Knowledge (XXG)

Zilber–Pink conjecture

Source 📝

790:
contains only finitely many maximal special subvarieties. This is the Manin–Mumford conjecture in the semiabelian setting and the André–Oort conjecture in the Shimura setting. Both are now theorems; the former has been known for several decades, while the latter was proven in full generality only
672:
The abelian and modular versions of the Zilber–Pink conjecture are special cases of the conjecture for Shimura varieties, while in general the semiabelian case is not. However, special subvarieties of semiabelian and Shimura varieties share many formal properties which makes the same formulation
75:. The general version is now known as the Zilber–Pink conjecture. It states roughly that atypical or unlikely intersections of an algebraic variety with certain special varieties are accounted for by finitely many special varieties. 440:. For example, in semiabelian varieties special points are torsion points and special varieties are translates of irreducible algebraic subgroups by torsion points. In the modular setting special points are the 67:
in the early 2000's. For semiabelian varieties the conjecture implies the Mordell–Lang and Manin–Mumford conjectures. Richard Pink proposed (again independently) a more general conjecture for
250: 382: 1173: 326: 1050: 959:
Pila, Jonathan; Shankar, Ananth; Tsimerman, Jacob; Esnault, Hélène; Groechenig, Michael (2021-09-17). "Canonical Heights on Shimura Varieties and the André-Oort Conjecture".
122: 708: 647: 621: 571: 495: 794:
Many partial results have been proven on the Zilber–Pink conjecture. An example in the modular setting is the result that any variety contains only finitely many maximal
1019: 545: 276: 168: 428:. For example, if in a 3-dimensional space two lines intersect, then it is an unlikely intersection, for two randomly chosen lines would almost never intersect. 788: 768: 748: 728: 667: 599: 519: 469: 422: 402: 188: 142: 1209: 1183: 885: 436:
Special varieties of a Shimura variety are certain arithmetically defined subvarieties. They are higher dimensional versions of
36: 930:
Arithmetic and geometry. Papers dedicated to I. R. Shafarevich on the occasion of his sixtieth birthday. Vol. I: Arithmetic
1228: 32: 40: 193: 798:
atypical subvarieties, where a strongly atypical subvariety is an atypical subvariety with no constant coordinate.
925: 331: 445: 863: 441: 281: 1024: 681:
While the Zilber–Pink conjecture is wide open, many special cases and weak versions have been proven.
1233: 28: 868: 95: 48: 687: 626: 604: 550: 474: 71:
which also implies the André–Oort conjecture. In the case of algebraic tori, Zilber called it the
1148: 1130: 1108: 1090: 960: 1205: 1179: 1001: 881: 1199: 524: 255: 147: 1140: 1100: 941: 873: 824: 937: 1195: 945: 933: 932:. Progress in Mathematics (in French). Vol. 35. Birkhäuser-Boston. pp. 327–352. 437: 68: 64: 56: 44: 858:
Pink, Richard (2005). "A Combination of the Conjectures of Mordell–Lang and André–Oort".
917: 773: 753: 733: 713: 652: 584: 504: 454: 407: 387: 173: 127: 424:
are not expected to intersect at all, so when they do, the intersection is said to be
1222: 1169: 1152: 1112: 921: 328:, atypical intersections are "atypically large" and are not expected to occur. When 60: 52: 815:
Zilber, Boris (2002), "Exponential sums equations and the Schanuel conjecture",
92:
if its dimension is larger than expected. More precisely, given three varieties
20: 1144: 828: 1104: 877: 1081:
Pila, Jonathan; Tsimerman, Jacob (2016), "Ax-Schanuel for the j-function",
1053:, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), vol. 22, pp. 1705–1745 920:(1983). "Sous-variétés d'une variété abélienne et points de torsion". In 444:
and special varieties are irreducible components of varieties defined by
1125:
Aslanyan, Vahagn (2021), "Weak Modular Zilber–Pink with Derivatives",
1135: 965: 1201:
Some Problems of Unlikely Intersections in Arithmetic and Geometry
1095: 601:
be a mixed Shimura variety or a semiabelian variety defined over
1031: 862:. Progress in Mathematics. Vol. 235. pp. 251–282. 846:, International Mathematics Research Notices, vol. 2007 905:, Ann. Sci. Éc. Norm. Supér, vol. 49, pp. 813–858 669:
contains only finitely many maximal atypical subvarieties.
844:
Anomalous Subvarieties—Structure Theorems and Applications
842:
Bombieri, Enrico; Masser, David; Zannier, Umberto (2007),
1067:
Quantitative Reduction Theory and Unlikely Intersections
88:
The intersection of two algebraic varieties is called
1027: 1004: 776: 756: 736: 716: 690: 655: 629: 607: 587: 553: 527: 507: 477: 457: 410: 390: 334: 284: 258: 196: 176: 150: 130: 98: 1044: 1013: 782: 762: 742: 722: 702: 661: 641: 615: 593: 565: 539: 513: 489: 463: 416: 396: 376: 320: 270: 244: 182: 162: 136: 116: 770:. Hence, the Zilber–Pink conjecture implies that 984:, Compositio Math., vol. 148, pp. 1–27 27:is a far-reaching generalisation of many famous 903:o-minimality and certain atypical intersections 860:Geometric Methods in Algebra and Number Theory 245:{\displaystyle \dim Z>\dim X+\dim Y-\dim U} 1175:Point-Counting and the Zilber–Pink Conjecture 982:Some unlikely intersections beyond André-Oort 8: 1069:, IMRN, vol. 2022, pp. 16138–16195 521:is an atypical component of an intersection 980:Habegger, Philipp; Pila, Jonathan (2012), 901:Habegger, Philipp; Pila, Jonathan (2016), 73:Conjecture on Intersection with Tori (CIT) 1204:. Princeton: Princeton University Press. 1134: 1094: 1036: 1030: 1029: 1026: 1003: 964: 867: 775: 755: 735: 715: 689: 654: 628: 609: 608: 606: 586: 552: 526: 506: 476: 456: 409: 389: 377:{\displaystyle \dim X+\dim Y-\dim U<0} 333: 283: 257: 195: 175: 149: 129: 97: 807: 1065:Daw, Christopher; Orr, Martin (2022), 996:Daw, Christopher; Orr, Martin (2021), 7: 321:{\displaystyle \dim X+\dim Y-\dim U} 31:conjectures and statements, such as 84:Atypical and unlikely intersections 1045:{\displaystyle {\mathcal {A}}_{2}} 252:. Since the expected dimension of 14: 677:Partial results and special cases 1178:. Cambridge University Press. 451:Given a mixed Shimura variety 117:{\displaystyle X,Y\subseteq U} 1: 750:is an atypical subvariety of 998:Unlikely intersections with 703:{\displaystyle V\subseteq X} 642:{\displaystyle V\subseteq X} 616:{\displaystyle \mathbb {C} } 566:{\displaystyle T\subseteq X} 490:{\displaystyle V\subseteq X} 710:contains a special variety 1250: 1145:10.1007/s00208-021-02213-7 577:The Zilber–Pink conjecture 170:is said to be atypical in 829:10.1112/S0024610701002861 673:valid in both settings. 573:is a special subvariety. 1105:10.1215/00127094-3620005 1014:{\displaystyle E\times } 878:10.1007/0-8176-4417-2_11 540:{\displaystyle V\cap T} 271:{\displaystyle X\cap Y} 163:{\displaystyle X\cap Y} 16:Mathematical conjecture 1046: 1015: 784: 764: 744: 724: 704: 663: 649:be a subvariety. Then 643: 617: 595: 567: 541: 515: 491: 465: 418: 398: 378: 322: 272: 246: 184: 164: 138: 118: 25:Zilber–Pink conjecture 1047: 1016: 785: 765: 745: 725: 705: 664: 644: 618: 596: 568: 542: 516: 492: 466: 419: 399: 379: 323: 273: 247: 185: 165: 139: 119: 55:and independently by 49:semiabelian varieties 1229:Diophantine geometry 1025: 1002: 817:J. London Math. Soc. 774: 754: 734: 714: 688: 653: 627: 605: 585: 551: 525: 505: 475: 455: 408: 388: 332: 282: 256: 194: 174: 148: 144:of the intersection 128: 96: 730:then by definition 499:atypical subvariety 51:it was proposed by 1042: 1011: 780: 760: 740: 720: 700: 659: 639: 613: 591: 563: 537: 511: 487: 461: 414: 394: 374: 318: 268: 242: 180: 160: 134: 114: 1211:978-0-691-15370-4 1089:(13): 2587–2605, 783:{\displaystyle V} 763:{\displaystyle V} 743:{\displaystyle T} 723:{\displaystyle T} 662:{\displaystyle V} 594:{\displaystyle X} 514:{\displaystyle V} 471:and a subvariety 464:{\displaystyle X} 446:modular equations 432:Special varieties 417:{\displaystyle Y} 397:{\displaystyle X} 183:{\displaystyle U} 137:{\displaystyle Z} 69:Shimura varieties 1241: 1215: 1196:Zannier, Umberto 1189: 1156: 1155: 1138: 1122: 1116: 1115: 1098: 1078: 1072: 1070: 1062: 1056: 1054: 1051: 1049: 1048: 1043: 1041: 1040: 1035: 1034: 1020: 1018: 1017: 1012: 993: 987: 985: 977: 971: 970: 968: 956: 950: 949: 914: 908: 906: 898: 892: 891: 871: 855: 849: 847: 839: 833: 831: 812: 789: 787: 786: 781: 769: 767: 766: 761: 749: 747: 746: 741: 729: 727: 726: 721: 709: 707: 706: 701: 668: 666: 665: 660: 648: 646: 645: 640: 622: 620: 619: 614: 612: 600: 598: 597: 592: 572: 570: 569: 564: 546: 544: 543: 538: 520: 518: 517: 512: 496: 494: 493: 488: 470: 468: 467: 462: 423: 421: 420: 415: 403: 401: 400: 395: 384:, the varieties 383: 381: 380: 375: 327: 325: 324: 319: 277: 275: 274: 269: 251: 249: 248: 243: 189: 187: 186: 181: 169: 167: 166: 161: 143: 141: 140: 135: 123: 121: 120: 115: 1249: 1248: 1244: 1243: 1242: 1240: 1239: 1238: 1219: 1218: 1212: 1194: 1186: 1168: 1165: 1163:Further reading 1160: 1159: 1124: 1123: 1119: 1080: 1079: 1075: 1064: 1063: 1059: 1028: 1023: 1022: 1000: 999: 995: 994: 990: 979: 978: 974: 958: 957: 953: 918:Raynaud, Michel 916: 915: 911: 900: 899: 895: 888: 869:10.1.1.499.3023 857: 856: 852: 841: 840: 836: 814: 813: 809: 804: 772: 771: 752: 751: 732: 731: 712: 711: 686: 685: 679: 651: 650: 625: 624: 603: 602: 583: 582: 579: 549: 548: 523: 522: 503: 502: 473: 472: 453: 452: 442:singular moduli 434: 406: 405: 386: 385: 330: 329: 280: 279: 254: 253: 192: 191: 172: 171: 146: 145: 126: 125: 94: 93: 86: 81: 65:Umberto Zannier 57:Enrico Bombieri 17: 12: 11: 5: 1247: 1245: 1237: 1236: 1231: 1221: 1220: 1217: 1216: 1210: 1191: 1190: 1184: 1170:Pila, Jonathan 1164: 1161: 1158: 1157: 1117: 1073: 1057: 1039: 1033: 1010: 1007: 988: 972: 951: 922:Artin, Michael 909: 893: 886: 850: 834: 806: 805: 803: 800: 779: 759: 739: 719: 699: 696: 693: 678: 675: 658: 638: 635: 632: 611: 590: 578: 575: 562: 559: 556: 536: 533: 530: 510: 486: 483: 480: 460: 438:special points 433: 430: 413: 393: 373: 370: 367: 364: 361: 358: 355: 352: 349: 346: 343: 340: 337: 317: 314: 311: 308: 305: 302: 299: 296: 293: 290: 287: 267: 264: 261: 241: 238: 235: 232: 229: 226: 223: 220: 217: 214: 211: 208: 205: 202: 199: 179: 159: 156: 153: 133: 124:, a component 113: 110: 107: 104: 101: 85: 82: 80: 77: 45:algebraic tori 15: 13: 10: 9: 6: 4: 3: 2: 1246: 1235: 1232: 1230: 1227: 1226: 1224: 1213: 1207: 1203: 1202: 1197: 1193: 1192: 1187: 1185:9781009170321 1181: 1177: 1176: 1171: 1167: 1166: 1162: 1154: 1150: 1146: 1142: 1137: 1132: 1128: 1121: 1118: 1114: 1110: 1106: 1102: 1097: 1092: 1088: 1084: 1083:Duke Math. J. 1077: 1074: 1068: 1061: 1058: 1052: 1037: 1021:CM curves in 1008: 1005: 992: 989: 983: 976: 973: 967: 962: 955: 952: 947: 943: 939: 935: 931: 927: 923: 919: 913: 910: 904: 897: 894: 889: 887:0-8176-4349-4 883: 879: 875: 870: 865: 861: 854: 851: 845: 838: 835: 830: 826: 822: 818: 811: 808: 801: 799: 797: 792: 777: 757: 737: 717: 697: 694: 691: 684:If a variety 682: 676: 674: 670: 656: 636: 633: 630: 588: 576: 574: 560: 557: 554: 534: 531: 528: 508: 500: 484: 481: 478: 458: 449: 447: 443: 439: 431: 429: 427: 411: 391: 371: 368: 365: 362: 359: 356: 353: 350: 347: 344: 341: 338: 335: 315: 312: 309: 306: 303: 300: 297: 294: 291: 288: 285: 265: 262: 259: 239: 236: 233: 230: 227: 224: 221: 218: 215: 212: 209: 206: 203: 200: 197: 177: 157: 154: 151: 131: 111: 108: 105: 102: 99: 91: 83: 78: 76: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 37:Manin–Mumford 34: 30: 26: 22: 1200: 1174: 1126: 1120: 1086: 1082: 1076: 1066: 1060: 997: 991: 981: 975: 954: 929: 912: 902: 896: 859: 853: 843: 837: 823:(2): 27–44, 820: 816: 810: 795: 793: 683: 680: 671: 580: 498: 450: 435: 425: 89: 87: 72: 61:David Masser 53:Boris Zilber 41:Mordell–Lang 24: 18: 1234:Conjectures 29:Diophantine 21:mathematics 1223:Categories 1136:1803.05895 1127:Math. Ann. 966:2109.08788 946:0581.14031 926:Tate, John 802:References 791:recently. 623:, and let 33:André–Oort 1153:119654268 1113:118973278 1096:1412.8255 1009:× 864:CiteSeerX 695:⊆ 634:⊆ 558:⊆ 532:∩ 482:⊆ 363:⁡ 357:− 351:⁡ 339:⁡ 313:⁡ 307:− 301:⁡ 289:⁡ 263:∩ 237:⁡ 231:− 225:⁡ 213:⁡ 201:⁡ 155:∩ 109:⊆ 79:Statement 1198:(2012). 1172:(2022). 928:(eds.). 796:strongly 426:unlikely 90:atypical 938:0717600 1208:  1182:  1151:  1111:  944:  936:  884:  866:  547:where 43:. For 39:, and 23:, the 1149:S2CID 1131:arXiv 1109:S2CID 1091:arXiv 961:arXiv 497:, an 1206:ISBN 1180:ISBN 882:ISBN 581:Let 404:and 369:< 207:> 47:and 1141:doi 1101:doi 1087:165 942:Zbl 874:doi 825:doi 501:of 360:dim 348:dim 336:dim 310:dim 298:dim 286:dim 278:is 234:dim 222:dim 210:dim 198:dim 190:if 19:In 1225:: 1147:, 1139:, 1129:, 1107:, 1099:, 1085:, 940:. 934:MR 924:; 880:. 872:. 821:65 819:, 448:. 63:, 59:, 35:, 1214:. 1188:. 1143:: 1133:: 1103:: 1093:: 1071:. 1055:. 1038:2 1032:A 1006:E 986:. 969:. 963:: 948:. 907:. 890:. 876:: 848:. 832:. 827:: 778:V 758:V 738:T 718:T 698:X 692:V 657:V 637:X 631:V 610:C 589:X 561:X 555:T 535:T 529:V 509:V 485:X 479:V 459:X 412:Y 392:X 372:0 366:U 354:Y 345:+ 342:X 316:U 304:Y 295:+ 292:X 266:Y 260:X 240:U 228:Y 219:+ 216:X 204:Z 178:U 158:Y 152:X 132:Z 112:U 106:Y 103:, 100:X

Index

mathematics
Diophantine
André–Oort
Manin–Mumford
Mordell–Lang
algebraic tori
semiabelian varieties
Boris Zilber
Enrico Bombieri
David Masser
Umberto Zannier
Shimura varieties
special points
singular moduli
modular equations
doi
10.1112/S0024610701002861
CiteSeerX
10.1.1.499.3023
doi
10.1007/0-8176-4417-2_11
ISBN
0-8176-4349-4
Raynaud, Michel
Artin, Michael
Tate, John
MR
0717600
Zbl
0581.14031

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.