Knowledge (XXG)

Vacancy defect

Source đź“ť

1023: 1416: 31: 1428: 320:
between an atom inside the crystal and its nearest neighbor atoms. Once that atom is removed from the lattice site, it is put back on the surface of the crystal and some energy is retrieved because new bonds are established with other atoms on the surface. However, there is a net input of energy
329:
In most applications vacancy defects are irrelevant to the intended purpose of a material, as they are either too few or spaced throughout a multi-dimensional space in such a way that force or charge can move around the vacancy. In the case of more constrained structures like
176: 45:. Right circle points to a divacancy, i.e., sulfur atoms are missing both above and below the Mo layer. Other circles are single vacancies, i.e., sulfur atoms are missing only above or below the Mo layer. Scale bar: 1 nm. 1293: 1288: 1344: 272: 88:(ratio of vacant lattice sites to those containing atoms). At the melting point of some metals the ratio can be approximately 1:1000. This temperature dependence can be modelled by 373:
Hong, J.; Hu, Z.; Probert, M.; Li, K.; Lv, D.; Yang, X.; Gu, L.; Mao, N.; Feng, Q.; Xie, L.; Zhang, J.; Wu, D.; Zhang, Z.; Jin, C.; Ji, W.; Zhang, X.; Yuan, J.; Zhang, Z. (2015).
1162: 1349: 1074: 94: 1240: 532: 1339: 1331: 1392: 1370: 1385: 1235: 901: 766: 615: 1375: 1273: 969: 622: 1454: 1397: 1255: 1225: 1154: 1107: 1380: 1303: 1177: 776: 1137: 305:
It is the simplest point defect. In this system, an atom is missing from its regular atomic site. Vacancies are formed during
1215: 1230: 1220: 525: 1002: 1354: 627: 605: 1032: 906: 660: 555: 1022: 1432: 1263: 560: 1278: 1207: 665: 655: 230: 791: 1420: 1144: 1040: 913: 876: 670: 650: 518: 828: 432:
Ehrhart, P. (1991) "Properties and interactions of atomic defects in metals and alloys", chapter 2, p. 88 in
1268: 1112: 1057: 806: 771: 343: 74: 964: 781: 886: 1321: 1117: 1079: 838: 572: 321:
because there are fewer bonds between surface atoms than between atoms in the interior of the crystal.
1045: 918: 754: 645: 451: 386: 217: 42: 1062: 1050: 925: 891: 871: 310: 34: 1311: 1122: 1067: 610: 209: 1245: 1084: 1012: 992: 712: 582: 412: 291: 1283: 1089: 1007: 997: 796: 729: 700: 693: 477: 459: 402: 394: 80:
Vacancies occur naturally in all crystalline materials. At any given temperature, up to the
1172: 1167: 1132: 952: 851: 786: 749: 744: 595: 541: 348: 331: 70: 50: 455: 390: 334:
however, vacancies and other crystalline defects can significantly weaken the material.
982: 935: 930: 896: 866: 856: 815: 759: 683: 637: 407: 374: 353: 306: 1448: 1127: 940: 739: 463: 85: 81: 833: 823: 717: 600: 505: 171:{\displaystyle N_{\rm {v}}=N\exp \left({\frac {-Q_{\rm {v}}}{k_{\rm {B}}T}}\right)} 58: 17: 1316: 987: 861: 688: 317: 881: 567: 299: 590: 38: 30: 416: 73:
sites. Crystals inherently possess imperfections, sometimes referred to as
1187: 957: 705: 1197: 398: 62: 316:
The creation of a vacancy can be simply modeled by considering the
1192: 510: 29: 66: 514: 375:"Exploring atomic defects in molybdenum disulphide monolayers" 27:
Crystallographic defect; an atom missing from a lattice site
446:
Siegel, R. W. (1978). "Vacancy concentrations in metals".
1294:
Zeitschrift für Kristallographie – New Crystal Structures
309:
due to vibration of atoms, local rearrangement of atoms,
1289:
Zeitschrift für Kristallographie – Crystalline Materials
1182: 233: 97: 1363: 1330: 1302: 1254: 1206: 1153: 1100: 1031: 814: 805: 728: 636: 581: 548: 266: 170: 199:is the energy required for vacancy formation, 526: 8: 267:{\displaystyle N={\frac {mN_{\rm {A}}}{M}}} 1360: 811: 633: 578: 533: 519: 511: 478:"Defects And Disorder In Carbon Nanotubes" 224:is the concentration of atomic sites i.e. 406: 251: 250: 240: 232: 151: 150: 137: 136: 126: 103: 102: 96: 84:of the material, there is an equilibrium 428: 426: 365: 7: 1427: 767:Phase transformation crystallography 1274:Journal of Chemical Crystallography 318:energy required to break the bonds 252: 152: 138: 104: 25: 434:Landolt-Börnstein, New Series III 1426: 1415: 1414: 1021: 1216:Bilbao Crystallographic Server 506:Crystalline Defects in Silicon 190:is the vacancy concentration, 1: 464:10.1016/0022-3115(78)90240-4 448:Journal of Nuclear Materials 1264:Crystal Growth & Design 556:Timeline of crystallography 436:, Vol. 25, Springer, Berlin 69:is missing from one of the 1471: 1075:Nuclear magnetic resonance 1410: 1279:Journal of Crystal Growth 1019: 37:of sulfur vacancies in a 1455:Crystallographic defects 1145:Single particle analysis 1003:Hermann–Mauguin notation 313:and ionic bombardments. 75:crystallographic defects 1269:Crystallography Reviews 1113:Isomorphous replacement 907:Lomer–Cottrell junction 344:Crystallographic defect 782:Spinodal decomposition 268: 172: 46: 1322:Gregori Aminoff Prize 1118:Molecular replacement 379:Nature Communications 269: 173: 33: 628:Structure prediction 231: 218:absolute temperature 95: 43:molybdenum disulfide 892:Cottrell atmosphere 872:Partial dislocation 616:Restriction theorem 483:. Philip G. Collins 456:1978JNuM...69..117S 391:2015NatCo...6.6293H 311:plastic deformation 35:Electron microscopy 18:Vacancy (chemistry) 1312:Carl Hermann Medal 1123:Molecular dynamics 970:Defects in diamond 965:Stone–Wales defect 611:Reciprocal lattice 573:Biocrystallography 450:. 69–70: 117–146. 399:10.1038/ncomms7293 264: 210:Boltzmann constant 168: 47: 1442: 1441: 1406: 1405: 1013:Thermal ellipsoid 978: 977: 887:Frank–Read source 847: 846: 713:Aperiodic crystal 679: 678: 561:Crystallographers 292:Avogadro constant 262: 162: 16:(Redirected from 1462: 1430: 1429: 1418: 1417: 1361: 1284:Kristallografija 1138:Gerchberg–Saxton 1033:Characterisation 1025: 1008:Structure factor 812: 797:Ostwald ripening 634: 579: 535: 528: 521: 512: 493: 492: 490: 488: 482: 474: 468: 467: 443: 437: 430: 421: 420: 410: 370: 332:carbon nanotubes 325:Material physics 297: 289: 280: 273: 271: 270: 265: 263: 258: 257: 256: 255: 241: 223: 215: 207: 198: 189: 177: 175: 174: 169: 167: 163: 161: 157: 156: 155: 144: 143: 142: 141: 127: 109: 108: 107: 21: 1470: 1469: 1465: 1464: 1463: 1461: 1460: 1459: 1445: 1444: 1443: 1438: 1402: 1359: 1326: 1298: 1250: 1202: 1173:CrystalExplorer 1149: 1133:Phase retrieval 1096: 1027: 1026: 1017: 974: 953:Schottky defect 852:Perfect crystal 843: 839:Abnormal growth 801: 787:Supersaturation 750:Miscibility gap 731: 724: 675: 632: 596:Bravais lattice 577: 544: 542:Crystallography 539: 502: 497: 496: 486: 484: 480: 476: 475: 471: 445: 444: 440: 431: 424: 372: 371: 367: 362: 349:Schottky defect 340: 327: 295: 288: 282: 278: 246: 242: 229: 228: 221: 213: 206: 200: 197: 191: 188: 182: 146: 145: 132: 128: 122: 98: 93: 92: 51:crystallography 28: 23: 22: 15: 12: 11: 5: 1468: 1466: 1458: 1457: 1447: 1446: 1440: 1439: 1437: 1436: 1424: 1411: 1408: 1407: 1404: 1403: 1401: 1400: 1395: 1390: 1389: 1388: 1383: 1378: 1367: 1365: 1358: 1357: 1352: 1347: 1342: 1336: 1334: 1328: 1327: 1325: 1324: 1319: 1314: 1308: 1306: 1300: 1299: 1297: 1296: 1291: 1286: 1281: 1276: 1271: 1266: 1260: 1258: 1252: 1251: 1249: 1248: 1243: 1238: 1233: 1228: 1223: 1218: 1212: 1210: 1204: 1203: 1201: 1200: 1195: 1190: 1185: 1180: 1175: 1170: 1165: 1159: 1157: 1151: 1150: 1148: 1147: 1142: 1141: 1140: 1130: 1125: 1120: 1115: 1110: 1108:Direct methods 1104: 1102: 1098: 1097: 1095: 1094: 1093: 1092: 1087: 1077: 1072: 1071: 1070: 1065: 1055: 1054: 1053: 1048: 1037: 1035: 1029: 1028: 1020: 1018: 1016: 1015: 1010: 1005: 1000: 995: 993:Ewald's sphere 990: 985: 979: 976: 975: 973: 972: 967: 962: 961: 960: 955: 945: 944: 943: 938: 936:Frenkel defect 933: 931:Bjerrum defect 923: 922: 921: 911: 910: 909: 904: 899: 897:Peierls stress 894: 889: 884: 879: 874: 869: 867:Burgers vector 859: 857:Stacking fault 854: 848: 845: 844: 842: 841: 836: 831: 826: 820: 818: 816:Grain boundary 809: 803: 802: 800: 799: 794: 789: 784: 779: 774: 769: 764: 763: 762: 760:Liquid crystal 757: 752: 747: 736: 734: 726: 725: 723: 722: 721: 720: 710: 709: 708: 698: 697: 696: 691: 680: 677: 676: 674: 673: 668: 663: 658: 653: 648: 642: 640: 631: 630: 625: 623:Periodic table 620: 619: 618: 613: 608: 603: 598: 587: 585: 576: 575: 570: 565: 564: 563: 552: 550: 546: 545: 540: 538: 537: 530: 523: 515: 509: 508: 501: 500:External links 498: 495: 494: 469: 438: 422: 364: 363: 361: 358: 357: 356: 354:Frenkel defect 351: 346: 339: 336: 326: 323: 307:solidification 286: 275: 274: 261: 254: 249: 245: 239: 236: 204: 195: 186: 179: 178: 166: 160: 154: 149: 140: 135: 131: 125: 121: 118: 115: 112: 106: 101: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1467: 1456: 1453: 1452: 1450: 1435: 1434: 1425: 1423: 1422: 1413: 1412: 1409: 1399: 1396: 1394: 1391: 1387: 1384: 1382: 1379: 1377: 1374: 1373: 1372: 1369: 1368: 1366: 1362: 1356: 1353: 1351: 1348: 1346: 1343: 1341: 1338: 1337: 1335: 1333: 1329: 1323: 1320: 1318: 1315: 1313: 1310: 1309: 1307: 1305: 1301: 1295: 1292: 1290: 1287: 1285: 1282: 1280: 1277: 1275: 1272: 1270: 1267: 1265: 1262: 1261: 1259: 1257: 1253: 1247: 1244: 1242: 1239: 1237: 1234: 1232: 1229: 1227: 1224: 1222: 1219: 1217: 1214: 1213: 1211: 1209: 1205: 1199: 1196: 1194: 1191: 1189: 1186: 1184: 1181: 1179: 1176: 1174: 1171: 1169: 1166: 1164: 1161: 1160: 1158: 1156: 1152: 1146: 1143: 1139: 1136: 1135: 1134: 1131: 1129: 1128:Patterson map 1126: 1124: 1121: 1119: 1116: 1114: 1111: 1109: 1106: 1105: 1103: 1099: 1091: 1088: 1086: 1083: 1082: 1081: 1078: 1076: 1073: 1069: 1066: 1064: 1061: 1060: 1059: 1056: 1052: 1049: 1047: 1044: 1043: 1042: 1039: 1038: 1036: 1034: 1030: 1024: 1014: 1011: 1009: 1006: 1004: 1001: 999: 998:Friedel's law 996: 994: 991: 989: 986: 984: 981: 980: 971: 968: 966: 963: 959: 956: 954: 951: 950: 949: 946: 942: 941:Wigner effect 939: 937: 934: 932: 929: 928: 927: 926:Interstitials 924: 920: 917: 916: 915: 912: 908: 905: 903: 900: 898: 895: 893: 890: 888: 885: 883: 880: 878: 875: 873: 870: 868: 865: 864: 863: 860: 858: 855: 853: 850: 849: 840: 837: 835: 832: 830: 827: 825: 822: 821: 819: 817: 813: 810: 808: 804: 798: 795: 793: 790: 788: 785: 783: 780: 778: 775: 773: 772:Precipitation 770: 768: 765: 761: 758: 756: 753: 751: 748: 746: 743: 742: 741: 740:Phase diagram 738: 737: 735: 733: 727: 719: 716: 715: 714: 711: 707: 704: 703: 702: 699: 695: 692: 690: 687: 686: 685: 682: 681: 672: 669: 667: 664: 662: 659: 657: 654: 652: 649: 647: 644: 643: 641: 639: 635: 629: 626: 624: 621: 617: 614: 612: 609: 607: 604: 602: 599: 597: 594: 593: 592: 589: 588: 586: 584: 580: 574: 571: 569: 566: 562: 559: 558: 557: 554: 553: 551: 547: 543: 536: 531: 529: 524: 522: 517: 516: 513: 507: 504: 503: 499: 479: 473: 470: 465: 461: 457: 453: 449: 442: 439: 435: 429: 427: 423: 418: 414: 409: 404: 400: 396: 392: 388: 384: 380: 376: 369: 366: 359: 355: 352: 350: 347: 345: 342: 341: 337: 335: 333: 324: 322: 319: 314: 312: 308: 303: 301: 293: 285: 259: 247: 243: 237: 234: 227: 226: 225: 219: 211: 203: 194: 185: 164: 158: 147: 133: 129: 123: 119: 116: 113: 110: 99: 91: 90: 89: 87: 86:concentration 83: 82:melting point 78: 76: 72: 68: 64: 60: 57:is a type of 56: 52: 44: 40: 36: 32: 19: 1431: 1419: 1364:Associations 1332:Organisation 947: 824:Disclination 755:Polymorphism 718:Quasicrystal 661:Orthorhombic 601:Miller index 549:Key concepts 485:. Retrieved 472: 447: 441: 433: 382: 378: 368: 328: 315: 304: 283: 276: 201: 192: 183: 180: 79: 59:point defect 54: 48: 1317:Ewald Prize 1085:Diffraction 1063:Diffraction 1046:Diffraction 988:Bragg plane 983:Bragg's law 862:Dislocation 777:Segregation 689:Crystallite 606:Point group 1101:Algorithms 1090:Scattering 1068:Scattering 1051:Scattering 919:Slip bands 882:Cross slip 732:transition 666:Tetragonal 656:Monoclinic 568:Metallurgy 360:References 300:molar mass 1208:Databases 671:Triclinic 651:Hexagonal 591:Unit cell 583:Structure 281:is mass, 130:− 120:⁡ 65:where an 39:monolayer 1449:Category 1421:Category 1256:Journals 1188:OctaDist 1183:JANA2020 1155:Software 1041:Electron 958:F-center 745:Eutectic 706:Fiveling 701:Twinning 694:Equiaxed 417:25695374 385:: 6293. 338:See also 1433:Commons 1381:Germany 1058:Neutron 948:Vacancy 807:Defects 792:GP-zone 638:Systems 487:8 April 452:Bibcode 408:4346634 387:Bibcode 216:is the 208:is the 71:lattice 63:crystal 55:vacancy 1376:France 1371:Europe 1304:Awards 834:Growth 684:Growth 415:  405:  294:, and 277:where 220:, and 181:where 1398:Japan 1345:IOBCr 1198:SHELX 1193:Olex2 1080:X-ray 730:Phase 646:Cubic 481:(PDF) 61:in a 1340:IUCr 1241:ICDD 1236:ICSD 1221:CCDC 1168:Coot 1163:CCP4 914:Slip 877:Kink 489:2020 413:PMID 298:the 290:the 67:atom 53:, a 1355:DMG 1350:RAS 1246:PDB 1231:COD 1226:CIF 1178:DSR 902:GND 829:CSL 460:doi 403:PMC 395:doi 117:exp 77:. 49:In 41:of 1451:: 1393:US 1386:UK 458:. 425:^ 411:. 401:. 393:. 381:. 377:. 302:. 212:, 534:e 527:t 520:v 491:. 466:. 462:: 454:: 419:. 397:: 389:: 383:6 296:M 287:A 284:N 279:m 260:M 253:A 248:N 244:m 238:= 235:N 222:N 214:T 205:B 202:k 196:v 193:Q 187:v 184:N 165:) 159:T 153:B 148:k 139:v 134:Q 124:( 114:N 111:= 105:v 100:N 20:)

Index

Vacancy (chemistry)

Electron microscopy
monolayer
molybdenum disulfide
crystallography
point defect
crystal
atom
lattice
crystallographic defects
melting point
concentration
Boltzmann constant
absolute temperature
Avogadro constant
molar mass
solidification
plastic deformation
energy required to break the bonds
carbon nanotubes
Crystallographic defect
Schottky defect
Frenkel defect
"Exploring atomic defects in molybdenum disulphide monolayers"
Bibcode
2015NatCo...6.6293H
doi
10.1038/ncomms7293
PMC

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑