Knowledge

Molecular diffusion

Source 📝

460:
found remote from their original positions. If the partition is removed, some molecules of A move towards the region occupied by B, their number depends on the number of molecules at the region considered. Concurrently, molecules of B diffuse toward regimens formerly occupied by pure A. Finally, complete mixing occurs. Before this point in time, a gradual variation in the concentration of A occurs along an axis, designated x, which joins the original compartments. This variation, expressed mathematically as -dC
411:, which is the diffusion of a single particle, interactions between particles may have to be considered, unless the particles form an ideal mix with their solvent (ideal mix conditions correspond to the case where the interactions between the solvent and particles are identical to the interactions between particles and the interactions between solvent molecules; in this case, the particles do not interact when inside the solvent). 285: 293: 212: 365: 89:, originating from the random motion of the molecules. The result of diffusion is a gradual mixing of material such that the distribution of molecules is uniform. Since the molecules are still in motion, but an equilibrium has been established, the result of molecular diffusion is called a "dynamic equilibrium". In a 434:
in the particle diffusion equation becomes dependent of concentration. For an attractive interaction between particles, the diffusion coefficient tends to decrease as concentration increases. For a repulsive interaction between particles, the diffusion coefficient tends to increase as concentration
376:
system (i.e. it is not at rest yet). Many results in classical thermodynamics are not easily applied to non-equilibrium systems. However, there sometimes occur so-called quasi-steady states, where the diffusion process does not change in time, where classical results may locally apply. As the name
459:
Transport of material in stagnant fluid or across streamlines of a fluid in a laminar flow occurs by molecular diffusion. Two adjacent compartments separated by a partition, containing pure gases A or B may be envisaged. Random movement of all molecules occurs so that after a period molecules are
339:
experiment this technique uses the nuclear spin precession phase, allowing to distinguish chemically and physically completely identical species e.g. in the liquid phase, as for example water molecules within liquid water. The self-diffusion coefficient of water has been experimentally determined
388:
of a system, i.e. diffusion is a spontaneous and irreversible process. Particles can spread out by diffusion, but will not spontaneously re-order themselves (absent changes to the system, assuming no creation of new chemical bonds, and absent external forces acting on the particle).
346:
occurs in a presence of concentration (or chemical potential) gradient and it results in net transport of mass. This is the process described by the diffusion equation. This diffusion is always a non-equilibrium process, increases the system entropy, and brings the system closer to
84:
of molecules from a region of higher concentration to one of lower concentration. Once the concentrations are equal the molecules continue to move, but since there is no concentration gradient the process of molecular diffusion has ceased and is instead governed by the process of
38: 563:
is usually expressed as the number of moles diffusing across unit area in unit time. As with the basic equation of heat transfer, this indicates that the rate of force is directly proportional to the driving force, which is the concentration gradient.
1100: 380:
Non-equilibrium fluid systems can be successfully modeled with Landau-Lifshitz fluctuating hydrodynamics. In this theoretical framework, diffusion is due to fluctuations whose dimensions range from the molecular scale to the macroscopic scale.
355:
for these two types of diffusion are generally different because the diffusion coefficient for chemical diffusion is binary and it includes the effects due to the correlation of the movement of the different diffusing species.
1258: 340:
with high accuracy and thus serves often as a reference value for measurements on other liquids. The self-diffusion coefficient of neat water is: 2.299·10 m·s at 25 °C and 1.261·10 m·s at 4 °C.
944: 1430:
Holz, Manfred; Heil, Stefan R.; Sacco, Antonio (2000). "Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements".
57:
With an enormous number of solute molecules, all randomness is gone: The solute appears to move smoothly and systematically from high-concentration areas to low-concentration areas, following Fick's laws.
715: 426:
in the particle diffusion equation is independent of particle concentration. In other cases, resulting interactions between particles within the solvent will account for the following effects:
553: 468:
is the concentration of A. The negative sign arises because the concentration of A decreases as the distance x increases. Similarly, the variation in the concentration of gas B is -dC
559:
where D is the diffusivity of A through B, proportional to the average molecular velocity and, therefore dependent on the temperature and pressure of gases. The rate of diffusion N
959: 771: 850: 624: 311:, which is a spontaneous mixing of molecules taking place in the absence of concentration (or chemical potential) gradient. This type of diffusion can be followed using 583:
If no bulk flow occurs in an element of length dx, the rates of diffusion of two ideal gases (of similar molar volume) A and B must be equal and opposite, that is
45:
molecules on the left side of a barrier (purple line) and none on the right. The barrier is removed, and the solute diffuses to fill the whole container.
476:, depend on concentration gradient and the average velocity with which the molecules of A moves in the x direction. This relationship is expressed by 1149: 93:
with uniform temperature, absent external net forces acting on the particles, the diffusion process will eventually result in complete mixing.
1543: 1548: 567:
This basic equation applies to a number of situations. Restricting discussion exclusively to steady state conditions, in which neither dC
1553: 159:
Diffusion is of fundamental importance in many disciplines of physics, chemistry, and biology. Some example applications of diffusion:
1593: 861: 1558: 1474:
Brogioli, Doriano; Vailati, Alberto (2000-12-22). "Diffusive mass transfer by nonequilibrium fluctuations: Fick's law revisited".
643: 438:
In the case of an attractive interaction between particles, particles exhibit a tendency to coalesce and form clusters if their
1583: 1362: 485: 1311: 1323: 148: 447: 443: 1329: 254: 446:
chemical reaction (and if the considered diffusing particles are chemical molecules in solution, then it is a
1568: 1563: 1095:{\displaystyle N_{B}=-D_{BA}{\frac {1}{RT}}{\frac {dP_{B}}{dx}}=D_{AB}{\frac {1}{RT}}{\frac {dP_{A}}{dx}}} 320: 240: 195: 53:
With more molecules, there is a clear trend where the solute fills the container more and more uniformly.
328: 1407:
Maton, Anthea; Jean Hopkins; Susan Johnson; David LaHart; Maryanna Quon Warner; Jill D. Wright (1997).
1493: 1440: 373: 30:
This article is about spontaneous dispersion of mass. For a more generic treatment of diffusion, see
727: 372:
Because chemical diffusion is a net transport process, the system in which it takes place is not an
1374: 1368: 1285: 1279: 809: 220: 586: 1588: 1538: 1483: 415: 258: 125: 323:). This diffusion can take place under equilibrium. An excellent method for the measurement of 1564:
A basic introduction to the classical theory of volume diffusion (with figures and animations)
1517: 1509: 1456: 312: 167: 1416: 1501: 1448: 721:
For an ideal gas the partial pressure is related to the molar concentration by the relation
352: 177: 113: 1332: – stochastic process associated with semimartingale processes such as Brownian motion 1291: 1276: – Transport of dissolved species from the highest to the lowest concentration region 408: 276:
diffuses out. Lungs contain a large surface area to facilitate this gas exchange process.
637:. As there is no difference in total pressure across the element (no bulk flow), we have 296:
Example of chemical (classical, Fick's, or Fickian) diffusion of sodium chloride in water
257:
rely in part upon diffusion in addition to bulk or active processes. For example, in the
1497: 1444: 1317: 1297: 377:
suggests, this process is a not a true equilibrium since the system is still evolving.
324: 316: 273: 90: 86: 1577: 1409: 1338: 1302: 477: 439: 199: 73: 1371: – Exchange of mass, energy, and momentum between observed and studied systems 232: 37: 1559:
Short movie on brownian motion (includes calculation of the diffusion coefficient)
268:, due to differences in partial pressures across the alveolar-capillary membrane, 41:
Diffusion from a microscopic and macroscopic point of view. Initially, there are
1385: 105: 69: 1505: 1356: 284: 250: 236: 223:. Of mass transport mechanisms, molecular diffusion is known as a slower one. 80:
of the fluid and the size (mass) of the particles. Diffusion explains the net
1513: 1460: 315:, hence the name. The tracer diffusion is usually assumed to be identical to 288:
Self diffusion, exemplified with an isotopic tracer of radioactive isotope Na
27:
Thermal motion of liquid or gas particles at temperatures above absolute zero
1379: 1344: 1273: 1253:{\displaystyle N_{A}=-{\frac {D}{RT}}{\frac {(P_{A2}-P_{A1})}{x_{2}-x_{1}}}} 423: 336: 183: 163: 77: 31: 1521: 211: 575:/dx change with time, equimolecular counterdiffusion is considered first. 1488: 109: 1353: – Migration of molecules to a region of lower solute concentration 235:, diffusion is a main form of transport for necessary materials such as 192:
can be diffused (e.g., with carbon or nitrogen) to modify its properties
17: 1549:
A tutorial on the theory behind and solution of the Diffusion Equation.
1350: 401: 385: 292: 244: 171: 141: 1347: – Vector quantity describing mass flow rate through a given area 1341: – Net movement of mass from one location, phase, etc. to another 1452: 1263:
A similar equation may be derived for the counterdiffusion of gas B.
633:
over the distance dx. Similarly, the partial pressure of B changes dP
400:
is the diffusion of a large number of particles, most often within a
269: 262: 129: 42: 364: 189: 215:
Schematic representation of mixing of two substances by diffusion
1288: – Diffusion process with a non-linear relationship to time 939:{\displaystyle N_{A}=-D_{AB}{\frac {1}{RT}}{\frac {dP_{A}}{dx}}} 265: 147:
Molecular diffusion is typically described mathematically using
81: 1305: – Method of utilizing water in magnetic resonance imaging 1282: – Drift between charged and neutral particles in a plasma 1359: – Penetration of a liquid, gas, or vapor through a solid 332: 239:
within cells. Diffusion of solvents, such as water, through a
68:, is the thermal motion of all (liquid or gas) particles at 368:
Illustration of low entropy (top) and high entropy (bottom)
335:, where no isotopic tracers are needed. In a so-called NMR 1554:
NetLogo Simulation Model for Educational Use (Java Applet)
1415:. Upper Saddle River, New Jersey: Prentice Hall. pp.  710:{\displaystyle {\frac {dP_{A}}{dx}}=-{\frac {dP_{B}}{dx}}} 76:. The rate of this movement is a function of temperature, 300:
Fundamentally, two types of diffusion are distinguished:
1569:
Diffusion on the nanoscale (with figures and animations)
1326: – Mathematical descriptions of molecular diffusion 442:
lies above a certain threshold. This is equivalent to a
1307:
Pages displaying short descriptions of redirect targets
140:, because nature always prefers low energy and maximum 1152: 962: 864: 812: 730: 646: 589: 488: 1334:
Pages displaying wikidata descriptions as a fallback
1439:(20). Royal Society of Chemistry (RSC): 4740–4742. 1320: – Retarding force on a body moving in a fluid 1408: 1382: – Resistance of a fluid to shear deformation 1252: 1094: 938: 844: 765: 709: 618: 547: 548:{\displaystyle N_{A}=-D_{AB}{\frac {dC_{A}}{dx}}} 1539:Some pictures that display diffusion and osmosis 1365: – Model compatible with special relativity 1482:(1). American Physical Society (APS): 012105. 393:Concentration dependent "collective" diffusion 1314: – Convection with two density gradients 8: 1294: – Length scale used in fluid dynamics 1388: – Model of rotating physical systems 1487: 1241: 1228: 1210: 1194: 1184: 1169: 1157: 1151: 1075: 1065: 1050: 1041: 1017: 1007: 992: 983: 967: 961: 953:is the diffusivity of A in B. Similarly, 919: 909: 894: 885: 869: 863: 830: 817: 811: 751: 735: 729: 690: 680: 657: 647: 645: 610: 594: 588: 528: 518: 509: 493: 487: 418:holds true and the diffusion coefficient 49:A single molecule moves around randomly. 363: 291: 283: 210: 36: 1399: 629:The partial pressure of A changes by dP 414:In case of an ideal mix, the particle 1121:=D. If the partial pressure of A at x 7: 555:(only applicable for no bulk motion) 280:Tracer, self- and chemical diffusion 1433:Physical Chemistry Chemical Physics 1544:An animation describing diffusion. 472:/dx. The rate of diffusion of A, N 25: 1143:, integration of above equation, 384:Chemical diffusion increases the 1113:/dx, it therefore proves that D 1219: 1187: 780:is the number of moles of gas 766:{\displaystyle P_{A}V=n_{A}RT} 579:Equimolecular counterdiffusion 112:. If there is a change in the 1: 1411:Cells Building Blocks of Life 845:{\displaystyle P_{A}=C_{A}RT} 788:. As the molar concentration 1363:Relativistic heat conduction 619:{\displaystyle N_{A}=-N_{B}} 455:Molecular diffusion of gases 272:diffuses into the blood and 166:to produce solid materials ( 1312:Double diffusive convection 186:design in chemical industry 1610: 1506:10.1103/physreve.63.012105 430:the diffusion coefficient 116:of a system; for example μ 108:and capable of exchanging 29: 1594:Underwater diving physics 855:Consequently, for gas A, 319:(assuming no significant 219:Diffusion is part of the 1330:Local time (mathematics) 1324:Fick's laws of diffusion 149:Fick's laws of diffusion 96:Consider two systems; S 1254: 1096: 940: 846: 767: 711: 620: 549: 369: 360:Non-equilibrium system 353:diffusion coefficients 297: 289: 241:semipermeable membrane 216: 132:flow will occur from S 64:, often simply called 58: 1255: 1097: 941: 847: 768: 712: 621: 550: 367: 329:pulsed field gradient 295: 287: 214: 198:during production of 40: 1150: 960: 862: 810: 728: 644: 587: 486: 398:Collective diffusion 1584:Transport phenomena 1498:2000PhRvE..63a2105B 1445:2000PCCP....2.4740H 1375:Turbulent diffusion 1369:Transport phenomena 1286:Anomalous diffusion 1280:Ambipolar diffusion 1105:Considering that dP 221:transport phenomena 62:Molecular diffusion 1250: 1092: 936: 842: 763: 707: 616: 545: 416:diffusion equation 370: 344:Chemical diffusion 298: 290: 217: 126:Chemical potential 59: 1476:Physical Review E 1248: 1182: 1090: 1063: 1032: 1005: 934: 907: 705: 672: 543: 243:is classified as 168:powder metallurgy 16:(Redirected from 1601: 1526: 1525: 1491: 1489:cond-mat/0006163 1471: 1465: 1464: 1453:10.1039/b005319h 1427: 1421: 1420: 1414: 1404: 1335: 1308: 1259: 1257: 1256: 1251: 1249: 1247: 1246: 1245: 1233: 1232: 1222: 1218: 1217: 1202: 1201: 1185: 1183: 1181: 1170: 1162: 1161: 1101: 1099: 1098: 1093: 1091: 1089: 1081: 1080: 1079: 1066: 1064: 1062: 1051: 1049: 1048: 1033: 1031: 1023: 1022: 1021: 1008: 1006: 1004: 993: 991: 990: 972: 971: 945: 943: 942: 937: 935: 933: 925: 924: 923: 910: 908: 906: 895: 893: 892: 874: 873: 851: 849: 848: 843: 835: 834: 822: 821: 772: 770: 769: 764: 756: 755: 740: 739: 716: 714: 713: 708: 706: 704: 696: 695: 694: 681: 673: 671: 663: 662: 661: 648: 625: 623: 622: 617: 615: 614: 599: 598: 554: 552: 551: 546: 544: 542: 534: 533: 532: 519: 517: 516: 498: 497: 327:coefficients is 313:isotopic tracers 305:Tracer diffusion 178:Chemical reactor 170:, production of 114:potential energy 21: 1609: 1608: 1604: 1603: 1602: 1600: 1599: 1598: 1574: 1573: 1535: 1530: 1529: 1473: 1472: 1468: 1429: 1428: 1424: 1406: 1405: 1401: 1396: 1391: 1333: 1306: 1292:Batchelor scale 1269: 1237: 1224: 1223: 1206: 1190: 1186: 1174: 1153: 1148: 1147: 1142: 1141: 1135: 1131: 1130: 1124: 1120: 1116: 1112: 1108: 1082: 1071: 1067: 1055: 1037: 1024: 1013: 1009: 997: 979: 963: 958: 957: 952: 926: 915: 911: 899: 881: 865: 860: 859: 826: 813: 808: 807: 800: 793: 779: 747: 731: 726: 725: 697: 686: 682: 664: 653: 649: 642: 641: 636: 632: 606: 590: 585: 584: 581: 574: 570: 562: 535: 524: 520: 505: 489: 484: 483: 475: 471: 467: 463: 457: 409:brownian motion 395: 362: 321:isotopic effect 282: 229: 209: 157: 139: 135: 123: 119: 103: 99: 35: 28: 23: 22: 15: 12: 11: 5: 1607: 1605: 1597: 1596: 1591: 1586: 1576: 1575: 1572: 1571: 1566: 1561: 1556: 1551: 1546: 1541: 1534: 1533:External links 1531: 1528: 1527: 1466: 1422: 1398: 1397: 1395: 1392: 1390: 1389: 1383: 1377: 1372: 1366: 1360: 1354: 1348: 1342: 1336: 1327: 1321: 1318:Drag (physics) 1315: 1309: 1300: 1298:Bohm diffusion 1295: 1289: 1283: 1277: 1270: 1268: 1265: 1261: 1260: 1244: 1240: 1236: 1231: 1227: 1221: 1216: 1213: 1209: 1205: 1200: 1197: 1193: 1189: 1180: 1177: 1173: 1168: 1165: 1160: 1156: 1139: 1137: 1133: 1128: 1126: 1122: 1118: 1114: 1110: 1106: 1103: 1102: 1088: 1085: 1078: 1074: 1070: 1061: 1058: 1054: 1047: 1044: 1040: 1036: 1030: 1027: 1020: 1016: 1012: 1003: 1000: 996: 989: 986: 982: 978: 975: 970: 966: 950: 947: 946: 932: 929: 922: 918: 914: 905: 902: 898: 891: 888: 884: 880: 877: 872: 868: 853: 852: 841: 838: 833: 829: 825: 820: 816: 798: 791: 777: 774: 773: 762: 759: 754: 750: 746: 743: 738: 734: 719: 718: 703: 700: 693: 689: 685: 679: 676: 670: 667: 660: 656: 652: 634: 630: 613: 609: 605: 602: 597: 593: 580: 577: 572: 568: 560: 557: 556: 541: 538: 531: 527: 523: 515: 512: 508: 504: 501: 496: 492: 473: 469: 465: 461: 456: 453: 452: 451: 436: 394: 391: 361: 358: 349: 348: 341: 325:self-diffusion 317:self-diffusion 309:Self-diffusion 281: 278: 274:carbon dioxide 228: 225: 208: 205: 204: 203: 200:semiconductors 193: 187: 181: 175: 156: 153: 137: 133: 121: 117: 101: 97: 87:self-diffusion 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1606: 1595: 1592: 1590: 1587: 1585: 1582: 1581: 1579: 1570: 1567: 1565: 1562: 1560: 1557: 1555: 1552: 1550: 1547: 1545: 1542: 1540: 1537: 1536: 1532: 1523: 1519: 1515: 1511: 1507: 1503: 1499: 1495: 1490: 1485: 1481: 1477: 1470: 1467: 1462: 1458: 1454: 1450: 1446: 1442: 1438: 1434: 1426: 1423: 1418: 1413: 1412: 1403: 1400: 1393: 1387: 1384: 1381: 1378: 1376: 1373: 1370: 1367: 1364: 1361: 1358: 1355: 1352: 1349: 1346: 1343: 1340: 1339:Mass transfer 1337: 1331: 1328: 1325: 1322: 1319: 1316: 1313: 1310: 1304: 1303:Diffusion MRI 1301: 1299: 1296: 1293: 1290: 1287: 1284: 1281: 1278: 1275: 1272: 1271: 1266: 1264: 1242: 1238: 1234: 1229: 1225: 1214: 1211: 1207: 1203: 1198: 1195: 1191: 1178: 1175: 1171: 1166: 1163: 1158: 1154: 1146: 1145: 1144: 1086: 1083: 1076: 1072: 1068: 1059: 1056: 1052: 1045: 1042: 1038: 1034: 1028: 1025: 1018: 1014: 1010: 1001: 998: 994: 987: 984: 980: 976: 973: 968: 964: 956: 955: 954: 930: 927: 920: 916: 912: 903: 900: 896: 889: 886: 882: 878: 875: 870: 866: 858: 857: 856: 839: 836: 831: 827: 823: 818: 814: 806: 805: 804: 802: 794: 787: 783: 760: 757: 752: 748: 744: 741: 736: 732: 724: 723: 722: 701: 698: 691: 687: 683: 677: 674: 668: 665: 658: 654: 650: 640: 639: 638: 627: 611: 607: 603: 600: 595: 591: 578: 576: 565: 539: 536: 529: 525: 521: 513: 510: 506: 502: 499: 494: 490: 482: 481: 480: 479: 454: 449: 448:precipitation 445: 444:precipitation 441: 440:concentration 437: 433: 429: 428: 427: 425: 422:the speed of 421: 417: 412: 410: 405: 403: 399: 392: 390: 387: 382: 378: 375: 366: 359: 357: 354: 345: 342: 338: 334: 330: 326: 322: 318: 314: 310: 306: 303: 302: 301: 294: 286: 279: 277: 275: 271: 267: 264: 260: 256: 252: 248: 246: 242: 238: 234: 226: 224: 222: 213: 206: 201: 197: 194: 191: 188: 185: 182: 179: 176: 173: 169: 165: 162: 161: 160: 154: 152: 150: 145: 143: 131: 127: 115: 111: 107: 94: 92: 88: 83: 79: 75: 74:absolute zero 71: 67: 63: 56: 52: 48: 44: 39: 33: 19: 1479: 1475: 1469: 1436: 1432: 1425: 1410: 1402: 1262: 1104: 948: 854: 796: 795:is equal to 789: 785: 784:in a volume 781: 775: 720: 628: 582: 566: 558: 464:/dx, where C 458: 431: 419: 413: 407:Contrary to 406: 397: 396: 383: 379: 371: 350: 347:equilibrium. 343: 308: 304: 299: 249: 233:cell biology 230: 218: 207:Significance 158: 155:Applications 146: 104:at the same 95: 70:temperatures 65: 61: 60: 54: 50: 46: 1386:Rigid rotor 374:equilibrium 255:respiration 237:amino acids 106:temperature 1578:Categories 1394:References 1357:Permeation 803:therefore 478:Fick's law 435:increases. 251:Metabolism 1589:Diffusion 1514:1063-651X 1461:1463-9076 1380:Viscosity 1345:Mass flux 1274:Diffusion 1235:− 1204:− 1167:− 977:− 879:− 678:− 604:− 571:/dx or dC 503:− 424:diffusion 337:spin echo 263:mammalian 164:Sintering 110:particles 78:viscosity 66:diffusion 32:Diffusion 1522:11304296 1267:See also 184:Catalyst 172:ceramics 18:Diffused 1494:Bibcode 1441:Bibcode 1351:Osmosis 1109:/dx=-dP 949:where D 776:where n 402:solvent 386:entropy 259:alveoli 245:osmosis 227:Biology 142:entropy 55:Bottom: 51:Middle: 1520:  1512:  1459:  331:(PFG) 270:oxygen 196:Doping 180:design 130:energy 124:(μ is 72:above 43:solute 1484:arXiv 1417:66–67 1132:and x 266:lungs 190:Steel 128:) an 120:>μ 100:and S 91:phase 1518:PMID 1510:ISSN 1457:ISSN 1136:is P 1125:is P 351:The 307:and 253:and 136:to S 82:flux 47:Top: 1502:doi 1449:doi 801:/ V 333:NMR 261:of 231:In 1580:: 1516:. 1508:. 1500:. 1492:. 1480:63 1478:. 1455:. 1447:. 1435:. 1119:BA 1117:=D 1115:AB 951:AB 626:. 450:). 404:. 247:. 151:. 144:. 1524:. 1504:: 1496:: 1486:: 1463:. 1451:: 1443:: 1437:2 1419:. 1243:1 1239:x 1230:2 1226:x 1220:) 1215:1 1212:A 1208:P 1199:2 1196:A 1192:P 1188:( 1179:T 1176:R 1172:D 1164:= 1159:A 1155:N 1140:2 1138:A 1134:2 1129:1 1127:A 1123:1 1111:B 1107:A 1087:x 1084:d 1077:A 1073:P 1069:d 1060:T 1057:R 1053:1 1046:B 1043:A 1039:D 1035:= 1029:x 1026:d 1019:B 1015:P 1011:d 1002:T 999:R 995:1 988:A 985:B 981:D 974:= 969:B 965:N 931:x 928:d 921:A 917:P 913:d 904:T 901:R 897:1 890:B 887:A 883:D 876:= 871:A 867:N 840:T 837:R 832:A 828:C 824:= 819:A 815:P 799:A 797:n 792:A 790:C 786:V 782:A 778:A 761:T 758:R 753:A 749:n 745:= 742:V 737:A 733:P 717:. 702:x 699:d 692:B 688:P 684:d 675:= 669:x 666:d 659:A 655:P 651:d 635:B 631:A 612:B 608:N 601:= 596:A 592:N 573:B 569:A 561:A 540:x 537:d 530:A 526:C 522:d 514:B 511:A 507:D 500:= 495:A 491:N 474:A 470:B 466:A 462:A 432:D 420:D 202:. 174:) 138:2 134:1 122:2 118:1 102:2 98:1 34:. 20:)

Index

Diffused
Diffusion

solute
temperatures
absolute zero
viscosity
flux
self-diffusion
phase
temperature
particles
potential energy
Chemical potential
energy
entropy
Fick's laws of diffusion
Sintering
powder metallurgy
ceramics
Chemical reactor
Catalyst
Steel
Doping
semiconductors

transport phenomena
cell biology
amino acids
semipermeable membrane

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.