverlƤssige Technologien im Wettstreit, nachrichten elektronik 35, 1981
4275: 3631:
Aluminum electrolytic capacitors do not use a specification in "% per 1000 h at 85 Ā°C and U
2790:. The dissipation factor is determined by the tangent of the phase angle between the capacitive reactance 1822:(ESR) for bypass and decoupling capacitors. The manganese dioxide type of electrolyte should be better. 1797: 1754: 6358: 6167: 3708:
lifetime specification because they are hermetically sealed and evaporation of electrolyte is minimized.
1664:
technique, typically at least 4 microfarads and rated at around 500 volts DC. Waxed paper and oiled silk
5941: 5907: 3418: 3411: 3235: 2290: 2263: 1987: 1724:
Miniaturisation of aluminum electrolytic capacitors driven by progress in the anode foil etching process
1701: 339:
Characteristics of the different oxide layers in aluminum, tantalum and niobium electrolytic capacitors
6082:
A. Berduque, Kemet, Low ESR Aluminium Electrolytic Capacitors for Medium to High Voltage Applications,
5898: 5670: 4989: 3664: 475:
are distinguished into two species, ā€œnon-solidā€ and ā€œsolidā€ electrolytes. As a liquid medium which has
6134: 5570: 2392:
In other words, the impedance is a frequency-dependent AC resistance and possesses both magnitude and
2382:{\displaystyle Z={\frac {\hat {u}}{\hat {\imath }}}={\frac {U_{\mathrm {eff} }}{I_{\mathrm {eff} }}}.} 2000:
broader aberration over frequency and temperature ranges than do capacitors with solid electrolytes.
1778: 1720: 6560: 6223: 6110:
Vishay BCcomponents, Introduction Aluminum Capacitors, Revision: 10-Sep-13 1 Document Number: 28356,
5764: 4927: 4648: 3274:
together with an addendum figure, measured after a measuring time of 2 or 5 minutes, for example:
2286: 2267: 2255: 2070: 6689:
Electronic Capacitors, SIC 3675, NAICS 334414: Electronic Capacitor Manufacturing, Industry report:
5997: 5821: 2262:
of audio AC signals. Than the dielectric is used only for blocking DC. For such applications the AC
2019:
a rated voltage of >2.5 V, may be applied during the measurement to avoid reverse voltage.
1676: 77: 6698: 5523: 4108: 2768: 2259: 2248: 2166: 1910: 756: 6535: 6491: 5740:
K. Lischka, Spiegel 27.09.2007, 40 Jahre Elektro-Addierer: Der erste Taschenrechner wog 1,5 Kilo,
3230:
The general leakage current behavior of electrolytic capacitors depends on the kind of electrolyte
5698:
W. Serjak, H. Seyeda, Ch. Cymorek, Tantalum Availability: 2000 and Beyond, PCI,March/April 2002,
5458: 5453: 4230:
476M 100V implies a capacitance of 47 Ɨ 10 pF = 47 ĀµF (M = Ā±20%) with a working voltage of 100 V.
3697: 3512: 3067: 2780: 1864:
is better than that of TCNQ by a factor of 100 to 500, and close to the conductivity of metals.
1841: 641:
Construction of a typical single-ended aluminum electrolytic capacitor with non-solid electrolyte
308: 300: 228: 96: 4227:
105K 330V implies a capacitance of 10 Ɨ 10 pF = 1 ĀµF (K = Ā±10%) with a working voltage of 330 V.
2214: 1875:(MLCCs). They were still less expensive than tantalum capacitors and with their flat design for 1621: 6156: 6021: 4345:
Surface mount fixed aluminium electrolytic capacitors with conductive polymer solid electrolyte
4042: 4035: 4028: 3496: 1935: 1575: 946:
Comparison of the most important characteristics of different types of electrolytic capacitors
665:
The capacitor cell of a tantalum electrolytic capacitor consist out of sintered tantalum powder
503:
praxis different safety margins to reach reliable components makes a comparization difficult.
6645:
R. Faltus, AVX, Advanced capacitors ensure long-term control-circuit stability, 7/2/2012, EDT
6369: 5507:
A. Albertsen, Jianghai Europe, Keep your distance ā€“ Voltage Proof of Electrolytic Capacitors,
5443: 5438: 4339:
Surface mount fixed tantalum electrolytic capacitors with conductive polymer solid electrolyte
3640:
20 to 200 FIT.Field failure rates for aluminum e-caps are in the range of 0.5 to 20 FIT.
3059: 2751: 2066: 2028: 1872: 1868: 1762: 764: 760: 488: 326: 314: 256: 152: 100: 4741: 4361:
The market for electrolytic capacitors in 2008 was roughly 30% of the total market in value
4307:
Surface mount fixed tantalum electrolytic capacitors with manganese dioxide solid electrolyte
3242:
in parallel with the capacitor in the series-equivalent circuit of electrolytic capacitors.
6627:
J.Gill, T. Zednicek, AVX, VOLTAGE DERATING RULES FOR SOLID TANTALUM AND NIOBIUM CAPACITORS,
6414: 6293: 4021: 3075: 2891: 2879: 2048: 1919: 1853: 1746: 1710: 6346:
SQC online table calculator, Capacitor Failure Rate Model, MIL-HDBK-217, Rev. F - Notice 2
6234: 6111: 5488:
T. KĆ”rnĆ­k, AVX, NIOBIUM OXIDE FOR CAPACITOR MANUFACTURING , METAL 2008, 13. ā€“15. 5. 2008,
5392: 1579:
Early small electrolytic capacitor from 1914. It had a capacitance of around 2 microfarads.
6466: 5854:
F. Jonas, H.C.Starck, Baytron, Basic chemical and physical properties, PrƤsentation 2003,
5206: 4122:
Electrolytic capacitors with solid electrolytes donā€™t have any precondition instructions.
4090: 3465: 2121:. The relation between both voltages and temperatures is given in the picture at right. 1849: 1661: 1643: 514: 232: 225: 160: 6316: 5963:
Ch. Reynolds, AVX, Technical Information, Reliability Management of Tantalum Capacitors,
5477: 5082: 1745:
The relevant development of solid electrolyte tantalum capacitors began some years after
689:
Construction of a typical SMD tantalum electrolytic chip capacitor with solid electrolyte
518:
A dielectric material is placed between two conducting plates (electrodes), each of area
136:
which covers the surface of the oxide layer in principle serves as the second electrode (
6583: 6368:
Hitachi, Precautions in using Tantalum Capacitors, 4.2 Failure Rate Calculation Formula
5330: 3593:
The standard operating conditions for the failure rate FIT are 40 Ā°C and 0.5 U
2771:
behind smoothing and may influence the circuit functionality. Related to the capacitorm
1785:
deposition, which dramatically reduced the leakage current of the finished capacitors.
1587:
View of the anode of a ā€žwetā€œ aluminum electrolytic capacitor, Bell System Technique 1929
5268: 3520: 3226: 2179:
determine the maximum reverse voltage under which a capacitor can be used permanently.
2036: 2024: 1845: 1693: 1665: 927:
space applications only tantalum electrolytic capacitors have the necessary approvals.
492: 294: 248: 236: 156: 6395:
Sam G. Parler, Cornell Dubilier, Reliability of CDE Aluminum Electrolytic Capacitors (
6034: 5917: 5752: 2901:
Ripple currents generates heat inside the capacitor body. This dissipation power loss
1977:
which is the effective self-inductance of the capacitor, usually abbreviated as "ESL".
211: 6646: 6199:
Vishay, Application Notes, AC Ripple Current, Calculations Solid Tantalum Capacitors
4555: 4462: 4238:
The date of manufacture is often printed in accordance with international standards.
3645: 3531: 3500: 3458: 1652: 322: 6123: 6058:
I. Bishop, J. Gill, AVX Ltd., Reverse Voltage Behavior of Solid Tantalum Capacitors
588:
capacitance values of electrolytic capacitors compared to conventional capacitors.
583:
The dielectric thickness of electrolytic capacitors is very slight, in the range of
4211:
certification marks of safety standards (for safety EMI/RFI suppression capacitors)
3678: 3674: 3653: 3649: 3543: 3516: 1750: 1689: 1628: 535: 479: 168: 6247:
Ch. Baur, N. Will, Epcos, Long-term stability of aluminum electrolytic capacitors
5534: 5020: 4382:
Worldwide operating manufacturers and their electrolytic capacitor product program
654:
Construction of a solid tantalum chip capacitor with manganese dioxide electrolyte
6304: 5669:
Sprague, Dr. Preston Robinson Granted 103rd Patent Since Joining Company In 1929
4351:
Fixed aluminium electrolytic capacitors with conductive polymer solid electrolyte
121:(+) are made of a special metal on which an insulating oxide layer originates by 6628: 6200: 6189: 6178: 6071: 5873: 5796:
About the Nobel Prize in Chemistry 2000, Advanced Information, October 10, 2000,
4617: 4281:
The definition of the characteristics and the procedure of the test methods for
4263: 2699:. With frequencies above the resonance the impedance increases again due to the 2655:{\displaystyle Z={\sqrt {{ESR}^{2}+(X_{\mathrm {C} }+(-X_{\mathrm {L} }))^{2}}}} 2151: 1964:
which summarizes all ohmic losses of the capacitor, usually abbreviated as "ESR"
1857: 1742:
a liquid electrolyte, mostly sulfuric acid, and encapsulated in a silver case.
244: 144: 133: 122: 6281: 6059: 4896: 4242:
Version 1: coding with year/week numeral code, "1208" is "2012, week number 8".
2254:. Especially aluminum electrolytic capacitors in many applications are used as 2113:"temperature derated voltage" for a higher temperature, the "category voltage U 267: 6609: 5981: 5964: 4834: 4803: 4259: 3461: 3063: 2499: 2124:
Applying a higher voltage than specified may destroy electrolytic capacitors.
2089:
Relation between rated and category voltage and rated and category temperature
2074: 2040: 1880: 1758: 1596:
The phenomenon that can form an oxide layer on aluminum and other metals like
710:
Overview of the key features of the different types of electrolytic capacitor
129: 17: 6177:
I. Salisbury, AVX, Thermal Management of Surface Mounted Tantalum Capacitors
6145: 6046: 5689:
R. J. Millard, Sprague, US Patent 2936514, October 24, 1955 - May 17, 1960
6292:"Understand Capacitor Soakage to Optimize Analog Systems" by Bob Pease 1982 5660:
Preston Robinson, Sprague, US Patent 3066247, 25. Aug. 1954 - 27. Nov. 1962
4493: 4282: 2667: 2085: 1605: 484: 279: 276: 240: 180: 176: 125: 118: 111: 5544:
Charles Pollack: D.R.P. 92564, filed 14. Januar 1896, granted 19. Mai 1897
4524: 3186:{\displaystyle Z={\sqrt {{i_{1}}^{2}+{i_{2}}^{2}+{i_{3}}^{2}+{i_{n}}^{2}}}} 2713:
Typical impedance and ESR curves as a function of frequency and temperature
6396: 4132:
Polarity marking for non-solid and solid aluminum electrolytic capacitors
2864: 2258:
to filter or bypass undesired biased AC frequencies to the ground or for
2251: 1697: 1685: 1609: 1597: 304: 290: 6509:
Epcos, Aluminum electrolytic capacitors, General technical informations
5613:
Philips Data Handbook PA01, 1986, the first 125 Ā°C series ā€œ118 AHTā€
2786:
will sometimes be specified in the relevant data sheets, instead of the
1825:
It was not until 1983 when a new step toward ESR reduction was taken by
6595: 6429:
A. Albertsen, Jianghai Europe, Reliability of Electrolytic Capacitors,
6122:
Vishay, Engineering Solutions, Aluminum Capacitors in Power Supplies
5709:
The Tantalum Supply Chain: A Detailed Analysis, PCI, March/April 2002,
3601:
calculate given failure rate values for given application conditions.
2986:
against the ambient. This heat has to be distributed as thermal losses
2399:
In data sheets of electrolytic capacitors only the impedance magnitude
1811: 1617: 1601: 496: 318: 148: 137: 6453:
NCC, Technical Note Judicious Use of Aluminum Electrolytic Capacitors
5569:
Samuel Ruben: Inventor, Scholar, and Benefactor by Kathryn R. Bullock
4586: 3058:
The internally generated heat has to be distributed to the ambient by
224:
Like other conventional capacitors, electrolytic capacitors store the
6155:
Nichicon, Application Guidelines for Aluminum Electolytic Capacitors
4329:
Fixed aluminium electrolytic surface mount capacitors with solid (MnO
2393: 1876: 1830: 6478:
A. Albertsen, Jianghai, Electrolytic Capacitor Lifetime Estimation
6020:
Nichicon. "General Description of Aluminum Electrolytic Capacitors"
5361: 5237: 2192:
1 % of rated voltage to a maximum of 0.1 V at 125 Ā°C.
208:
of anode material and solid or non-solid electrolytes is available.
88:
is the generic term for three different capacitor family members:
6668: 4266:
components and related technologies follows the rules given by the
2189:
3 % of rated voltage to a maximum of 0.5 V at 85 Ā°C,
81:
Most common styles of aluminum and tantalum electrolytic capacitors
6094:
Joelle Arnold, Uprating of Electrolytic Capacitors, DfR Solutions
4865: 3495: 3225: 2272: 2213: 2186:
10 % of rated voltage to a maximum of 1 V at 25 Ā°C,
2165: 2084: 2004: 1944:
capacitive and inductive parameters of an electrolytic capacitor:
1934: 1861: 1826: 1796: 1719: 1675: 1642: 1582: 1574: 584: 513: 266: 210: 115: 76: 6534:
NIC Life expectancy of aluminum electrolytic capacitors (rev.1) (
5651:
D. A. McLean, F. S. Power, Proc. Inst. Radio Engrs. 44 (1956) 872
4293:
IEC/EN 60384-1 - Fixed capacitors for use in electronic equipment
2003:
The basic unit of an electrolytic capacitor's capacitance is the
606:
Basic construction of a non-solid aluminum electrolytic capacitor
6188:
R.W. Franklin, AVX , Ripple Rating of Tantalum Chip Capacitors,
5895: 3635:". They use the FIT specification with 40 Ā°C and 0.5 U 1613: 600:
Basic construction of non-solid aluminum electrolytic capacitors
5730: 3426:
Values of dielectric absorption for some often used capacitors
2912:
and is the squared value of the effective (RMS) ripple current
1867:
In 1991 Panasonic came on the market with its "SP-Cap", called
1717:
company, started the production of e-caps in large quantities.
6305:"Modeling Dielectric Absorption in Capacitors", by Ken Kundert 5948: 4323:
Fixed tantalum capacitors with non-solid and solid electrolyte
2061:
rated capacitance, series E12, tolerance Ā±10%, letter code "Kā€œ
1714: 1680:
A ā€œdryā€ electrolytic capacitor with 100 ĀµF and 150 V
476: 25: 6335:
MIL-HDBK-217F Reliability Prediction of Electronic Equipment
6133:
Panasonic, Use technique of Aluminum Electrolytic Capacitors
5843:
John Prymak, Kemet, Replacing MnO2 with Polymers, 1999 CARTS
3669:
this behavior in a 2000 h endurance test at 105 Ā°C.
2058:
rated capacitance, series E6, tolerance Ā±20%, letter code "Mā€œ
2055:
rated capacitance, series E3, tolerance Ā±20%, letter code "Mā€œ
2015:
and is the value for which the capacitor has been designed.
159:, but an articulately smaller C/V value than electrochemical 6570:
Nichicon, Technical Guide, Calculation Formula of Lifetime
5774:
Kuch, Investigation of charge transfer complexes:TCNQ-TTF,
4710: 1939:
Series-equivalent circuit model of an electrolytic capacitor
1633:
Elektrischer FlĆ¼ssigkeitskondensator mit Aluminiumelektroden
648:
Basic construction of solid tantalum electrolytic capacitors
6380: 6210:
KEMET, Ripple Current Capabilities, Technical Update 2004
5522:
KDK, Specifications for Etched Foil for Anode, Low Voltage
3715:
Failure modes, self-healing mechanism and application rules
3447:
Aluminium electrolytic capacitor with non solid electrolyte
187: 6678: 5051: 4772: 1856:
in 1975. The conductivity of conductive polymers such as
1696:, the founder of the battery company that is now known as 6465:
Rubycon, LIFE OF ALUMINUM ELECTROLYTIC CAPACITORS, S. 9 (
6282:
AVX, ANALYSIS OF SOLID TANTALUM CAPACITOR LEAKAGE CURRENT
4958: 3078:
and summarized by squared addition the single currents.
2812:
is small, the dissipation factor can be approximated as:
5144: 4679: 2779:
For electrolytic capacitors, for historical reasons the
1509:
Aluminum electrolytic capacitor with ā€œsnap-inā€ terminals
1497:
Radial or single-ended aluminum electrolytic capacitors
617:
Opened winding of an e-cap with multiple connected foils
6144:
CDE, Aluminum Electrolytic Capacitor Application Guide
4368:
Tantalum electrolytic capacitorsā€”US$ 2.2 billion (12%);
4365:
Aluminum electrolytic capacitorsā€”US$ 3.9 billion (22%);
4193:
polarity of the terminations (for polarized capacitors)
3439:
Tantalum electrolytic capacitors with solid electrolyte
2853:{\displaystyle \tan \delta ={\mbox{ESR}}\cdot \omega C} 2703:
of the capacitor. The capacitor becomes an inductance.
1473:
Aluminum electrolytic SMD ā€œV (vertical) chip capacitors
1452:
Styles of aluminum and tantalum electrolytic capacitors
6702:
Category:Electronics articles needing expert attention
6259:
R.W. Franklin, AVX, AN EXPLORATION OF LEAKAGE CURRENT
6166:
Evox Rifa,Electrolytic Capacitors Application Guide
5604:
William Dubilier, Electric Condenser, US Patent 468787
2835: 2423:. In this case the impedance at the angular frequency 1840:
The next step in ESR reduction was the development of
6657: 6594:
NIC Technical Guide, Calculation Formula of Lifetime
6582:
Estimating of Lifetime FUJITSU MEDIA DEVICES LIMITED
6441:
Hitachi aic-europe, Explanations to the useful life,
3283: 3087: 3010: 2928: 2821: 2761:
decreases with increasing frequency and temperature.
2571: 2510: 2446: 2302: 1688:
of the modern electrolytic capacitor was patented by
1521:
Aluminum electrolytic capacitors with screw terminals
1445:) calculated for a capacitor 100 ĀµF/10 V, 596:
capacitance and voltage, the so-called "CV product".
547: 4147:
electrolyte have a polarity marking at the cathode (
2724:
Typical impedance and ESR as a function of frequency
2170:
An exploded aluminum electrolytic capacitor on a PCB
2031:, whose capacitance is measured at 1 kHz or higher. 1700:. Rubens idea adopted the stacked construction of a 1624:. He coined the term "valve metal" for such metals. 1529:
Different styles of tantalum electrolytic capacitors
1462:
Different styles of aluminum electrolytic capacitors
132:
of the electrolytic capacitor. A non-solid or solid
6047:"Aluminum Electrolytic Capacitor Application Guide" 4285:for use in electronic equipment are set out in the 2150:voltages lead to a voltage limitation similar to a 5980:J. Gill, AVX, Surge in Solid Tantalum Capacitors, 4167:electrolyte have a polarity marking at the anode ( 3387: 3185: 3048:{\displaystyle P_{th}=\Delta T\cdot A\cdot \beta } 3047: 2971: 2852: 2654: 2547: 2480: 2381: 1442:) Manufacturer, series name, capacitance/voltage 573:{\displaystyle C=\varepsilon \cdot {\frac {A}{d}}} 572: 6425: 6423: 6421: 5560:, filed October 19,1925, granted August 26, 1930 4313:Aluminium electrolytic capacitors with solid (MnO 2695:), then the impedance will only be determined by 2427:is given by the geometric (complex) addition of 1883:competed with tantalum chip capacitors as well. 1801:Conductivity of non-solid and solid electrolytes 6623: 6621: 6619: 6617: 2548:{\displaystyle X_{L}=\omega L_{\mathrm {ESL} }} 45:for grammar, style, cohesion, tone, or spelling 3875:in the dielectric by oxidation or evaporation 2736:Typical impedance as a function of temperature 303:use a sintered pellet (ā€œslugā€) of high-purity 5992: 5990: 5988: 4202:rated voltage and nature of supply (AC or DC) 3620:or 1 failure per 10 hours at 85 Ā°C and U 696:Types and features of electrolytic capacitors 8: 6106: 6104: 6102: 5785:Sanyo, OS-CON, Technical Book Ver. 15, 2007 2481:{\displaystyle X_{C}=-{\frac {1}{\omega C}}} 2270:, is as important as the capacitance value. 1564:Axial style tantalum electrolytic capacitors 1485:Axial style aluminum electrolytic capacitors 6505: 6503: 6501: 6409: 6407: 6405: 3656:of ā€œwetā€ aluminum electrolytic capacitors. 1995:Capacitance, standard values and tolerances 1552:Dipped laquered tantalum ā€œpearlā€ capacitors 3722: 3424: 2757:For electrolytic capacitors generally the 708: 701:Comparison of electrolytic capacitor types 239:in the dielectric oxide layer between two 6641: 6639: 6637: 6635: 6604: 6602: 6391: 6389: 6387: 5503: 5501: 5499: 5497: 4268:International Electrotechnical Commission 3970:Hybrid aluminum electrolytic capacitors, 3377: 3376: 3363: 3362: 3348: 3347: 3327: 3322: 3320: 3319: 3311: 3289: 3288: 3282: 3175: 3168: 3163: 3153: 3146: 3141: 3131: 3124: 3119: 3109: 3102: 3097: 3094: 3086: 3015: 3009: 2951: 2946: 2933: 2927: 2834: 2820: 2767:influences the remaining superimposed AC 2670:, in which the both reactive resistances 2644: 2630: 2629: 2609: 2608: 2592: 2581: 2578: 2570: 2532: 2531: 2515: 2509: 2463: 2451: 2445: 2361: 2360: 2343: 2342: 2336: 2321: 2311: 2309: 2301: 560: 546: 60:Learn how and when to remove this message 5976: 5974: 5972: 5582: 5580: 5578: 4379: 4208:year and month (or week) of manufacture; 3663: 2972:{\displaystyle P_{L}=I_{R}^{2}\cdot ESR} 2878: 1869:polymer aluminum electrolytic capacitors 944: 337: 6271:Kemet, Polymer Tantalum Chip Capacitors 6243: 6241: 5469: 4408: 4386: 4205:climatic category or rated temperature; 4130: 4093:with DC-link for frequency controls in 3903:Thermally induced insulation of faults 3727: 3542:prediction is generally expressed in a 2711: 1527: 1460: 1281:Solid niobium electrolytic capacitors, 1253:Solid niobium electrolytic capacitors, 1225:Solid tantalum electrolytic capacitors 989:"wet" Al-electrolytic capacitors 1976 ) 713: 652: 604: 538:Īµ, and the thinner the dielectric (d). 6035:"Aluminum Electrolytic Capacitors FAQ" 1309:Solid niobium electrolytic capacitors 1201:Solid tantalum electrolytic capacitors 1173:Solid tantaum electrolytic capacitors 1145:Solid tantalum electrolytic capacitors 5518: 5516: 3972:solid polymer + non-solid electrolyte 3834:by oxidization of the electrolyte MnO 1117:"wet" Al-electrolytic capacitors, SMD 1093:"wet" Al-electrolytic capacitors, SMD 317:use a sintered ā€œslugā€ of high-purity 263:Basic materials and forming principle 7: 3267:with the value of the rated voltage 3209:Current surge, peak or pulse current 2867:(Q), which represents a resonator's 2403:is specified, and simply written as 3530:Reliability normally is shown as a 2236:and for illustration the impedance 1417:Hybrid Al-electrolytic capacitors, 937:Comparison of electrical parameters 203:Electrolytic capacitors family tree 6679:IEC/EN/DIN Standards, Beuth-Verlag 6608:VISHAY, DC LEAKAGE FAILURE MODE, 4835:Kaimei Electronic Corp, (Jamicon) 4246:December. "X5" is then "2009, May" 3859:Tantalum electrolytic capacitors, 3848:if current availability is limited 3814:Tantalum electrolytic capacitors, 3783:Aluminum electrolytic capacitors, 3754:Aluminum electrolytic capacitors, 3381: 3364: 3349: 3334: 3328: 3323: 3299: 3296: 3293: 3290: 3027: 2631: 2610: 2539: 2536: 2533: 2368: 2365: 2362: 2350: 2347: 2344: 1986:, the resistance representing the 1951:, the capacitance of the capacitor 1789:aluminum electrolytic capacitors. 1065:"wet" Al-electrolytic capacitors, 24: 4274:, non-governmental international 4187:manufacturer's name or trademark; 3934:Niobium electrolytic capacitors, 3886:Niobium electrolytic capacitors, 3421:, "soakage" or "battery action". 2754:in the dielectric oxide layer. 1810:came on the market, developed by 1389:Solid Al-electrolytic capacitors, 1361:Solid Al-electrolytic capacitors, 1337:Solid Al-electrolytic capacitors, 1095:Ethylene glycol/borax electrolyte 1043:Ethylene glycol/borax electrolyte 1041:"wet" Al-electrolytic capacitors, 1017:"wet" Al-electrolytic capacitors, 991:Ethylene glycol/borax electrolyte 179:stages, and store energy as in a 6024:section "2-3-2 Reverse Voltage". 4190:manufacturer's type designation; 4156: 4136: 4041: 4034: 4027: 4020: 3696:This rule also is well known as 3570:The reciprocal value of FIT is 2729: 2717: 2707:ESR and dissipation factor tan Ī“ 1660:high-voltage capacitors for the 1557: 1545: 1533: 1514: 1502: 1490: 1478: 1466: 753:Non-solid, organic electrolyte, 682: 670: 658: 634: 622: 610: 301:Tantalum electrolytic capacitors 287:Aluminum electrolytic capacitors 97:Tantalum electrolytic capacitors 93:Aluminum electrolytic capacitors 30: 5434:Aluminum electrolytic capacitor 3406:Dielectric absorption (soakage) 1419:Polymer + non-solid electrolyte 315:Niobium electrolytic capacitors 101:Niobium electrolytic capacitors 6379:KEMET FIT Calculator Software 6315:NIC, Failure Rate Estimation, 5424:Date of the table: March 2015 4199:tolerance on rated capacitance 4013:Electrolytic capacitor symbols 3989:New generated oxide (forming) 3975:Deterioration of conductivity, 3939:Deterioration of conductivity, 3864:Deterioration of conductivity, 3788:Deterioration of conductivity, 3771:New generated oxide (forming) 2797:minus the inductive reactance 2641: 2637: 2619: 2601: 2491:and by an inductive reactance 2326: 2316: 1540:Typical tantalum SMD capacitor 781:Non-solid, e.g. borax, glycol 1: 4163:Electrolytic capacitors with 4143:Electrolytic capacitors with 3830:Thermally induced insulating 3234:For electrolytic capacitors, 2993:over the capacitor's surface 1873:ceramic multilayer capacitors 823:Hybrid, polymer and non-solid 175:, for couple signals between 128:(forming), which acts as the 4258:The standardization for all 3853:Series resistance 3 Ī©/V 3832:of faults in the dielectric 2896:switched-mode power supplies 2744:equivalent series resistance 2431:, by a capacitive reactance 2396:at a particular frequency. 1975:equivalent series inductance 1962:equivalent series resistance 1820:equivalent series resistance 1761:in 1947. It was invented by 6521:Panasonic (10-degree-rule; 4333:) and non-solid electrolyte 4317:) and non-solid electrolyte 3960:voltage derating 50 % 3953:by oxidation or evaporation 3924:voltage derating 50 % 3851:Voltage derating 50 % 3802:by oxidation or evaporation 3519:in production accompanying 2997:and the thermal resistance 6717: 5449:SAL electrolytic capacitor 4376:Manufacturers and products 3964:voltage derating 20 % 3955:of the polymer electrolyte 3928:voltage derating 20 % 3880:Voltage derating 20 % 3877:of the polymer electrolyte 3804:of the polymer electrolyte 3481:Reliability (failure rate] 3409: 2890:A "ripple current" is the 2081:Rated and category voltage 1926:Electrical characteristics 1909:The Japanese manufacturer 1808:SAL electrolytic capacitor 6357:Vishay, Fit Calculator, 5940:Hillman; Helmold (2004), 4400: 4395: 4390: 4387: 4102:Performance after storage 3936:solid polymer electrolyte 3861:solid polymer electrolyte 3785:solid polymer electrolyte 3472:the capacitors are used. 1931:Series-equivalent circuit 1692:in 1925, who teamed with 1448:) from a 1976 data sheet 885: 836: 745: 390: 380: 377: 289:use a high-purity etched 243:. The non-solid or solid 173:variable-frequency drives 171:and DC link circuits for 5899: 4398:electrolytic capacitors 4393:electrolytic capacitors 4299:sectional specifications 3731:electrolytic capacitors 3476:Reliability and lifetime 2011:or nominal capacitance C 1904:Water based electrolytes 1835:tetracyanoquinodimethane 1775:Sprague Electric Company 1672:"Dry" aluminum capacitor 1639:"Wet" aluminum capacitor 858:Solid, manganese dioxide 844:Non-solid, sulfuric acid 253:double-layer capacitance 140:) (-) of the capacitor. 6049:p. 4 and p. 6 and p. 9 5571:PDF www.electrochem.org 5556:US Patent Nr. 1774455, 5269:SUN Electronic Industry 4089:Some applications like 4003:Additional informations 3525:Reliability engineering 2666:In the special case of 2240:and dissipation factor 2097:" or "nominal voltage U 1119:Water-based electrolyte 1067:Water-based electrolyte 893:Solid,manganese dioxide 839:electrolytic capacitor, 510:Basic about C/V product 110:(e-caps) are polarized 108:electrolytic capacitors 6045:CDM Cornell Dubilier. 4276:standards organization 3979:capacitance decreases, 3761:capacitance decreases, 3670: 3504: 3434:Dielectric Absorption 3389: 3231: 3187: 3049: 2973: 2887: 2854: 2656: 2549: 2482: 2383: 2278: 2244: 2171: 2101:". The rated voltage U 2090: 1940: 1802: 1755:Walter Houser Brattain 1725: 1698:Duracell International 1681: 1648: 1588: 1580: 888:electrolytic capacitor 795:Non-solid, water based 748:electrolytic capacitor 574: 531: 272: 216: 86:Electrolytic capacitor 82: 73:Electrolytic capacitor 5114:Panasonic, Matsushita 4556:CDE Cornell Dubillier 4287:Generic specification 3991:by applying a voltage 3977:drying out over time, 3962:Niobium oxide anode: 3949:Insulating of faults 3926:Niobium oxide anode: 3873:Insulating of faults 3869:Field crystallization 3826:Field crystallization 3773:by applying a voltage 3759:Drying out over time, 3756:non-solid electrolyte 3736:electrical behavior 3667: 3499: 3419:dielectric relaxation 3412:Dielectric absorption 3390: 3229: 3188: 3050: 2974: 2882: 2855: 2684:have the same value ( 2657: 2550: 2483: 2384: 2285:is the vector sum of 2276: 2256:decoupling capacitors 2217: 2169: 2088: 1938: 1800: 1770:tantalum capacitor. 1723: 1702:silver mica capacitor 1679: 1646: 1627:Charles Pollak (born 1586: 1578: 575: 517: 419:Tantalum pentoxide Ta 270: 214: 80: 4587:Capacitor Industries 3798:Insulating of faults 3417:that is also called 3281: 3085: 3008: 2926: 2819: 2808:. If the inductance 2569: 2508: 2444: 2419:, and an inductance 2300: 980:Max. Leakage current 545: 524:and with separation 448:Niobium pentoxide Nb 255:and electrochemical 151:product compared to 6699:Category:Capacitors 5832:Panasonic, SP-Caps 4384: 4076:Parallel connection 3916:into insulating NbO 3839:into insulating MnO 3725: 3427: 2956: 2260:capacitive coupling 1842:conducting polymers 1737:Tantalum capacitors 1391:Polymer electrolyte 1363:Polymer electrolyte 1339:Polymer electrolyte 1311:Polymer electrolyte 1227:Multianode, polymer 1203:Polymer electrolyte 1019:Organic electrolyte 973:Max. Ripple current 947: 711: 340: 5558:Electric condenser 5459:Types of capacitor 5454:Tantalum capacitor 4525:Daewoo, (Partsnic) 4380: 4196:rated capacitance; 4178:Imprinted markings 4175: 3951:in the dielectric 3907:by oxidation of Nb 3723: 3671: 3513:stochastic process 3505: 3455: 3431:Type of capacitor 3425: 3385: 3236:DC leakage current 3232: 3183: 3068:thermal conduction 3045: 2969: 2942: 2888: 2850: 2839: 2781:dissipation factor 2740: 2652: 2545: 2478: 2379: 2279: 2245: 2172: 2091: 2029:ceramic capacitors 1941: 1895:Niobium capacitors 1806:solid electrolyte 1803: 1793:Solid electrolytes 1726: 1682: 1649: 1589: 1581: 1568: 1525: 945: 709: 693: 645: 570: 532: 472: 338: 309:tantalum pentoxide 273: 217: 153:ceramic capacitors 83: 49:You can assist by 6494:. aic-europe.com. 5444:Polymer capacitor 5439:Niobium capacitor 5422: 5421: 5021:Nippon Chemi-Con 4959:MAN YUE, (Samxon) 4129: 4095:three-phase grids 4085:Series connection 4073: 4072: 4008:Capacitor symbols 4000: 3999: 3905:in the dielectric 3800:in the dielectric 3646:wear-out failures 3454: 3453: 3423: 3338: 3181: 3060:thermal radiation 3001:to the ambient. 2838: 2752:dielectric losses 2710: 2650: 2476: 2374: 2331: 2329: 2319: 2145:Transient Voltage 1763:Bell Laboratories 1526: 1459: 1440: 1439: 1436:10 (0.01CV) 1408:200 (0.2CV) 1380:40 (0.04CV) 1356:100 (0.1CV) 1342:Panasonic, SP-UE, 1328:20 (0.02CV) 1304:20 (0.02CV) 1276:20 (0.02CV) 1244:100 (0.1CV) 1220:100 (0.1CV) 1196:10 (0.01CV) 1168:10 (0.01CV) 1136:10 (0.01CV) 1112:10 (0.01CV) 1060:10 (0.01CV) 1036:10 (0.01CV) 1022:Vishay, 036 RSP, 1008:10 (0.01CV) 953:capacitor family 920: 919: 717:capacitor family 651: 603: 568: 489:manganese dioxide 471: 470: 381:Aluminum oxide Al 336: 327:niobium pentoxide 257:pseudocapacitance 235:separation in an 198:Basic information 70: 69: 62: 6708: 6692: 6687: 6681: 6676: 6670: 6665: 6659: 6654: 6648: 6643: 6630: 6625: 6612: 6606: 6597: 6592: 6586: 6580: 6574: 6568: 6562: 6556: 6550: 6545: 6539: 6532: 6526: 6519: 6513: 6507: 6496: 6495: 6488: 6482: 6476: 6470: 6463: 6457: 6451: 6445: 6439: 6433: 6427: 6416: 6411: 6400: 6393: 6382: 6377: 6371: 6366: 6360: 6355: 6349: 6344: 6338: 6333: 6327: 6324: 6318: 6313: 6307: 6301: 6295: 6290: 6284: 6279: 6273: 6268: 6262: 6257: 6251: 6245: 6236: 6231: 6225: 6219: 6213: 6208: 6202: 6197: 6191: 6186: 6180: 6175: 6169: 6164: 6158: 6153: 6147: 6142: 6136: 6131: 6125: 6120: 6114: 6108: 6097: 6092: 6086: 6080: 6074: 6068: 6062: 6056: 6050: 6043: 6037: 6031: 6025: 6018: 6012: 6006: 6000: 5994: 5983: 5978: 5967: 5961: 5955: 5954: 5952: 5937: 5931: 5925: 5919: 5914: 5905: 5901: 5892: 5886: 5881: 5875: 5870: 5864: 5861: 5855: 5852: 5846: 5841: 5835: 5830: 5824: 5818: 5812: 5805: 5799: 5794: 5788: 5783: 5777: 5772: 5766: 5760: 5754: 5749: 5743: 5738: 5732: 5729:Computerposter, 5727: 5721: 5718: 5712: 5707: 5701: 5696: 5690: 5687: 5681: 5678: 5672: 5667: 5661: 5658: 5652: 5649: 5643: 5638: 5632: 5629: 5623: 5620: 5614: 5611: 5605: 5602: 5596: 5593: 5587: 5584: 5573: 5567: 5561: 5554: 5548: 5542: 5536: 5531: 5525: 5520: 5511: 5505: 5492: 5486: 5480: 5474: 4385: 4349:IEC/EN 60384-26ā€” 4343:IEC/EN 60384-25ā€” 4337:IEC/EN 60384-24ā€” 4327:IEC/EN 60384-18ā€” 4321:IEC/EN 60384-15ā€” 4160: 4140: 4126:Polarity marking 4091:AC/AC converters 4045: 4038: 4031: 4024: 4017: 4016: 3726: 3493: 3492: 3488: 3428: 3394: 3392: 3391: 3386: 3384: 3369: 3368: 3367: 3354: 3353: 3352: 3339: 3337: 3326: 3321: 3315: 3304: 3303: 3302: 3192: 3190: 3189: 3184: 3182: 3180: 3179: 3174: 3173: 3172: 3158: 3157: 3152: 3151: 3150: 3136: 3135: 3130: 3129: 3128: 3114: 3113: 3108: 3107: 3106: 3095: 3076:Fourier analysis 3054: 3052: 3051: 3046: 3023: 3022: 2978: 2976: 2975: 2970: 2955: 2950: 2938: 2937: 2859: 2857: 2856: 2851: 2840: 2836: 2733: 2721: 2661: 2659: 2658: 2653: 2651: 2649: 2648: 2636: 2635: 2634: 2615: 2614: 2613: 2597: 2596: 2591: 2579: 2554: 2552: 2551: 2546: 2544: 2543: 2542: 2520: 2519: 2487: 2485: 2484: 2479: 2477: 2475: 2464: 2456: 2455: 2388: 2386: 2385: 2380: 2375: 2373: 2372: 2371: 2355: 2354: 2353: 2337: 2332: 2330: 2322: 2320: 2312: 2310: 2128:failure rate. I 1990:of the capacitor 1920:Capacitor Plague 1854:Hideki Shirakawa 1779:Preston Robinson 1747:William Shockley 1711:William Dubilier 1561: 1549: 1537: 1518: 1506: 1494: 1482: 1470: 948: 712: 686: 674: 662: 638: 626: 614: 579: 577: 576: 571: 569: 561: 341: 220:Charge principle 65: 58: 54: 34: 33: 26: 6716: 6715: 6711: 6710: 6709: 6707: 6706: 6705: 6697: 6695: 6688: 6684: 6677: 6673: 6666: 6662: 6655: 6651: 6644: 6633: 6626: 6615: 6607: 6600: 6593: 6589: 6581: 6577: 6569: 6565: 6557: 6553: 6546: 6542: 6533: 6529: 6520: 6516: 6508: 6499: 6490: 6489: 6485: 6477: 6473: 6464: 6460: 6452: 6448: 6440: 6436: 6428: 6419: 6412: 6403: 6394: 6385: 6378: 6374: 6367: 6363: 6356: 6352: 6345: 6341: 6334: 6330: 6325: 6321: 6314: 6310: 6302: 6298: 6291: 6287: 6280: 6276: 6269: 6265: 6258: 6254: 6246: 6239: 6232: 6228: 6220: 6216: 6209: 6205: 6198: 6194: 6187: 6183: 6176: 6172: 6165: 6161: 6154: 6150: 6143: 6139: 6132: 6128: 6121: 6117: 6109: 6100: 6093: 6089: 6081: 6077: 6069: 6065: 6057: 6053: 6044: 6040: 6032: 6028: 6019: 6015: 6007: 6003: 5995: 5986: 5979: 5970: 5962: 5958: 5953:, DFR solutions 5946: 5939: 5938: 5934: 5926: 5922: 5915: 5911: 5893: 5889: 5882: 5878: 5871: 5867: 5862: 5858: 5853: 5849: 5842: 5838: 5831: 5827: 5819: 5815: 5806: 5802: 5795: 5791: 5784: 5780: 5773: 5769: 5761: 5757: 5750: 5746: 5739: 5735: 5728: 5724: 5719: 5715: 5708: 5704: 5697: 5693: 5688: 5684: 5679: 5675: 5668: 5664: 5659: 5655: 5650: 5646: 5639: 5635: 5630: 5626: 5621: 5617: 5612: 5608: 5603: 5599: 5594: 5590: 5585: 5576: 5568: 5564: 5555: 5551: 5543: 5539: 5532: 5528: 5521: 5514: 5506: 5495: 5487: 5483: 5475: 5471: 5467: 5430: 4456: 4455: 4451: 4446: 4441: 4437: 4433: 4428: 4423: 4421: 4416: 4411: 4404: 4402: 4397: 4392: 4378: 4359: 4332: 4316: 4311:IEC/EN 60384-4ā€” 4305:IEC/EN 60384-3ā€” 4256: 4254:Standardization 4180: 4172: 4161: 4152: 4141: 4128: 4104: 4087: 4078: 4068: 4066: 4061: 4056: 4051: 4010: 4005: 3995: 3990: 3985: 3980: 3978: 3976: 3971: 3965: 3963: 3961: 3959: 3958:Niobium anode: 3954: 3952: 3950: 3945: 3940: 3935: 3929: 3927: 3925: 3923: 3922:Niobium anode: 3919: 3915: 3914: 3910: 3906: 3904: 3899: 3891: 3887: 3881: 3876: 3874: 3870: 3865: 3860: 3854: 3852: 3847: 3846: 3842: 3838: 3837: 3833: 3831: 3827: 3819: 3815: 3808: 3803: 3801: 3799: 3794: 3789: 3784: 3777: 3772: 3767: 3762: 3760: 3755: 3748: 3743: 3735: 3730: 3717: 3662: 3638: 3634: 3627: 3623: 3619: 3610: 3596: 3546:Ī», abbreviated 3521:endurance tests 3494: 3490: 3486: 3484: 3483: 3478: 3466:sample-and-hold 3414: 3408: 3401: 3358: 3343: 3284: 3279: 3278: 3272: 3265: 3241: 3224: 3222:Leakage current 3211: 3164: 3162: 3142: 3140: 3120: 3118: 3098: 3096: 3083: 3082: 3011: 3006: 3005: 2991: 2929: 2924: 2923: 2917: 2906: 2877: 2817: 2816: 2802: 2795: 2737: 2734: 2725: 2722: 2709: 2693: 2689: 2682: 2675: 2640: 2625: 2604: 2580: 2567: 2566: 2527: 2511: 2506: 2505: 2496: 2468: 2447: 2442: 2441: 2436: 2356: 2338: 2298: 2297: 2232:and resistance 2230: 2223: 2212: 2164: 2162:Reverse voltage 2147: 2134: 2120: 2116: 2108: 2104: 2100: 2096: 2083: 2025:film capacitors 2014: 2010: 1997: 1988:leakage current 1985: 1972: 1959: 1933: 1928: 1906: 1897: 1850:Alan MacDiarmid 1795: 1784: 1739: 1674: 1666:film capacitors 1662:valve amplifier 1641: 1622:EugĆØne Ducretet 1594: 1573: 1565: 1562: 1553: 1550: 1541: 1538: 1522: 1519: 1510: 1507: 1498: 1495: 1486: 1483: 1474: 1471: 1454: 1423: 1422:Pan,OS-CON ZA, 1418: 1395: 1394:Pan,OS-CON SVP, 1390: 1367: 1362: 1343: 1338: 1315: 1310: 1291: 1286: 1283:Multianode, MnO 1282: 1263: 1258: 1254: 1231: 1226: 1207: 1202: 1183: 1178: 1174: 1155: 1150: 1146: 1123: 1118: 1099: 1094: 1071: 1066: 1047: 1042: 1023: 1018: 995: 990: 983: 981: 976: 974: 969: 967: 962: 960: 952: 939: 889: 887: 840: 838: 754: 749: 747: 740: 738: 733: 731: 726: 724: 716: 703: 698: 690: 687: 678: 675: 666: 663: 650: 642: 639: 630: 627: 618: 615: 602: 543: 542: 512: 495:for conducting 455: 451: 444: 426: 422: 388: 384: 372: 370: 365: 363: 358: 353: 345: 265: 249:supercapacitors 226:electric energy 222: 205: 200: 161:supercapacitors 157:film capacitors 75: 66: 55: 48: 35: 31: 22: 21: 20: 12: 11: 5: 6714: 6712: 6694: 6693: 6682: 6671: 6660: 6649: 6631: 6613: 6598: 6587: 6575: 6563: 6551: 6540: 6527: 6514: 6497: 6483: 6471: 6458: 6446: 6434: 6417: 6401: 6383: 6372: 6361: 6350: 6339: 6328: 6319: 6308: 6296: 6285: 6274: 6263: 6252: 6237: 6226: 6214: 6203: 6192: 6181: 6170: 6159: 6148: 6137: 6126: 6115: 6098: 6087: 6075: 6063: 6051: 6038: 6026: 6013: 6001: 5984: 5968: 5956: 5932: 5920: 5909: 5887: 5876: 5865: 5856: 5847: 5836: 5825: 5813: 5800: 5789: 5778: 5767: 5755: 5744: 5733: 5722: 5713: 5702: 5691: 5682: 5673: 5662: 5653: 5644: 5633: 5624: 5615: 5606: 5597: 5588: 5574: 5562: 5549: 5537: 5526: 5512: 5493: 5481: 5468: 5466: 5463: 5462: 5461: 5456: 5451: 5446: 5441: 5436: 5429: 5426: 5420: 5419: 5416: 5413: 5410: 5407: 5404: 5401: 5398: 5395: 5389: 5388: 5385: 5382: 5379: 5376: 5373: 5370: 5367: 5364: 5358: 5357: 5354: 5351: 5348: 5345: 5342: 5339: 5336: 5333: 5327: 5326: 5323: 5320: 5317: 5314: 5311: 5308: 5305: 5302: 5296: 5295: 5292: 5289: 5286: 5283: 5280: 5277: 5274: 5271: 5265: 5264: 5261: 5258: 5255: 5252: 5249: 5246: 5243: 5240: 5234: 5233: 5230: 5227: 5224: 5221: 5218: 5215: 5212: 5209: 5203: 5202: 5199: 5196: 5193: 5190: 5187: 5184: 5181: 5178: 5172: 5171: 5168: 5165: 5162: 5159: 5156: 5153: 5150: 5147: 5141: 5140: 5137: 5134: 5131: 5128: 5125: 5122: 5119: 5116: 5110: 5109: 5106: 5103: 5100: 5097: 5094: 5091: 5088: 5085: 5079: 5078: 5075: 5072: 5069: 5066: 5063: 5060: 5057: 5054: 5048: 5047: 5044: 5041: 5038: 5035: 5032: 5029: 5026: 5023: 5017: 5016: 5013: 5010: 5007: 5004: 5001: 4998: 4995: 4992: 4986: 4985: 4982: 4979: 4976: 4973: 4970: 4967: 4964: 4961: 4955: 4954: 4951: 4948: 4945: 4942: 4939: 4936: 4933: 4930: 4924: 4923: 4920: 4917: 4914: 4911: 4908: 4905: 4902: 4899: 4893: 4892: 4889: 4886: 4883: 4880: 4877: 4874: 4871: 4868: 4862: 4861: 4858: 4855: 4852: 4849: 4846: 4843: 4840: 4837: 4831: 4830: 4827: 4824: 4821: 4818: 4815: 4812: 4809: 4806: 4800: 4799: 4796: 4793: 4790: 4787: 4784: 4781: 4778: 4775: 4769: 4768: 4765: 4762: 4759: 4756: 4753: 4750: 4747: 4744: 4738: 4737: 4734: 4731: 4728: 4725: 4722: 4719: 4716: 4713: 4707: 4706: 4703: 4700: 4697: 4694: 4691: 4688: 4685: 4682: 4676: 4675: 4672: 4669: 4666: 4663: 4660: 4657: 4654: 4651: 4645: 4644: 4641: 4638: 4635: 4632: 4629: 4626: 4623: 4620: 4614: 4613: 4610: 4607: 4604: 4601: 4598: 4595: 4592: 4589: 4583: 4582: 4579: 4576: 4573: 4570: 4567: 4564: 4561: 4558: 4552: 4551: 4548: 4545: 4542: 4539: 4536: 4533: 4530: 4527: 4521: 4520: 4517: 4514: 4511: 4508: 4505: 4502: 4499: 4496: 4490: 4489: 4486: 4483: 4480: 4477: 4474: 4471: 4468: 4465: 4459: 4458: 4453: 4448: 4443: 4438: 4435: 4430: 4425: 4418: 4413: 4407: 4406: 4399: 4394: 4389: 4377: 4374: 4370: 4369: 4366: 4358: 4355: 4354: 4353: 4347: 4341: 4335: 4330: 4325: 4319: 4314: 4309: 4295: 4294: 4255: 4252: 4248: 4247: 4243: 4232: 4231: 4228: 4213: 4212: 4209: 4206: 4203: 4200: 4197: 4194: 4191: 4188: 4179: 4176: 4174: 4173: 4162: 4155: 4153: 4142: 4135: 4133: 4127: 4124: 4103: 4100: 4086: 4083: 4077: 4074: 4071: 4070: 4063: 4058: 4053: 4047: 4046: 4039: 4032: 4025: 4009: 4006: 4004: 4001: 3998: 3997: 3992: 3987: 3982: 3973: 3967: 3966: 3956: 3947: 3942: 3937: 3931: 3930: 3920: 3917: 3912: 3908: 3901: 3896: 3893: 3889: 3883: 3882: 3878: 3871: 3867: 3862: 3856: 3855: 3849: 3844: 3840: 3835: 3828: 3824: 3821: 3817: 3811: 3810: 3805: 3796: 3791: 3786: 3780: 3779: 3774: 3769: 3764: 3757: 3751: 3750: 3745: 3740: 3739:Failure modes 3737: 3732: 3716: 3713: 3698:Arrhenius rule 3661: 3658: 3636: 3632: 3625: 3621: 3617: 3608: 3594: 3482: 3479: 3477: 3474: 3452: 3451: 3448: 3444: 3443: 3440: 3436: 3435: 3432: 3410:Main article: 3407: 3404: 3399: 3396: 3395: 3383: 3380: 3375: 3372: 3366: 3361: 3357: 3351: 3346: 3342: 3336: 3333: 3330: 3325: 3318: 3314: 3310: 3307: 3301: 3298: 3295: 3292: 3287: 3270: 3263: 3239: 3223: 3220: 3210: 3207: 3194: 3193: 3178: 3171: 3167: 3161: 3156: 3149: 3145: 3139: 3134: 3127: 3123: 3117: 3112: 3105: 3101: 3093: 3090: 3056: 3055: 3044: 3041: 3038: 3035: 3032: 3029: 3026: 3021: 3018: 3014: 2989: 2980: 2979: 2968: 2965: 2962: 2959: 2954: 2949: 2945: 2941: 2936: 2932: 2915: 2904: 2876: 2875:Ripple current 2873: 2865:quality factor 2861: 2860: 2849: 2846: 2843: 2833: 2830: 2827: 2824: 2800: 2793: 2739: 2738: 2735: 2728: 2726: 2723: 2716: 2714: 2708: 2705: 2691: 2687: 2680: 2673: 2664: 2663: 2647: 2643: 2639: 2633: 2628: 2624: 2621: 2618: 2612: 2607: 2603: 2600: 2595: 2590: 2587: 2584: 2577: 2574: 2541: 2538: 2535: 2530: 2526: 2523: 2518: 2514: 2494: 2489: 2488: 2474: 2471: 2467: 2462: 2459: 2454: 2450: 2434: 2390: 2389: 2378: 2370: 2367: 2364: 2359: 2352: 2349: 2346: 2341: 2335: 2328: 2325: 2318: 2315: 2308: 2305: 2281:The impedance 2228: 2221: 2211: 2208: 2194: 2193: 2190: 2187: 2163: 2160: 2146: 2143: 2133: 2130: 2118: 2114: 2106: 2102: 2098: 2094: 2082: 2079: 2063: 2062: 2059: 2056: 2012: 2008: 1996: 1993: 1992: 1991: 1983: 1978: 1970: 1965: 1957: 1952: 1932: 1929: 1927: 1924: 1905: 1902: 1896: 1893: 1846:Alan J. Heeger 1794: 1791: 1782: 1738: 1735: 1694:Philip Mallory 1673: 1670: 1640: 1637: 1593: 1590: 1572: 1569: 1567: 1566: 1563: 1556: 1554: 1551: 1544: 1542: 1539: 1532: 1530: 1524: 1523: 1520: 1513: 1511: 1508: 1501: 1499: 1496: 1489: 1487: 1484: 1477: 1475: 1472: 1465: 1463: 1453: 1450: 1438: 1437: 1434: 1431: 1428: 1425: 1420: 1414: 1413: 1410: 1409: 1406: 1403: 1400: 1397: 1392: 1386: 1385: 1382: 1381: 1378: 1375: 1372: 1369: 1364: 1358: 1357: 1354: 1351: 1348: 1345: 1340: 1334: 1333: 1330: 1329: 1326: 1323: 1320: 1317: 1312: 1306: 1305: 1302: 1299: 1296: 1293: 1288: 1284: 1278: 1277: 1274: 1271: 1268: 1265: 1260: 1256: 1250: 1249: 1246: 1245: 1242: 1239: 1236: 1233: 1228: 1222: 1221: 1218: 1215: 1212: 1209: 1204: 1198: 1197: 1194: 1191: 1188: 1185: 1180: 1176: 1175:Multianode,MnO 1170: 1169: 1166: 1163: 1160: 1157: 1152: 1148: 1142: 1141: 1138: 1137: 1134: 1131: 1128: 1125: 1120: 1114: 1113: 1110: 1107: 1104: 1101: 1096: 1090: 1089: 1086: 1085: 1082: 1079: 1076: 1073: 1068: 1062: 1061: 1058: 1055: 1052: 1049: 1044: 1038: 1037: 1034: 1031: 1028: 1025: 1020: 1014: 1013: 1010: 1009: 1006: 1003: 1000: 997: 992: 986: 985: 982:after 2 min. ) 978: 971: 968:100 kHz, 20 Ā°C 964: 957: 954: 938: 935: 918: 917: 914: 911: 908: 907:Solid, polymer 904: 903: 900: 897: 894: 891: 890:sintered anode 886:Niobium oxide- 883: 882: 879: 876: 873: 872:Solid, polymer 869: 868: 865: 862: 859: 855: 854: 851: 848: 845: 842: 841:sintered anode 834: 833: 830: 827: 824: 820: 819: 816: 813: 810: 809:Solid, polymer 806: 805: 802: 799: 796: 792: 791: 788: 785: 782: 778: 777: 774: 771: 768: 751: 743: 742: 735: 728: 721: 718: 702: 699: 697: 694: 692: 691: 688: 681: 679: 676: 669: 667: 664: 657: 655: 649: 646: 644: 643: 640: 633: 631: 628: 621: 619: 616: 609: 607: 601: 598: 581: 580: 567: 564: 559: 556: 553: 550: 511: 508: 493:polymerization 469: 468: 465: 462: 459: 456: 453: 449: 446: 440: 439: 436: 433: 430: 427: 424: 420: 417: 413: 412: 409: 406: 402: 401: 398: 395: 392: 389: 386: 382: 379: 375: 374: 367: 360: 355: 350: 347: 331: 330: 329:as dielectric. 312: 298: 295:aluminum oxide 264: 261: 237:electric field 221: 218: 204: 201: 199: 196: 169:power supplies 104: 103: 74: 71: 68: 67: 38: 36: 29: 23: 15: 14: 13: 10: 9: 6: 4: 3: 2: 6713: 6704: 6703: 6700: 6691: 6686: 6683: 6680: 6675: 6672: 6669: 6667:IEC Webstore 6664: 6661: 6658: 6656:IEC Homepage 6653: 6650: 6647: 6642: 6640: 6638: 6636: 6632: 6629: 6624: 6622: 6620: 6618: 6614: 6611: 6605: 6603: 6599: 6596: 6591: 6588: 6585: 6579: 6576: 6573: 6567: 6564: 6561: 6555: 6552: 6549: 6544: 6541: 6537: 6531: 6528: 6524: 6518: 6515: 6512: 6506: 6504: 6502: 6498: 6493: 6487: 6484: 6481: 6475: 6472: 6468: 6462: 6459: 6456: 6450: 6447: 6444: 6438: 6435: 6432: 6426: 6424: 6422: 6418: 6415: 6410: 6408: 6406: 6402: 6398: 6392: 6390: 6388: 6384: 6381: 6376: 6373: 6370: 6365: 6362: 6359: 6354: 6351: 6348: 6343: 6340: 6337: 6332: 6329: 6323: 6320: 6317: 6312: 6309: 6306: 6300: 6297: 6294: 6289: 6286: 6283: 6278: 6275: 6272: 6267: 6264: 6261: 6256: 6253: 6250: 6249:Built to last 6244: 6242: 6238: 6235: 6230: 6227: 6224: 6218: 6215: 6212: 6207: 6204: 6201: 6196: 6193: 6190: 6185: 6182: 6179: 6174: 6171: 6168: 6163: 6160: 6157: 6152: 6149: 6146: 6141: 6138: 6135: 6130: 6127: 6124: 6119: 6116: 6113: 6107: 6105: 6103: 6099: 6096: 6091: 6088: 6085: 6079: 6076: 6073: 6067: 6064: 6061: 6055: 6052: 6048: 6042: 6039: 6036: 6030: 6027: 6023: 6017: 6014: 6011: 6005: 6002: 5999: 5993: 5991: 5989: 5985: 5982: 5977: 5975: 5973: 5969: 5966: 5960: 5957: 5950: 5945: 5944: 5936: 5933: 5930: 5924: 5921: 5918: 5913: 5910: 5908: 5903: 5902: 5896: 5891: 5888: 5885: 5880: 5877: 5874: 5869: 5866: 5860: 5857: 5851: 5848: 5845: 5840: 5837: 5834: 5829: 5826: 5823: 5817: 5814: 5811: 5804: 5801: 5798: 5793: 5790: 5787: 5782: 5779: 5776: 5771: 5768: 5765: 5759: 5756: 5753: 5748: 5745: 5742: 5737: 5734: 5731: 5726: 5723: 5717: 5714: 5711: 5706: 5703: 5700: 5695: 5692: 5686: 5683: 5677: 5674: 5671: 5666: 5663: 5657: 5654: 5648: 5645: 5642: 5637: 5634: 5628: 5625: 5619: 5616: 5610: 5607: 5601: 5598: 5592: 5589: 5583: 5581: 5579: 5575: 5572: 5566: 5563: 5559: 5553: 5550: 5547: 5541: 5538: 5535: 5530: 5527: 5524: 5519: 5517: 5513: 5510: 5504: 5502: 5500: 5498: 5494: 5491: 5485: 5482: 5479: 5473: 5470: 5464: 5460: 5457: 5455: 5452: 5450: 5447: 5445: 5442: 5440: 5437: 5435: 5432: 5431: 5427: 5425: 5417: 5414: 5411: 5408: 5405: 5402: 5399: 5396: 5394: 5391: 5390: 5386: 5383: 5380: 5377: 5374: 5371: 5368: 5365: 5363: 5360: 5359: 5355: 5352: 5349: 5346: 5343: 5340: 5337: 5334: 5332: 5331:Teapo (Luxon) 5329: 5328: 5324: 5321: 5318: 5315: 5312: 5309: 5306: 5303: 5301: 5298: 5297: 5293: 5290: 5287: 5284: 5281: 5278: 5275: 5272: 5270: 5267: 5266: 5262: 5259: 5256: 5253: 5250: 5247: 5244: 5241: 5239: 5236: 5235: 5231: 5228: 5225: 5222: 5219: 5216: 5213: 5210: 5208: 5205: 5204: 5200: 5197: 5194: 5191: 5188: 5185: 5182: 5179: 5177: 5174: 5173: 5169: 5166: 5163: 5160: 5157: 5154: 5151: 5148: 5146: 5143: 5142: 5138: 5135: 5132: 5129: 5126: 5123: 5120: 5117: 5115: 5112: 5111: 5107: 5104: 5101: 5098: 5095: 5092: 5089: 5086: 5084: 5081: 5080: 5076: 5073: 5070: 5067: 5064: 5061: 5058: 5055: 5053: 5050: 5049: 5045: 5042: 5039: 5036: 5033: 5030: 5027: 5024: 5022: 5019: 5018: 5014: 5011: 5008: 5005: 5002: 4999: 4996: 4993: 4991: 4988: 4987: 4983: 4980: 4977: 4974: 4971: 4968: 4965: 4962: 4960: 4957: 4956: 4952: 4949: 4946: 4943: 4940: 4937: 4934: 4931: 4929: 4926: 4925: 4921: 4918: 4915: 4912: 4909: 4906: 4903: 4900: 4898: 4895: 4894: 4890: 4887: 4884: 4881: 4878: 4875: 4872: 4869: 4867: 4864: 4863: 4859: 4856: 4853: 4850: 4847: 4844: 4841: 4838: 4836: 4833: 4832: 4828: 4825: 4822: 4819: 4816: 4813: 4810: 4807: 4805: 4802: 4801: 4797: 4794: 4791: 4788: 4785: 4782: 4779: 4776: 4774: 4771: 4770: 4766: 4763: 4760: 4757: 4754: 4751: 4748: 4745: 4743: 4740: 4739: 4735: 4732: 4729: 4726: 4723: 4720: 4717: 4714: 4712: 4709: 4708: 4704: 4701: 4698: 4695: 4692: 4689: 4686: 4683: 4681: 4678: 4677: 4673: 4670: 4667: 4664: 4661: 4658: 4655: 4652: 4650: 4649:Exxelia group 4647: 4646: 4642: 4639: 4636: 4633: 4630: 4627: 4624: 4621: 4619: 4616: 4615: 4611: 4608: 4605: 4602: 4599: 4596: 4593: 4590: 4588: 4585: 4584: 4580: 4577: 4574: 4571: 4568: 4565: 4562: 4559: 4557: 4554: 4553: 4549: 4546: 4543: 4540: 4537: 4534: 4531: 4528: 4526: 4523: 4522: 4518: 4515: 4512: 4509: 4506: 4503: 4500: 4497: 4495: 4492: 4491: 4487: 4484: 4481: 4478: 4475: 4472: 4469: 4466: 4464: 4461: 4460: 4449: 4444: 4439: 4431: 4426: 4419: 4414: 4409: 4403:electrolytic 4388:Manufacturer 4383: 4375: 4373: 4367: 4364: 4363: 4362: 4356: 4352: 4348: 4346: 4342: 4340: 4336: 4334: 4326: 4324: 4320: 4318: 4310: 4308: 4304: 4303: 4302: 4300: 4292: 4291: 4290: 4288: 4284: 4279: 4277: 4273: 4269: 4265: 4261: 4253: 4251: 4244: 4241: 4240: 4239: 4236: 4229: 4226: 4225: 4224: 4221: 4217: 4210: 4207: 4204: 4201: 4198: 4195: 4192: 4189: 4186: 4185: 4184: 4177: 4170: 4166: 4159: 4154: 4150: 4146: 4139: 4134: 4131: 4125: 4123: 4120: 4116: 4112: 4110: 4101: 4099: 4096: 4092: 4084: 4082: 4075: 4067:electrolytic 4064: 4059: 4054: 4050:Electrolytic 4049: 4048: 4044: 4040: 4037: 4033: 4030: 4026: 4023: 4019: 4018: 4015: 4014: 4007: 4002: 3993: 3988: 3983: 3981:ESR increases 3974: 3969: 3968: 3957: 3948: 3943: 3941:ESR increases 3938: 3933: 3932: 3921: 3902: 3897: 3894: 3885: 3884: 3879: 3872: 3868: 3866:ESR increases 3863: 3858: 3857: 3850: 3829: 3825: 3822: 3813: 3812: 3806: 3797: 3792: 3790:ESR increases 3787: 3782: 3781: 3775: 3770: 3765: 3763:ESR increases 3758: 3753: 3752: 3746: 3741: 3738: 3733: 3728: 3721: 3714: 3712: 3709: 3705: 3701: 3699: 3694: 3690: 3686: 3682: 3680: 3676: 3666: 3659: 3657: 3655: 3651: 3647: 3641: 3629: 3613: 3605: 3602: 3598: 3591: 3589: 3585: 3581: 3577: 3573: 3568: 3564: 3561: 3557: 3553: 3549: 3545: 3541: 3536: 3533: 3532:bathtub curve 3528: 3526: 3522: 3518: 3514: 3510: 3502: 3501:Bathtub curve 3498: 3489: 3480: 3475: 3473: 3469: 3467: 3463: 3460: 3459:time-constant 3449: 3446: 3445: 3442:2 to 3%, 10% 3441: 3438: 3437: 3433: 3430: 3429: 3422: 3420: 3413: 3405: 3403: 3378: 3373: 3370: 3359: 3355: 3344: 3340: 3331: 3316: 3312: 3308: 3305: 3285: 3277: 3276: 3275: 3273: 3266: 3258: 3254: 3250: 3247: 3243: 3237: 3228: 3221: 3219: 3215: 3208: 3206: 3202: 3198: 3176: 3169: 3165: 3159: 3154: 3147: 3143: 3137: 3132: 3125: 3121: 3115: 3110: 3103: 3099: 3091: 3088: 3081: 3080: 3079: 3077: 3071: 3069: 3065: 3061: 3042: 3039: 3036: 3033: 3030: 3024: 3019: 3016: 3012: 3004: 3003: 3002: 3000: 2996: 2992: 2985: 2966: 2963: 2960: 2957: 2952: 2947: 2943: 2939: 2934: 2930: 2922: 2921: 2920: 2918: 2911: 2908:is caused by 2907: 2899: 2897: 2893: 2886: 2881: 2874: 2872: 2870: 2866: 2847: 2844: 2841: 2831: 2828: 2825: 2822: 2815: 2814: 2813: 2811: 2807: 2803: 2796: 2789: 2785: 2782: 2777: 2774: 2770: 2766: 2762: 2760: 2755: 2753: 2749: 2745: 2732: 2727: 2720: 2715: 2712: 2706: 2704: 2702: 2698: 2694: 2683: 2676: 2669: 2645: 2626: 2622: 2616: 2605: 2598: 2593: 2588: 2585: 2582: 2575: 2572: 2565: 2564: 2563: 2561: 2556: 2528: 2524: 2521: 2516: 2512: 2503: 2501: 2497: 2472: 2469: 2465: 2460: 2457: 2452: 2448: 2440: 2439: 2438: 2437: 2430: 2426: 2422: 2418: 2415:, a resistor 2414: 2409: 2406: 2402: 2397: 2395: 2376: 2357: 2339: 2333: 2323: 2313: 2306: 2303: 2296: 2295: 2294: 2292: 2288: 2284: 2275: 2271: 2269: 2265: 2261: 2257: 2253: 2250: 2243: 2239: 2235: 2231: 2224: 2216: 2209: 2207: 2203: 2200: 2197: 2191: 2188: 2185: 2184: 2183: 2180: 2176: 2168: 2161: 2159: 2155: 2153: 2144: 2142: 2138: 2132:Surge Voltage 2131: 2129: 2125: 2122: 2110: 2087: 2080: 2078: 2076: 2072: 2068: 2060: 2057: 2054: 2053: 2052: 2050: 2044: 2042: 2038: 2032: 2030: 2026: 2020: 2016: 2006: 2001: 1994: 1989: 1982: 1979: 1976: 1969: 1966: 1963: 1956: 1953: 1950: 1947: 1946: 1945: 1937: 1930: 1925: 1923: 1921: 1915: 1912: 1903: 1901: 1894: 1892: 1888: 1884: 1882: 1878: 1874: 1870: 1865: 1863: 1859: 1855: 1851: 1847: 1843: 1838: 1836: 1832: 1828: 1823: 1821: 1815: 1813: 1809: 1799: 1792: 1790: 1786: 1780: 1776: 1771: 1767: 1764: 1760: 1757:invented the 1756: 1752: 1748: 1743: 1736: 1734: 1733:125 Ā°C. 1730: 1722: 1718: 1716: 1712: 1708: 1705: 1703: 1699: 1695: 1691: 1687: 1678: 1671: 1669: 1667: 1663: 1657: 1654: 1645: 1638: 1636: 1634: 1630: 1625: 1623: 1619: 1615: 1611: 1607: 1603: 1599: 1591: 1585: 1577: 1570: 1560: 1555: 1548: 1543: 1536: 1531: 1528: 1517: 1512: 1505: 1500: 1493: 1488: 1481: 1476: 1469: 1464: 1461: 1458: 1451: 1449: 1446: 1443: 1435: 1432: 1429: 1426: 1421: 1416: 1415: 1412: 1411: 1407: 1404: 1401: 1398: 1393: 1388: 1387: 1384: 1383: 1379: 1376: 1373: 1370: 1365: 1360: 1359: 1355: 1352: 1349: 1346: 1341: 1336: 1335: 1332: 1331: 1327: 1324: 1321: 1318: 1313: 1308: 1307: 1303: 1300: 1297: 1294: 1289: 1280: 1279: 1275: 1272: 1269: 1266: 1261: 1252: 1251: 1248: 1247: 1243: 1240: 1237: 1234: 1229: 1224: 1223: 1219: 1216: 1213: 1210: 1205: 1200: 1199: 1195: 1192: 1189: 1186: 1181: 1172: 1171: 1167: 1164: 1161: 1158: 1153: 1144: 1143: 1140: 1139: 1135: 1132: 1129: 1126: 1121: 1116: 1115: 1111: 1108: 1105: 1102: 1097: 1092: 1091: 1088: 1087: 1083: 1080: 1077: 1074: 1069: 1064: 1063: 1059: 1056: 1053: 1050: 1045: 1040: 1039: 1035: 1032: 1029: 1026: 1021: 1016: 1015: 1012: 1011: 1007: 1004: 1001: 998: 993: 988: 987: 979: 972: 965: 958: 955: 951:Electrolytic 950: 949: 943: 936: 934: 931: 928: 924: 915: 912: 909: 906: 905: 901: 898: 895: 892: 884: 880: 877: 874: 871: 870: 866: 863: 860: 857: 856: 852: 849: 846: 843: 835: 831: 828: 825: 822: 821: 817: 814: 811: 808: 807: 803: 800: 797: 794: 793: 789: 786: 784:0.1ā€¦2,700,000 783: 780: 779: 775: 772: 770:0.1ā€¦1,000,000 769: 766: 762: 758: 752: 744: 736: 732:rated voltage 729: 722: 719: 714: 707: 700: 695: 685: 680: 673: 668: 661: 656: 653: 647: 637: 632: 625: 620: 613: 608: 605: 599: 597: 593: 589: 586: 565: 562: 557: 554: 551: 548: 541: 540: 539: 537: 529: 528: 523: 522: 516: 509: 507: 504: 500: 498: 494: 490: 486: 481: 478: 466: 463: 460: 457: 447: 445:Niobium oxide 442: 441: 437: 434: 431: 428: 418: 415: 414: 410: 407: 404: 403: 399: 396: 393: 376: 368: 361: 356: 351: 348: 343: 342: 335: 328: 324: 323:niobium oxide 320: 316: 313: 311:as dielectric 310: 306: 302: 299: 297:as dielectric 296: 292: 288: 285: 284: 283: 281: 278: 269: 262: 260: 258: 254: 250: 246: 242: 238: 234: 230: 227: 219: 213: 209: 202: 197: 195: 192: 189: 184: 182: 178: 174: 170: 164: 162: 158: 154: 150: 146: 141: 139: 135: 131: 127: 124: 120: 117: 113: 109: 102: 98: 94: 91: 90: 89: 87: 79: 72: 64: 61: 52: 46: 44: 39:This article 37: 28: 27: 19: 6696: 6685: 6674: 6663: 6652: 6590: 6578: 6566: 6554: 6543: 6530: 6517: 6492:"Snap-In HU" 6486: 6474: 6461: 6449: 6437: 6375: 6364: 6353: 6342: 6331: 6322: 6311: 6299: 6288: 6277: 6266: 6255: 6229: 6217: 6206: 6195: 6184: 6173: 6162: 6151: 6140: 6129: 6118: 6090: 6078: 6066: 6054: 6041: 6029: 6016: 6004: 5959: 5942: 5935: 5923: 5912: 5897: 5890: 5879: 5868: 5859: 5850: 5839: 5828: 5816: 5803: 5792: 5781: 5770: 5758: 5747: 5736: 5725: 5716: 5705: 5694: 5685: 5676: 5665: 5656: 5647: 5636: 5627: 5618: 5609: 5600: 5591: 5565: 5557: 5552: 5546:D.R.P. 92564 5540: 5529: 5484: 5472: 5423: 4381: 4371: 4360: 4350: 4344: 4338: 4328: 4322: 4312: 4306: 4298: 4296: 4286: 4280: 4257: 4249: 4237: 4233: 4222: 4218: 4214: 4181: 4168: 4164: 4148: 4144: 4121: 4117: 4113: 4105: 4088: 4079: 4060:Electrolytic 4055:Electrolytic 4012: 4011: 3996:calculation 3986:determinable 3946:determinable 3900:determinable 3809:calculation 3795:determinable 3778:calculation 3768:determinable 3747:Application 3742:Self-healing 3718: 3710: 3706: 3702: 3695: 3691: 3687: 3683: 3679:service life 3672: 3654:service life 3642: 3630: 3614: 3606: 3603: 3599: 3592: 3587: 3583: 3579: 3575: 3569: 3565: 3559: 3555: 3551: 3547: 3544:failure rate 3537: 3529: 3517:failure rate 3506: 3470: 3456: 3415: 3397: 3268: 3261: 3259: 3255: 3251: 3248: 3244: 3233: 3216: 3212: 3203: 3199: 3195: 3072: 3057: 2998: 2994: 2987: 2983: 2981: 2913: 2909: 2902: 2900: 2889: 2884: 2862: 2809: 2805: 2798: 2791: 2787: 2783: 2778: 2772: 2764: 2763: 2758: 2756: 2747: 2741: 2700: 2696: 2685: 2678: 2671: 2665: 2562:is given by 2559: 2557: 2504: 2492: 2490: 2432: 2428: 2424: 2420: 2416: 2412: 2410: 2404: 2400: 2398: 2391: 2282: 2280: 2246: 2241: 2237: 2233: 2226: 2219: 2204: 2201: 2198: 2195: 2181: 2177: 2173: 2156: 2148: 2139: 2135: 2126: 2123: 2111: 2092: 2064: 2045: 2033: 2021: 2017: 2002: 1998: 1980: 1967: 1954: 1948: 1942: 1916: 1907: 1898: 1889: 1885: 1866: 1839: 1824: 1816: 1804: 1787: 1772: 1768: 1751:John Bardeen 1744: 1740: 1731: 1727: 1709: 1706: 1690:Samuel Ruben 1683: 1658: 1650: 1632: 1629:Karol Pollak 1626: 1595: 1455: 1447: 1444: 1441: 1366:Kemet, A700, 1230:Kemet, T530, 1206:Kemet, T543, 1182:Kemet, T510, 1154:Kemet, T494, 1084:10 (0.01CV) 1070:Rubycon, ZL, 940: 932: 929: 925: 921: 776:105/125/150 750:etched foils 720:Electrolyte 715:Electrolytic 704: 594: 590: 582: 536:permittivity 533: 526: 525: 520: 519: 505: 501: 480:conductivity 473: 352:Permittivity 332: 325:powder with 307:powder with 274: 223: 206: 193: 185: 165: 142: 107: 105: 85: 84: 56: 43:copy editing 41:may require 40: 4447:electrolyte 4405:capacitors 3892:electrolyte 3820:electrolyte 3590:ailures). 3540:reliability 3509:reliability 3462:integrators 2152:zener diode 2075:oscillators 1881:cell phones 1858:polypyrrole 1371:7.3x4.3x4.0 1347:7.3x4.3x4.2 1319:7.3x4.3x2.8 1295:7.3x4.3x4.1 1287:electrolyte 1267:7.3x4.3x4.1 1259:electrolyte 1235:7.3x4.3x4.0 1211:7.3x4.3x4,0 1187:7.3x4.3x4.0 1179:electrolyte 1159:7,3x4.3x4.0 1151:electrolyte 994:Valvo, 034, 739:temperature 723:Capacitance 405:crystalline 349:Dielectric 245:electrolyte 145:capacitance 134:electrolyte 5465:References 4283:capacitors 4272:non-profit 4264:electronic 4260:electrical 4223:Examples: 4069:capacitor 3944:no unique 3793:no unique 3744:mechanism 3734:Long-term 3450:10 to 15% 3064:convection 2500:Inductance 2291:resistance 2264:resistance 2041:photoflash 2005:microfarad 1860:(PPy) or 1829:with its " 1759:transistor 1122:NIC, NAZJ, 1098:NIC, NACY, 961:DxL, WxHxL 959:Dimension 847:0.1ā€¦18.000 585:nanometers 443:Niobium or 359:structure 293:foil with 241:electrodes 229:statically 130:dielectric 123:anodically 112:capacitors 51:editing it 18:User:Elcap 6033:Rubycon. 5900:dead link 5300:TDK EPCOS 4990:NEC Tokin 4396:Tantalum 4270:(IEC), a 4145:non-solid 4062:capacitor 4057:capacitor 4052:capacitor 3984:no unique 3898:no unique 3888:solid MnO 3816:solid MnO 3766:no unique 3379:μ 3356:⋅ 3341:⋅ 3332:⋅ 3043:β 3040:⋅ 3034:⋅ 3028:Δ 2958:⋅ 2869:bandwidth 2845:ω 2842:⋅ 2829:δ 2826:⁡ 2668:resonance 2623:− 2525:ω 2470:ω 2461:− 2327:^ 2324:ı 2317:^ 2287:reactance 2268:impedance 2210:Impedance 2071:bypassing 2067:filtering 1606:manganese 1314:NEC, NMC, 1046:NCC, SMQ, 975:85/105 Ā°C 861:0.1ā€¦3,300 826:6.8ā€¦1,000 746:Aluminum- 558:⋅ 555:ε 485:pyrolysis 461:amorphous 432:amorphous 394:amorphous 362:Breakdown 346:material 280:oxidation 181:flashlamp 177:amplifier 126:oxidation 119:electrode 5428:See also 5083:Nichicon 4866:Jianghai 4773:Itelcond 4457:Polymer 4401:Niobium 4391:Aluminum 4065:Bipolar 3994:Lifetime 3807:Lifetime 3776:Lifetime 3729:Type of 3675:lifetime 3660:Lifetime 3650:lifetime 3554:ailures 2804:and the 2252:resistor 2049:E series 1686:ancestor 1610:titanium 1598:tantalum 1290:AVX,NBM, 1262:AVX,NOS, 966:Max. ESR 875:10ā€¦1,500 867:125/150 853:125/200 837:Tantalum 832:105/125 812:10ā€¦1,500 798:1ā€¦18,000 497:polymers 416:Tantalum 378:Aluminum 305:tantalum 291:aluminum 5207:Rubycon 4804:Jackcon 4711:Hitachi 4494:CapXon, 4442:Polymer 4427:Polymer 4420:Polymer 3586:etween 3523:, see 1911:Rubycon 1877:laptops 1812:Philips 1618:cadmium 1602:niobium 1571:History 1396:120/6.3 1344:180/6.3 1292:220/6.3 1264:220/6,3 956:Type ) 910:4.7ā€¦470 896:1ā€¦1,500 804:85/105 790:85/105 373:(nm/V) 369:Voltage 366:(V/Āµm) 364:voltage 319:niobium 149:voltage 138:cathode 5362:Vishay 5238:Samwha 5145:Richey 4742:Hitano 4680:Frolyt 4429:Hybrid 4424:Radial 4417:SI, ST 4412:Radial 4357:Market 4171:) side 4151:) side 3895:Stable 3823:Stable 3749:rules 3485:": --> 3066:, and 2769:ripple 2266:, the 1973:, the 1960:, the 1831:OS-CON 1592:Origin 1424:100/25 1368:100/10 1316:100/10 1232:150/10 1208:330/10 1184:330/10 1156:330/10 1124:220/16 1100:220/10 1072:100/10 1048:100/10 1024:100/10 1002:15.000 996:4.7/40 344:Anode- 277:anodic 233:charge 114:whose 5906:, or 5904:] 5393:Yageo 4928:KEMET 4897:Lelon 4415:Power 4165:solid 4149:minus 2784:tan Ī“ 2558:Then 2394:phase 2242:tan Ī“ 1862:PEDOT 1827:Sanyo 1653:borax 1427:6.3x8 1399:6.3x6 1127:6.3x8 1103:6.3x8 984:(ĀµA) 977:(mA) 970:(mĪ©) 963:(mm) 755:e.g. 741:(Ā°C) 730:Max. 727:(ĀµF) 725:range 371:proof 357:Oxide 116:anode 16:< 5176:ROHM 4618:Elna 4278:. 4169:plus 3673:The 3582:ime 3578:ean 3572:MTBF 3538:The 3507:The 3487:edit 3240:leak 2742:The 2677:and 2405:"Z". 2289:and 2225:and 2069:and 1984:leak 1879:and 1852:and 1753:and 1684:The 1614:zinc 1433:2000 1405:2780 1377:4700 1353:3700 1301:2561 1273:1461 1241:4970 1217:4900 1193:2500 1165:1285 1075:5x11 1051:5x11 1030:1000 1027:5x11 999:5x11 916:105 902:105 881:105 818:105 737:Max. 734:(V) 487:for 467:2.5 438:1.6 411:1.0 408:1000 400:1.4 106:All 99:and 6610:PDF 6584:PDF 6572:PDF 6536:PDF 6523:PDF 6511:PDF 6480:PDF 6467:PDF 6455:PDF 6443:PDF 6431:PDF 6397:PDF 6112:PDF 6084:PDF 6072:PDF 6060:PDF 6022:PDF 6010:PDF 5998:PDF 5965:PDF 5949:PDF 5929:PDF 5822:PDF 5810:PDF 5509:PDF 5490:PDF 5478:PDF 5052:NIC 4463:AVX 4452:MnO 4450:SMD 4445:Wet 4440:SMD 4434:MnO 4432:SMD 4422:SMD 4410:SMD 4109:GBL 3652:or 3548:FIT 3464:or 2984:Ī” T 2910:ESR 2892:RMS 2885:ESR 2837:ESR 2823:tan 2810:ESL 2806:ESR 2788:ESR 2773:ESR 2765:ESR 2759:ESR 2748:ESR 2701:ESL 2697:ESR 2502:) 2429:ESR 2421:ESL 2417:ESR 2401:|Z| 2234:ESR 2222:ESL 2043:. 2027:or 1971:ESL 1958:ESR 1844:by 1814:. 1715:AEG 1255:MnO 1162:100 1147:MnO 1133:600 1130:160 1109:300 1106:300 1081:250 1078:300 1057:180 1054:900 1033:160 864:125 850:630 829:125 801:100 787:630 773:550 765:DMA 761:DMF 757:GBL 491:or 477:ion 464:400 435:625 397:710 391:9.6 321:or 231:by 163:. 155:or 6634:^ 6616:^ 6601:^ 6500:^ 6420:^ 6404:^ 6386:^ 6303:* 6240:^ 6101:^ 5987:^ 5971:^ 5577:^ 5515:^ 5496:^ 5418:- 5387:X 5356:- 5325:- 5294:- 5263:- 5232:- 5201:- 5170:- 5139:- 5108:- 5077:- 5046:- 5015:- 4984:- 4953:- 4922:- 4891:- 4860:- 4829:- 4798:- 4767:- 4736:ā€“ 4705:- 4674:- 4643:- 4612:- 4581:- 4550:- 4519:- 4488:X 4301:: 4289:: 4262:, 3677:, 3558:n 3527:. 3317:01 3062:, 2990:th 2919:. 2871:. 2690:=X 2555:. 2249:AC 2109:. 2077:. 2037:DC 1848:, 1777:. 1749:, 1616:, 1608:, 1604:, 1600:, 1430:30 1402:17 1374:10 1298:40 1270:80 1214:10 1190:35 1005:17 913:16 899:10 878:25 815:25 763:, 759:, 499:. 458:41 429:27 354:Īµ 259:. 188:DC 183:. 95:, 6538:) 6525:) 6469:) 6399:) 5951:) 5947:( 5415:- 5412:- 5409:- 5406:- 5403:X 5400:X 5397:X 5384:X 5381:X 5378:X 5375:- 5372:X 5369:X 5366:X 5353:- 5350:- 5347:- 5344:- 5341:X 5338:X 5335:X 5322:- 5319:- 5316:- 5313:- 5310:- 5307:X 5304:X 5291:- 5288:- 5285:- 5282:X 5279:- 5276:- 5273:X 5260:- 5257:- 5254:- 5251:- 5248:X 5245:X 5242:X 5229:- 5226:- 5223:- 5220:- 5217:X 5214:X 5211:X 5198:X 5195:- 5192:X 5189:- 5186:- 5183:- 5180:- 5167:- 5164:- 5161:- 5158:- 5155:- 5152:X 5149:X 5136:X 5133:- 5130:- 5127:X 5124:X 5121:X 5118:X 5105:- 5102:- 5099:- 5096:- 5093:X 5090:X 5087:X 5074:X 5071:- 5068:X 5065:X 5062:X 5059:X 5056:X 5043:- 5040:- 5037:- 5034:X 5031:X 5028:X 5025:X 5012:X 5009:- 5006:X 5003:- 5000:- 4997:- 4994:- 4981:- 4978:- 4975:- 4972:- 4969:- 4966:X 4963:X 4950:X 4947:X 4944:X 4941:- 4938:X 4935:X 4932:X 4919:- 4916:- 4913:- 4910:- 4907:X 4904:X 4901:X 4888:- 4885:- 4882:- 4879:- 4876:X 4873:X 4870:X 4857:- 4854:- 4851:- 4848:- 4845:- 4842:X 4839:X 4826:- 4823:- 4820:- 4817:- 4814:- 4811:X 4808:X 4795:- 4792:- 4789:- 4786:- 4783:- 4780:X 4777:- 4764:- 4761:- 4758:X 4755:- 4752:X 4749:X 4746:X 4733:ā€“ 4730:ā€“ 4727:- 4724:- 4721:ā€“ 4718:X 4715:ā€“ 4702:- 4699:- 4696:- 4693:- 4690:- 4687:X 4684:X 4671:- 4668:X 4665:X 4662:- 4659:- 4656:X 4653:- 4640:- 4637:- 4634:- 4631:- 4628:X 4625:X 4622:X 4609:- 4606:- 4603:- 4600:- 4597:- 4594:X 4591:- 4578:- 4575:X 4572:X 4569:X 4566:X 4563:X 4560:X 4547:- 4544:- 4541:- 4538:- 4535:- 4532:X 4529:X 4516:- 4513:- 4510:- 4507:- 4504:X 4501:X 4498:X 4485:X 4482:X 4479:X 4476:- 4473:- 4470:- 4467:- 4454:2 4436:2 4331:2 4315:2 3918:2 3913:5 3911:O 3909:2 3890:2 3845:3 3843:O 3841:2 3836:2 3818:2 3637:R 3633:R 3626:R 3622:R 3618:R 3609:R 3595:R 3588:F 3584:B 3580:T 3576:M 3574:( 3560:T 3556:I 3552:F 3550:( 3491:] 3400:2 3382:A 3374:3 3371:+ 3365:R 3360:C 3350:R 3345:U 3335:F 3329:V 3324:A 3313:, 3309:0 3306:= 3300:k 3297:a 3294:e 3291:L 3286:I 3271:R 3269:U 3264:R 3262:C 3177:2 3170:n 3166:i 3160:+ 3155:2 3148:3 3144:i 3138:+ 3133:2 3126:2 3122:i 3116:+ 3111:2 3104:1 3100:i 3092:= 3089:Z 3037:A 3031:T 3025:= 3020:h 3017:t 3013:P 2999:Ī² 2995:A 2988:P 2967:R 2964:S 2961:E 2953:2 2948:R 2944:I 2940:= 2935:L 2931:P 2916:R 2914:I 2905:L 2903:P 2848:C 2832:= 2801:L 2799:X 2794:C 2792:X 2746:( 2692:L 2688:C 2686:X 2681:L 2679:X 2674:C 2672:X 2662:. 2646:2 2642:) 2638:) 2632:L 2627:X 2620:( 2617:+ 2611:C 2606:X 2602:( 2599:+ 2594:2 2589:R 2586:S 2583:E 2576:= 2573:Z 2560:Z 2540:L 2537:S 2534:E 2529:L 2522:= 2517:L 2513:X 2498:( 2495:L 2493:X 2473:C 2466:1 2458:= 2453:C 2449:X 2435:C 2433:X 2425:Ļ‰ 2413:C 2377:. 2369:f 2366:f 2363:e 2358:I 2351:f 2348:f 2345:e 2340:U 2334:= 2314:u 2307:= 2304:Z 2283:Z 2238:Z 2229:C 2227:X 2220:X 2119:C 2115:C 2107:R 2103:R 2099:N 2095:R 2013:N 2009:R 1981:R 1968:L 1955:R 1949:C 1918:" 1783:2 1612:, 1350:7 1325:- 1322:- 1285:2 1257:2 1238:5 1177:2 1149:2 767:, 566:d 563:A 552:= 549:C 530:. 527:d 521:A 454:5 452:O 450:2 425:5 423:O 421:2 387:3 385:O 383:2 147:/ 63:) 57:( 53:. 47:.

Index

User:Elcap
copy editing
editing it
Learn how and when to remove this message

Aluminum electrolytic capacitors
Tantalum electrolytic capacitors
Niobium electrolytic capacitors
capacitors
anode
electrode
anodically
oxidation
dielectric
electrolyte
cathode
capacitance
voltage
ceramic capacitors
film capacitors
supercapacitors
power supplies
variable-frequency drives
amplifier
flashlamp
DC

electric energy
statically
charge

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘