Knowledge (XXG)

Photoelectric effect

Source 📝

1638: 495: 358: 140: 1943: 1359:, where a spark would be seen upon detection of electromagnetic waves. He placed the apparatus in a darkened box to see the spark better. However, he noticed that the maximum spark length was reduced when inside the box. A glass panel placed between the source of electromagnetic waves and the receiver absorbed ultraviolet radiation that assisted the electrons in jumping across the gap. When removed, the spark length would increase. He observed no decrease in spark length when he replaced the glass with quartz, as 1432:. These particles later became known as the electrons. Thomson enclosed a metal plate (a cathode) in a vacuum tube, and exposed it to high-frequency radiation. It was thought that the oscillating electromagnetic fields caused the atoms' field to resonate and, after reaching a certain amplitude, caused subatomic corpuscles to be emitted, and current to be detected. The amount of this current varied with the intensity and color of the radiation. Larger radiation intensity or frequency would produce more current. 1781: 280:, it is likely to be ejected. If the photon energy is too low, the electron is unable to escape the material. Since an increase in the intensity of low-frequency light will only increase the number of low-energy photons, this change in intensity will not create any single photon with enough energy to dislodge an electron. Moreover, the energy of the emitted electrons will not depend on the intensity of the incoming light of a given frequency, but only on the energy of the individual photons. 1339: 1576: 6468: 5303: 1382:. He allowed ultraviolet light to fall on a freshly cleaned zinc plate and observed that the zinc plate became uncharged if initially negatively charged, positively charged if initially uncharged, and more positively charged if initially positively charged. From these observations he concluded that some negatively charged particles were emitted by the zinc plate when exposed to ultraviolet light. 43: 6012: 5315: 1476:
experiments needed to be done on freshly cut metal so that the pure metal was observed, but it oxidized in a matter of minutes even in the partial vacuums he used. The current emitted by the surface was determined by the light's intensity, or brightness: doubling the intensity of the light doubled the number of electrons emitted from the surface.
324:
energy barrier to photoemission is usually increased by nonconductive oxide layers on metal surfaces, so most practical experiments and devices based on the photoelectric effect use clean metal surfaces in evacuated tubes. Vacuum also helps observing the electrons since it prevents gases from impeding their flow between the electrodes.
1346:
demonstrating the photoelectric effect. When the electroscope disk is negatively charged with excess electrons, the gold leaves mutually repel. If high-energy light (such as ultraviolet) is then shone on the disk, electrons are emitted by the photoelectric effect and the leaf repulsion ceases. But if
323:
Even though photoemission can occur from any material, it is most readily observed from metals and other conductors. This is because the process produces a charge imbalance which, if not neutralized by current flow, results in the increasing potential barrier until the emission completely ceases. The
1664:
light of a known energy and measuring the kinetic energies of the photoelectrons. The distribution of electron energies is valuable for studying quantum properties of these systems. It can also be used to determine the elemental composition of the samples. For solids, the kinetic energy and emission
1729:
model. Some materials such as gallium arsenide have an effective electron affinity that is below the level of the conduction band. In these materials, electrons that move to the conduction band all have sufficient energy to be emitted from the material, so the film that absorbs photons can be quite
1555:
The photoelectric effect helped to propel the then-emerging concept of wave–particle duality in the nature of light. Light simultaneously possesses the characteristics of both waves and particles, each being manifested according to the circumstances. The effect was impossible to understand in terms
299:
as a free particle. Because electrons in a material occupy many different quantum states with different binding energies, and because they can sustain energy losses on their way out of the material, the emitted electrons will have a range of kinetic energies. The electrons from the highest occupied
1401:
with results reported in six publications. Stoletov invented a new experimental setup which was more suitable for a quantitative analysis of the photoeffect. He discovered a direct proportionality between the intensity of light and the induced photoelectric current (the first law of photoeffect or
1587:
inside the envelope. The photo cathode contains combinations of materials such as cesium, rubidium, and antimony specially selected to provide a low work function, so when illuminated even by very low levels of light, the photocathode readily releases electrons. By means of a series of electrodes
1812:
is also more likely. Compton scattering and pair production are examples of two other competing mechanisms. Even if the photoelectric effect is the favoured reaction for a particular interaction of a single photon with a bound electron, the result is also subject to quantum statistics and is not
1447:
when ultraviolet radiation falls on one of them. As soon as ultraviolet radiation is stopped, the current also stops. This initiated the concept of photoelectric emission. The discovery of the ionization of gases by ultraviolet light was made by Philipp Lenard in 1900. As the effect was produced
1116:
Electron propagation to the surface in which some electrons may be scattered because of interactions with other constituents of the solid. Electrons that originate deeper in the solid are much more likely to suffer collisions and emerge with altered energy and momentum. Their mean-free path is a
1092:
The electronic properties of ordered, crystalline solids are determined by the distribution of the electronic states with respect to energy and momentum—the electronic band structure of the solid. Theoretical models of photoemission from solids show that this distribution is, for the most part,
1475:
Lenard observed the variation in electron energy with light frequency using a powerful electric arc lamp which enabled him to investigate large changes in intensity. However, Lenard's results were qualitative rather than quantitative because of the difficulty in performing the experiments: the
1495:
of energy. In 1905, Albert Einstein published a paper advancing the hypothesis that light energy is carried in discrete quantized packets to explain experimental data from the photoelectric effect. Einstein theorized that the energy in each quantum of light was equal to the frequency of light
392:
increases with an increase in the positive voltage, as more and more electrons are directed onto the electrode. When no additional photoelectrons can be collected, the photoelectric current attains a saturation value. This current can only increase with the increase of the intensity of light.
1512:
for "his discovery of the law of the photoelectric effect", and Millikan was awarded the Nobel Prize in 1923 for "his work on the elementary charge of electricity and on the photoelectric effect". In quantum perturbation theory of atoms and solids acted upon by electromagnetic radiation, the
396:
An increasing negative voltage prevents all but the highest-energy electrons from reaching the collector. When no current is observed through the tube, the negative voltage has reached the value that is high enough to slow down and stop the most energetic photoelectrons of kinetic energy
1742:
exposed to sunlight to develop a positive charge. This can be a major problem, as other parts of the spacecraft are in shadow which will result in the spacecraft developing a negative charge from nearby plasmas. The imbalance can discharge through delicate electrical components. The
1676:
measurements are usually performed in a high-vacuum environment, because the electrons would be scattered by gas molecules if they were present. However, some companies are now selling products that allow photoemission in air. The light source can be a laser, a discharge tube, or a
236:(eV) light quanta, corresponding to short-wavelength visible or ultraviolet light. In extreme cases, emissions are induced with photons approaching zero energy, like in systems with negative electron affinity and the emission from excited states, or a few hundred keV photons for 1479:
Initial investigation of the photoelectric effect in gasses by Lenard were followed up by J. J. Thomson and then more decisively by Frederic Palmer Jr. The gas photoemission was studied and showed very different characteristics than those at first attributed to it by Lenard.
967:
rise linearly with the frequency, and have no dependence on the number of photons and the intensity of the impinging monochromatic light. Einstein's formula, however simple, explained all the phenomenology of the photoelectric effect, and had far-reaching consequences in the
481:
of crystalline solids. In materials without macroscopic order, the distribution of electrons tends to peak in the direction of polarization of linearly polarized light. The experimental technique that can measure these distributions to infer the material's properties is
464:
An increase in the intensity of the same monochromatic light (so long as the intensity is not too high), which is proportional to the number of photons impinging on the surface in a given time, increases the rate at which electrons are ejected—the photoelectric current
1543:
Einstein's work predicted that the energy of individual ejected electrons increases linearly with the frequency of the light. The precise relationship had not at that time been tested. By 1905 it was known that the energy of photoelectrons increases with increasing
1274:, investigated the effects produced by light on electrified bodies and developed the first practical photoelectric cells that could be used to measure the intensity of light. They arranged metals with respect to their power of discharging negative electricity: 209:—regardless of the light's intensity or duration of exposure. Because a low-frequency beam at a high intensity does not build up the energy required to produce photoelectrons, as would be the case if light's energy accumulated over time from a continuous wave, 1556:
of the classical wave description of light, as the energy of the emitted electrons did not depend on the intensity of the incident radiation. Classical theory predicted that the electrons would 'gather up' energy over a period of time, and then be emitted.
1007:
higher than the electron's binding energy. The distribution of kinetic energies thus reflects the distribution of the binding energies of the electrons in the atomic, molecular or crystalline system: an electron emitted from the state at binding energy
469:
but the kinetic energy of the photoelectrons and the stopping voltage remain the same. For a given metal and frequency of incident radiation, the rate at which photoelectrons are ejected is directly proportional to the intensity of the incident light.
1912:
is a number which varies between 4 and 5. The photoelectric effect rapidly decreases in significance in the gamma-ray region of the spectrum, with increasing photon energy. It is also more likely from elements with high atomic number. Consequently,
1528:, and showed how they explained the blackbody radiation spectrum. His explanation in terms of absorption of discrete quanta of light agreed with experimental results. It explained why the energy of photoelectrons was not dependent on incident light 1513:
photoelectric effect is still commonly analyzed in terms of waves; the two approaches are equivalent because photon or wave absorption can only happen between quantized energy levels whose energy difference is that of the energy of photon.
1334:
the effects with ordinary light were too small to be measurable. The order of the metals for this effect was the same as in Volta's series for contact-electricity, the most electropositive metals giving the largest photo-electric effect.
1817:
of the interaction, σ. This has been found to be a function of the atomic number of the target atom and photon energy. In a crude approximation, for photon energies above the highest atomic binding energy, the cross section is given by:
1508:'s highly accurate measurements of the Planck constant from the photoelectric effect supported Einstein's model, even though a corpuscular theory of light was for Millikan, at the time, "quite unthinkable". Einstein was awarded the 1921 1771:
rover observed dust deposition on lunar rocks as high as about 28 cm. It is thought that the smallest particles are repelled kilometers from the surface and that the particles move in "fountains" as they charge and discharge.
1716:
coated screen, converting the electrons back into photons. Intensification of the signal is achieved either through acceleration of the electrons or by increasing the number of electrons through secondary emissions, such as with a
361:
Schematic of the experiment to demonstrate the photoelectric effect. Filtered, monochromatic light of a certain wavelength strikes the emitting electrode (E) inside a vacuum tube. The collector electrode (C) is biased to a voltage
1652:
Because the kinetic energy of the emitted electrons is exactly the energy of the incident photon minus the energy of the electron's binding within an atom, molecule or solid, the binding energy can be determined by shining a
1669:
in terms of the allowed binding energies and momenta of the electrons. Modern instruments for angle-resolved photoemission spectroscopy are capable of measuring these quantities with a precision better than 1 meV and 0.1°.
1128:, and suffers from the momentum loss in the direction perpendicular to the surface. Because the binding energy of electrons in solids is conveniently expressed with respect to the highest occupied state at the Fermi energy 457:. Increasing the frequency of the incident beam increases the maximum kinetic energy of the emitted photoelectrons, and the stopping voltage has to increase. The number of emitted electrons may also change because the 1895: 1648:) experiment. Helium discharge lamp shines ultraviolet light onto the sample in ultra-high vacuum. Hemispherical electron analyzer measures the distribution of ejected electrons with respect to energy and momentum. 1393:
played an important part in the phenomenon, and the emission was influenced by oxidation, humidity, and the degree of polishing of the surface. It was at the time unclear whether fatigue is absent in a vacuum.
1218:
treats the effect as a coherent process of photoexcitation into the final state of a finite crystal for which the wave function is free-electron-like outside of the crystal, but has a decaying envelope inside.
1763:. This manifests itself almost like an "atmosphere of dust", visible as a thin haze and blurring of distant features, and visible as a dim glow after the sun has set. This was first photographed by the 1389:, the researchers from the start showed the complexity of the phenomenon of photoelectric fatigue—the progressive diminution of the effect observed upon fresh metallic surfaces. According to Hallwachs, 965: 2851: 837: 1101:
Inner photoelectric effect in the bulk of the material that is a direct optical transition between an occupied and an unoccupied electronic state. This effect is subject to quantum-mechanical
205:
of the emitted electrons, with sufficiently dim light resulting in a delayed emission. The experimental results instead show that electrons are dislodged only when the light exceeds a certain
388:
A positive external voltage is used to direct the photoemitted electrons onto the collector. If the frequency and the intensity of the incident radiation are fixed, the photoelectric current
276:, which is proportional to the frequency of the light. In the photoemission process, when an electron within some material absorbs the energy of a photon and acquires more energy than its 1688:
is a typical electron energy analyzer. It uses an electric field between two hemispheres to change (disperse) the trajectories of incident electrons depending on their kinetic energies.
473:
The time lag between the incidence of radiation and the emission of a photoelectron is very small, less than 10 second. Angular distribution of the photoelectrons is highly dependent on
6079: 1721:. Sometimes a combination of both methods is used. Additional kinetic energy is required to move an electron out of the conduction band and into the vacuum level. This is known as the 2024: 1406:). He measured the dependence of the intensity of the photo electric current on the gas pressure, where he found the existence of an optimal gas pressure corresponding to a maximum 671: 6383: 1208: 1755:
Light from the Sun hitting lunar dust causes it to become positively charged from the photoelectric effect. The charged dust then repels itself and lifts off the surface of the
6408: 1082: 872: 775: 327:
As sunlight, due to atmosphere's absorption, does not provide much ultraviolet light, the light rich in ultraviolet rays used to be obtained by burning magnesium or from an
901:
is the threshold frequency for the given material. Above that frequency, the maximum kinetic energy of the photoelectrons as well as the stopping voltage in the experiment
5994: 477:(the direction of the electric field) of the incident light, as well as the emitting material's quantum properties such as atomic and molecular orbital symmetries and the 1155:, and the difference to the free-space (vacuum) energy is the work function of the surface, the kinetic energy of the electrons emitted from solids is usually written as 1417:
Many substances besides metals discharge negative electricity under the action of ultraviolet light. G. C. Schmidt and O. Knoblauch compiled a list of these substances.
984:. When light quanta deliver more than this amount of energy to an individual electron, the electron may be emitted into free space with excess (kinetic) energy that is 625: 899: 735: 1448:
across several centimeters of air and yielded a greater number of positive ions than negative, it was natural to interpret the phenomenon, as J. J. Thomson did, as a
248:. Study of the photoelectric effect led to important steps in understanding the quantum nature of light and electrons and influenced the formation of the concept of 3180: 3164: 3148: 3108: 1153: 1033: 1005: 715: 598: 531: 1788:
value for the process on the right becomes larger than the cross section for the process on the left. For calcium (Z=20), Compton scattering starts to dominate at
551: 6019: 1355:
observed the photoelectric effect and reported on the production and reception of electromagnetic waves. The receiver in his apparatus consisted of a coil with a
5208: 4885: 1491:
suggested in his "On the Law of Distribution of Energy in the Normal Spectrum" paper that the energy carried by electromagnetic waves could only be released in
691: 571: 3671: 3426:
Thomson, J. J. (1907). "On the Ionisation of Gases by Ultra-Violet Light and on the evidence as to the Structure of Light afforded by its Electrical Effects".
1747:
created by the photoelectric effect is self-limiting, because a higher charged object does not give up its electrons as easily as a lower charged object does.
1500:. A photon above a threshold frequency has the required energy to eject a single electron, creating the observed effect. This was a step in the development of 1552:
of the light. However, the manner of the increase was not experimentally determined until 1914 when Millikan showed that Einstein's prediction was correct.
1532:. This was a theoretical leap, but the concept was strongly resisted at first because it contradicted the wave theory of light that followed naturally from 1084:. This distribution is one of the main characteristics of the quantum system, and can be used for further studies in quantum chemistry and quantum physics. 5939: 4690: 2017: 6413: 4563: 4263: 4254: 5969: 5829: 5671: 1645: 1641: 1628: 1124:
Electron escape through the surface barrier into free-electron-like states of the vacuum. In this step the electron loses energy in the amount of the
483: 6453: 5734: 5681: 5025: 2073: 1637: 1443:
investigated the phenomenon of photoelectric emission in detail. Lenard observed that a current flows through an evacuated glass tube enclosing two
6342: 5353: 4992: 4987: 4321: 494: 295:—or none at all. Part of the acquired energy is used to liberate the electron from its atomic binding, and the rest contributes to the electron's 4169: 577:. In the range of kinetic energies of the electrons that are removed from their varying atomic bindings by the absorption of a photon of energy 6197: 5593: 4178: 1685: 357: 4284: 2010: 5608: 3871: 3778: 3322: 2882: 2785: 2539: 2510: 1824: 2624:
Damascelli, Andrea; Shen, Zhi-Xun; Hussain, Zahid (2003-04-17). "Angle-resolved photoemission spectroscopy of the cuprate superconductors".
780: 5691: 5686: 1214:
There are cases where the three-step model fails to explain peculiarities of the photoelectron intensity distributions. The more elaborate
5764: 5749: 5618: 5030: 1592:
to provide a readily detectable output current. Photomultipliers are still commonly used wherever low levels of light must be detected.
446:
The current-voltage curve is sigmoidal, but its exact shape depends on the experimental geometry and the electrode material properties.
4203: 6403: 6226: 6068: 5909: 5046: 4398: 1524:, named "On a Heuristic Viewpoint Concerning the Production and Transformation of Light". The paper proposed a simple description of 6087: 5174: 5109: 5051: 4548: 4133: 4079: 3798: 3757: 3737: 3716: 3692: 2860: 2608: 2407: 2145: 292: 126: 5964: 107: 64: 57: 366:
that can be set to attract the emitted electrons, when positive, or prevent any of them from reaching the collector when negative.
6202: 5666: 5645: 5179: 4942: 4423: 1632: 79: 5576: 904: 6247: 5193: 4700: 4558: 4439: 4225: 2352: 6057: 5929: 4272: 1260:
while testing the metal for its high resistance properties in conjunction with his work involving submarine telegraph cables.
5144: 4670: 4464: 4413: 86: 1464:
of individual emitted electrons was independent of the applied light intensity. This appeared to be at odds with Maxwell's
6499: 5822: 5696: 5661: 4977: 2038: 630: 5924: 5919: 1105:
for dipole transitions. The hole left behind the electron can give rise to secondary electron emission, or the so-called
6035: 5759: 5729: 5588: 5561: 5264: 5244: 4624: 4383: 3535:"Ueber das Gesetz der Energieverteilung im Normalspectrum (On the Law of Distribution of Energy in the Normal Spectrum)" 2161: 1347:
the light used has insufficient energy to stimulate electron emission, the leaves stay separated regardless of duration.
969: 5944: 5869: 1378:
on the effect of light, and especially of ultraviolet light, on charged bodies. Hallwachs connected a zinc plate to an
6192: 6151: 5739: 5706: 5676: 5640: 5346: 5154: 4629: 4314: 4293: 336: 93: 6095: 5934: 5613: 2768:
Vesselinka Petrova-Koch; Rudolf Hezel; Adolf Goetzberger (2009). "Milestones of Solar Conversion and Photovoltaics".
506:
proposed a theory of the photoelectric effect using a concept that light consists of tiny packets of energy known as
1615:" used a screen charged by the photoelectric effect to transform an optical image into a scanned electronic signal. 740: 378:
transparent to ultraviolet light, an emitting electrode (E) exposed to the light, and a collector (C) whose voltage
6514: 6494: 6119: 5785: 5625: 5513: 5164: 5017: 5006: 4880: 4727: 4685: 4665: 3346: 2531: 2423:
Zhang, Q. (1996). "Intensity dependence of the photoelectric effect induced by a circularly polarized laser beam".
1673: 1624: 1588:(dynodes) at ever-higher potentials, these electrons are accelerated and substantially increased in number through 190: 5974: 5954: 3904: 2058: 249: 53: 6529: 6027: 4578: 4553: 4393: 2338: 1666: 1248:
was instrumental in showing a strong relationship between light and electronic properties of materials. In 1873,
478: 261: 163: 75: 2680:
Sobota, Jonathan A.; He, Yu; Shen, Zhi-Xun (2021). "Angle-resolved photoemission studies of quantum materials".
139: 6504: 6472: 6418: 6398: 6388: 6348: 6043: 5899: 5815: 5452: 5318: 5079: 5061: 4952: 4798: 4785: 4780: 4680: 1760: 1118: 171: 6423: 2053: 3993:
Timothy J. Stubbs; Richard R. Vondrak; William M. Farrell (2006). "A dynamic fountain model for lunar dust".
3811:
Weaver, J. H.; Margaritondo, G. (1979). "Solid-State Photoelectron Spectroscopy with Synchrotron Radiation".
3659:
we understand the photoeffect as being the result of a classical field falling on a quantized atomic electron
6524: 6509: 6428: 5169: 5089: 4967: 4937: 4695: 4675: 4604: 4490: 4485: 4454: 4449: 3626: 1814: 1785: 1725:
of the photocathode and is another barrier to photoemission other than the forbidden band, explained by the
1505: 1109:, which may be visible even when the primary photoelectron does not leave the material. In molecular solids 277: 6519: 6360: 6268: 6240: 6143: 6002: 5754: 5603: 5339: 5307: 5149: 5119: 5084: 5071: 4957: 4732: 4533: 4523: 4418: 4307: 2992: 1942: 1521: 1509: 1158: 6433: 6393: 6233: 6182: 6177: 6103: 5914: 5894: 5884: 5714: 5583: 5391: 5124: 5114: 5094: 4947: 4770: 4573: 4376: 4371: 3916: 3651: 1678: 1537: 1267: 693:
is the minimum energy required to remove an electron from the surface of the material. It is called the
175: 3605: 1780: 1708:
tube cause the ejection of photoelectrons due to the photoelectric effect. These are accelerated by an
1516:
Albert Einstein's mathematical description of how the photoelectric effect was caused by absorption of
1038: 5630: 844: 6312: 6261: 6254: 6207: 5852: 5551: 5416: 5159: 5139: 5134: 5129: 5104: 5099: 4614: 4543: 4388: 4216: 4100: 4002: 3965: 3820: 3546: 3507: 3458: 3252: 3031: 2952: 2913: 2822: 2742: 2699: 2600: 2564: 2471: 2434: 2296: 2251: 2203: 2063: 1484: 1465: 1428:. Thomson deduced that the ejected particles, which he called corpuscles, were of the same nature as 474: 370:
The classical setup to observe the photoelectric effect includes a light source, a set of filters to
4152: 3106:
Stoletov, A. (1888). "Sur une sorte de courants electriques provoques par les rayons ultraviolets".
3091:
Stoletov. C. R. cvi. pp. 1149, 1593; cvii. p. 91; cviii. p. 1241; Physikalische Revue, Bd. i., 1892.
2092: 980:
Electrons that are bound in atoms, molecules and solids each occupy distinct states of well-defined
182:
to draw inferences about the properties of atoms, molecules and solids. The effect has found use in
5503: 5478: 5457: 4813: 4793: 4760: 4568: 4504: 4444: 4403: 4281: 2555:
Berglund, C. N.; Spicer, W. E. (1964-11-16). "Photoemission Studies of Copper and Silver: Theory".
1993: 1718: 1709: 1533: 1469: 1237: 257: 198: 197:
to electrons, which would then be emitted when they accumulate enough energy. An alteration in the
31: 100: 6275: 6159: 5979: 5862: 5857: 5744: 5523: 5488: 5421: 4849: 4808: 4755: 4528: 4408: 4028: 3844: 3476: 3377: 3340: 2904: 2791: 2715: 2689: 2659: 2633: 2194: 2137: 2043: 1974: 1967: 1801: 1744: 1589: 1398: 1375: 332: 300:
states will have the highest kinetic energy. In metals, those electrons will be emitted from the
288: 6135: 291:, in quantum systems all of the energy from one photon is absorbed—if the process is allowed by 4854: 4125: 4119: 4071: 603: 6366: 5792: 5724: 5719: 5546: 5518: 5411: 4875: 4870: 4803: 4599: 4538: 4469: 4459: 4129: 4075: 3867: 3836: 3794: 3774: 3753: 3733: 3712: 3688: 3328: 3318: 3047: 2968: 2878: 2856: 2781: 2651: 2604: 2535: 2506: 2425: 2403: 2141: 1722: 1705: 1600: 1501: 1436: 1403: 1367: 1338: 1331: 1253: 1241: 877: 720: 253: 179: 167: 4095:
Davisson, C. M. (1965). "Interaction of gamma-radiation with matter". In Kai Siegbahn (ed.).
6324: 6306: 5984: 5508: 5386: 4932: 4900: 4890: 4361: 4200: 4018: 4010: 3973: 3934: 3929:
Criswell D.R. (1973). "Horizon-Glow and the Motion of Lunar Dust". In R. J. L. Grard (ed.).
3828: 3587: 3554: 3515: 3466: 3408: 3369: 3260: 3219: 3133: 3039: 2960: 2921: 2877:. Science Museum, London, and National Museum of American History, Smithsonian Institution. 2830: 2773: 2750: 2707: 2643: 2572: 2502: 2479: 2442: 2304: 2259: 2211: 1764: 1701: 1608: 1397:
In the period from 1888 until 1891, a detailed analysis of the photoeffect was performed by
1249: 1113:
are excited in this step and may be visible as satellite lines in the final electron energy.
351: 241: 222: 4232: 1665:
angle distribution of the photoelectrons is measured for the complete determination of the
1575: 1131: 1011: 987: 700: 580: 513: 170:. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in 6354: 6336: 6286: 6051: 5959: 5904: 5874: 5838: 5780: 5635: 5498: 5462: 5381: 4844: 4775: 4288: 4207: 2462: 2287: 2242: 1986: 1809: 1612: 1570: 1497: 1233: 574: 536: 503: 210: 6294: 3887: 3396: 3207: 4104: 4006: 3969: 3824: 3550: 3511: 3462: 3256: 3035: 2956: 2917: 2826: 2746: 2703: 2568: 2475: 2438: 2300: 2255: 2207: 6111: 5889: 5254: 5229: 4895: 4747: 4649: 4639: 4609: 4366: 4160: 3223: 2068: 1440: 1352: 1102: 981: 676: 556: 296: 202: 3412: 2380: 1784:
Plot of photon energies calculated for a given element (atomic number Z) at which the
6488: 6330: 6300: 6187: 5556: 4916: 4839: 4829: 4742: 4634: 4351: 4330: 4226:
Concerning an Heuristic Point of View Toward the Emission and Transformation of Light
4065: 2795: 2719: 2663: 2446: 2048: 1905: 1813:
guaranteed. The probability of the photoelectric effect occurring is measured by the
1697: 1654: 1425: 1421: 1371: 1263: 1245: 694: 498:
Diagram of the maximum kinetic energy as a function of the frequency of light on zinc
371: 273: 245: 237: 4032: 3954:"Weak Dust Activity Near a Geologically Young Surface Revealed by Chang'E-3 Mission" 3848: 3360:
Wheaton, Bruce R. (1978). "Philipp Lenard and the Photoelectric Effect, 1889-1911".
419:. Since the work done by the retarding potential in stopping the electron of charge 6438: 6318: 5598: 5493: 5406: 5396: 5284: 5239: 4972: 4644: 4229:" to read an English translation of Einstein's 1905 paper. (Retrieved: 2014 Apr 11) 3480: 2000: 1584: 1429: 1407: 1379: 1343: 1106: 307:
When the photoelectron is emitted into a solid rather than into a vacuum, the term
252:. Other phenomena where light affects the movement of electric charges include the 233: 1768: 1097:
for ultraviolet and soft X-ray excitation decomposes the effect into these steps:
3938: 3832: 2711: 2460:
Bubb, F. (1924). "Direction of Ejection of Photo-Electrons by Polarized X-rays".
6443: 6127: 5949: 5447: 5279: 5249: 5224: 4982: 4619: 4594: 3952:
Yan Q.; Zhang X.; Xie L.; Guo D.; Li Y.; Xu Y.; Xiao Z.; Di K.; Xiao L. (2019).
3647: 3519: 2777: 2399: 1661: 461:
that each photon results in an emitted electron is a function of photon energy.
458: 449:
For a given metal surface, there exists a certain minimum frequency of incident
375: 348: 301: 183: 42: 4292:". Open Source Distributed Learning Content Management and Assessment System. ( 3864:
Fundamentals of Spacecraft Charging: Spacecraft Interactions with Space Plasmas
2900:"Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung" 6448: 5571: 5437: 4765: 4737: 4515: 4014: 3709:
Physics for Scientists and Engineers With Modern Physics: A Strategic Approach
3591: 3146:
Stoletov, A. (1888). "Sur les courants actino-electriqies au travers deTair".
3137: 2647: 2576: 1739: 1604: 1488: 1411: 1271: 340: 284: 3559: 3534: 3264: 3051: 3043: 2972: 2964: 2925: 2772:. Springer Series in Optical Sciences. Vol. 140. Springer. pp. 1–. 2655: 2233: 2215: 17: 5056: 4962: 4834: 4182:". Department of Physics and Astronomy, Arizona State University, Tempe, AZ. 4173:". Physics 2000. University of Colorado, Boulder, Colorado. (page not found) 4099:. Vol. 1. Amsterdam: North-Holland Publishing Company. pp. 37–78. 4023: 3672:
On a Heuristic Viewpoint Concerning the Emission and Transformation of Light
3332: 2754: 1918: 1444: 1356: 1295: 1279: 777:
the formula for the maximum kinetic energy of the ejected electrons becomes
450: 217:
propagating through space, but a swarm of discrete energy packets, known as
206: 3840: 2483: 2263: 4192: 2309: 2278: 1730:
thick. These materials are known as negative electron affinity materials.
5442: 5269: 5259: 5234: 3978: 3953: 3657:. Coral Gables, FL: Center for Theoretical Physics, University of Miami. 2997:
Annual Report Of The Board Of Regents Of The Smithsonian Institution 1913
2810: 2638: 1726: 1713: 1311: 1299: 1275: 1257: 328: 159: 144: 3933:. 6th Eslab Symposium. Noordwijk, the Netherlands: Springer, Dordrecht. 3575: 3381: 3317:. Buchwald, Jed Z., Warwick, Andrew. Cambridge, Mass.: MIT Press. 2001. 2366: 1536:'s equations of electromagnetism, and more generally, the assumption of 1468:, which predicted that the electron energy would be proportional to the 553:
of the corresponding electromagnetic wave. The proportionality constant
453:
below which no photoelectrons are emitted. This frequency is called the
5566: 5274: 2811:"Effect of Light on Selenium during the passage of an Electric Current" 2733:
Mahan, G. D. (1970-12-01). "Theory of Photoemission in Simple Metals".
2324: 1890:{\displaystyle \sigma =\mathrm {constant} \cdot {\frac {Z^{n}}{E^{3}}}} 1517: 1323: 1291: 507: 186:
specialized for light detection and precisely timed electron emission.
5401: 4245: 4046: 3471: 3373: 2835: 1461: 1360: 1327: 1307: 1287: 1110: 287:
as long as this is followed by an immediate re-emission, like in the
218: 194: 148: 3496:"Volume Ionization Produced by Light of Extremely Short Wave-Length" 3495: 3446: 3240: 3121: 3020:"Ueber den Einfluss des Lichtes auf electrostatisch geladene Körper" 3019: 2940: 2899: 2189: 4238: 2694: 2094:
December 18, 1926: Gilbert Lewis coins "photon" in letter to Nature
147:
from a metal plate accompanied by the absorption of light quanta –
5807: 5376: 5362: 3866:(illustrated ed.). Princeton University Press. pp. 1–6. 1779: 1657: 1636: 1574: 1390: 1283: 493: 356: 344: 229: 214: 138: 4153:
http://www.astronomycast.com/2014/02/ep-335-photoelectric-effect/
3730:
The Road to Reality: A Complete Guide to the Laws of the Universe
1244:. Though not equivalent to the photoelectric effect, his work on 874:
is required for the photoelectric effect to occur. The frequency
272:
The photons of a light beam have a characteristic energy, called
5331: 4299: 3162:
Stoletov, A. (1888). "Suite des recherches actino-electriques".
1796:
When photon energies are as high as the electron rest energy of
1756: 1319: 1315: 1303: 5811: 5335: 4303: 4187: 3773:, ISSI Scientific Report 009, ESA Communications, pp. 365–408, 3576:"Centennial Focus: Millikan's Measurement of Planck's Constant" 1583:
These are extremely light-sensitive vacuum tubes with a coated
3178:
Stoletov, A. (1889). "Sur les phénomÚnes actino-électriques".
1366:
The discoveries by Hertz led to a series of investigations by
311:
is often used, and emission into a vacuum is distinguished as
36: 3122:"On a kind of electric current produced by ultra-violet rays" 2852:
Asimov's Biographical Encyclopedia of Science and Technology
1093:
preserved in the photoelectric effect. The phenomenological
3791:
Television: An International History of the Formative Years
960:{\textstyle V_{o}={\frac {h}{e}}\left(\nu -\nu _{o}\right)} 4267:". The Physics Education Technology (PhET) project. (Java) 3193:
Stoletov, A. (1889). "АĐșŃ‚ĐžĐœĐŸ-ŃĐ»Đ”ĐșтрОчДсĐșОД ĐžŃŃĐ»Đ”ĐŽĐŸĐČaĐœĐžŃ".
2770:
High-Efficient Low-Cost Photovoltaics: Recent Developments
4233:
http://www.chemistryexplained.com/Ru-Sp/Solar-Cells.html
3208:"Sur les courants actino-électriques dans l'air raréfié" 3931:
Photon and Particle Interactions with Surfaces in Space
2597:
Photoelectron Spectroscopy: Principles and Applications
2108: 4211:". Physics 320 Laboratory, Davidson College, Davidson. 3769:
Timothy, J. Gethyn (2010) in Huber, Martin C.E. (ed.)
2999:. Washington, DC: Smithsonian Institution. p. 239 907: 832:{\displaystyle K_{\max }=h\left(\nu -\nu _{o}\right).} 193:, which predicts that continuous light waves transfer 6080:
Die Grundlagen der Einsteinschen RelativitÀts-Theorie
3750:
Basic Concepts in Relativity and Early Quantum Theory
3685:
Basic Concepts in Relativity and Early Quantum Theory
3397:"L'ionisation de l'air par la lumiĂšre ultra-violette" 3304:. (1900). New York: Dodd, Mead & Company. p. 659. 2986: 2984: 2982: 2528:
Quantum Mechanics for Applied Physics and Engineering
2497:
Mee, C.; Crundell, M.; Arnold, B.; Brown, W. (2011).
1827: 1161: 1134: 1041: 1014: 990: 880: 847: 783: 743: 723: 703: 679: 633: 606: 583: 559: 539: 516: 3315:
Histories of the electron: the birth of microphysics
1925: = 82) is preferred and most widely used. 404:. This value of the retarding voltage is called the 6376: 6285: 6216: 6170: 6067: 5993: 5845: 5773: 5705: 5654: 5539: 5532: 5471: 5430: 5369: 5217: 5201: 5192: 5070: 5039: 5016: 5005: 4925: 4909: 4863: 4822: 4720: 4713: 4658: 4587: 4514: 4503: 4478: 4432: 4344: 4337: 2279:"A Direct Photoelectric Determination of Planck's " 1776:
Competing processes and photoemission cross section
4188:Grains of Mystique: Quantum Physics for the Layman 4097:Alpha-, Beta- and Gamma-ray Spectroscopy: Volume 1 3142:; abstract in Beibl. Ann. d. Phys. 12, 605, 1888). 2875:Instruments of Science: An Historical Encyclopedia 1889: 1202: 1147: 1076: 1027: 999: 959: 893: 866: 831: 769: 729: 709: 685: 665: 619: 592: 565: 545: 525: 319:Experimental observation of photoelectric emission 6013:Investigations on the Theory of Brownian Movement 3174:(Abstract in Beibl. Ann. d. Phys. 12, 723, 1888). 3158:(Abstract in Beibl. Ann. d. Phys. 12, 723, 1888). 1921:shields, which is the principal reason why lead ( 2325:"MBScientific electron analysers and UV sources" 789: 639: 612: 283:While free electrons can absorb any energy when 27:Emission of electrons when light hits a material 3195:Journal of the Russian Physico-chemical Society 3073:Hoor, Repertorium des Physik, xxv. p. 91, 1889. 1696:Photons hitting a thin film of alkali metal or 6020:Relativity: The Special and the General Theory 2941:"Ueber sehr schnelle electrische Schwingungen" 2227: 2225: 976:Photoemission from atoms, molecules and solids 228:Emission of conduction electrons from typical 5823: 5347: 5209:List of countries by photovoltaics production 4886:Solar-Powered Aircraft Developments Solar One 4315: 3277:Schmidt, G. C. (1898) Wied. Ann. Uiv. p. 708. 3082:Bighi, C. R. cvi. p. 1349; cvii. p. 559, 1888 2590: 2588: 2586: 2018: 1410:; this property was used for the creation of 8: 2183: 2181: 1607:used the photoelectric effect. For example, 1548:of incident light and is independent of the 510:or light quanta. Each packet carries energy 4691:Photovoltaic thermal hybrid solar collector 3362:Historical Studies in the Physical Sciences 3099: 3097: 3064:Hallwachs, Wied. Ann. xxxiii. p. 301, 1888. 1767:probes in the 1960s, and most recently the 1496:multiplied by a constant, later called the 5830: 5816: 5808: 5536: 5354: 5340: 5332: 5198: 5013: 4717: 4564:Copper indium gallium selenide solar cells 4511: 4341: 4322: 4308: 4300: 3652:"The photoelectric effect without photons" 2353:"SPECS ARPES system with PHOIBOS analyzer" 2025: 2011: 1932: 4193:Einstein Demystifies Photoelectric Effect 4022: 3977: 3558: 3470: 3447:"Ionisation of Air by Ultra-violet Light" 2993:"Recent developments in electromagnetism" 2834: 2693: 2637: 2308: 1879: 1869: 1863: 1834: 1826: 1804:, may occur. Above twice this energy, at 1642:Angle-resolved photoemission spectroscopy 1629:Angle-resolved photoemission spectroscopy 1194: 1166: 1160: 1139: 1133: 1068: 1046: 1040: 1019: 1013: 989: 946: 921: 912: 906: 885: 879: 858: 846: 815: 788: 782: 758: 753: 742: 722: 702: 678: 650: 638: 632: 611: 605: 582: 558: 538: 515: 484:angle-resolved photoemission spectroscopy 127:Learn how and when to remove this message 6454:Emergency Committee of Atomic Scientists 5026:Grid-connected photovoltaic power system 2873:Robert Bud; Deborah Jean Warner (1998). 2074:Timeline of atomic and subatomic physics 1337: 697:of the surface and is sometimes denoted 201:of light would theoretically change the 4993:Victorian Model Solar Vehicle Challenge 4988:Hunt-Winston School Solar Car Challenge 4220:". Physics 252, University of Virginia. 2084: 1980: 1961: 1949: 1935: 1452:upon the particles present in the gas. 189:The experimental results disagree with 6198:Albert Einstein World Award of Science 4047:"XCOM: Photon Cross Sections Database" 3703: 3701: 3338: 2134:Physics for Scientists & Engineers 1240:while studying the effect of light on 533:that is proportional to the frequency 63:Please improve this article by adding 2675: 2673: 737:. If the work function is written as 213:proposed that a beam of light is not 7: 5314: 3289:Zeitschrift fĂŒr Physikalische Chemie 3241:"Über die lichtelektrische ErmĂŒdung" 2190:"Ueber die lichtelektrische Wirkung" 2162:"The Photoelectric Effect | Physics" 1738:The photoelectric effect will cause 666:{\displaystyle K_{\max }=h\,\nu -W.} 5031:List of photovoltaic power stations 4121:Radiation Detection and Measurement 3711:, Pearson-Addison-Wesley, p. 1224, 1203:{\displaystyle E_{k}=h\nu -W-E_{B}} 1088:Models of photoemission from solids 6227:Albert Einstein: Creator and Rebel 5940:Einstein–Infeld–Hoffmann equations 5910:Einstein relation (kinetic theory) 5047:Rooftop photovoltaic power station 4450:Polycrystalline silicon (multi-Si) 4399:Third-generation photovoltaic cell 4070:. Malabar, Fla.: Krieger. p.  2396:Schaum's Outline of Modern Physics 2367:"Lumeras UV and VUV laser systems" 1856: 1853: 1850: 1847: 1844: 1841: 1838: 1835: 1460:In 1902, Lenard observed that the 1424:investigated ultraviolet light in 704: 25: 6088:The Einstein Theory of Relativity 5052:Building-integrated photovoltaics 4549:Carbon nanotubes in photovoltaics 4455:Monocrystalline silicon (mono-Si) 4185:Haberkern, Thomas, and N Deepak " 3627:"The Nobel Prize in Physics 1923" 3606:"The Nobel Prize in Physics 1921" 1686:concentric hemispherical analyzer 1077:{\displaystyle E_{k}=h\nu -E_{B}} 6467: 6466: 6203:Einstein Prize for Laser Science 5313: 5302: 5301: 4424:Polarizing organic photovoltaics 4239:http://sensorse.com/page4en.html 3919:. spacedaily.com, July 14, 2000. 3905:Bell, Trudy E., "Moon fountains" 3224:10.1051/jphystap:018900090046800 2499:International A/AS Level Physics 2394:Gautreau, R.; Savin, W. (1999). 1941: 1633:X-ray photoelectron spectroscopy 970:development of quantum mechanics 867:{\displaystyle \nu >\nu _{o}} 841:Kinetic energy is positive, and 41: 6248:Einstein: His Life and Universe 4559:Cadmium telluride photovoltaics 4440:List of semiconductor materials 3674:." Annalen der Physik 17 (1905) 3413:10.1051/radium:0190800508024001 1792:=0.08 MeV and ceases at 12 MeV. 1540:of energy in physical systems. 1121:dependent on electron's energy. 5870:Mass–energy equivalence (E=mc) 4671:Incremental conductance method 4465:Copper indium gallium selenide 4414:Thermodynamic efficiency limit 3917:Dust gets a charge in a vacuum 3291:. Vol. xxix. p. 527. 1363:does not absorb UV radiation. 770:{\displaystyle W=h\,\nu _{o},} 385:can be externally controlled. 1: 4978:South African Solar Challenge 4258:" Open Source Physics project 3574:Holton, Gerald (1999-04-22). 2945:Annalen der Physik und Chemie 2039:Anomalous photovoltaic effect 600:, the highest kinetic energy 65:secondary or tertiary sources 4625:Photovoltaic mounting system 4237:Photo-electric transducers: 3958:Geophysical Research Letters 3939:10.1007/978-94-010-2647-5_36 3833:10.1126/science.206.4415.151 3650:; Scully, Marlan O. (1968). 2712:10.1103/RevModPhys.93.025006 2447:10.1016/0375-9601(96)00259-9 2381:"Light sources of the world" 2234:"A Direct Determination of " 1435:During the years 1886–1902, 1126:work function of the surface 6193:Albert Einstein Peace Prize 5970:Unsuccessful investigations 4630:Maximum power point tracker 4255:HTML 5 JavaScript simulator 4124:. New York: Wiley. p.  3520:10.1103/PhysRevSeriesI.32.1 3302:The International Year Book 3018:Hallwachs, Wilhelm (1888). 2778:10.1007/978-3-540-79359-5_1 2339:"Scienta Omicron ARPES Lab" 1520:of light was in one of his 1035:is found at kinetic energy 262:photoelectrochemical effect 6546: 6120:Picasso at the Lapin Agile 6058:Russell–Einstein Manifesto 5930:Bose–Einstein correlations 5626:X-Ray Fluorescence Imaging 5514:Anomalous X-ray scattering 4881:Solar panels on spacecraft 4728:Solar-powered refrigerator 4686:Concentrated photovoltaics 4666:Perturb and observe method 4445:Crystalline silicon (c-Si) 3995:Advances in Space Research 3771:Observing Photons in Space 3707:Knight, Randall D. (2004) 2532:Courier Dover Publications 1674:Photoelectron spectroscopy 1625:Photoemission spectroscopy 1622: 1619:Photoelectron spectroscopy 1568: 1234:Alexandre Edmond Becquerel 430:, the following must hold 191:classical electromagnetism 162:from a material caused by 29: 6462: 6028:The Meaning of Relativity 5297: 4579:Heterojunction solar cell 4554:Dye-sensitized solar cell 4394:Multi-junction solar cell 4384:Nominal power (Watt-peak) 4015:10.1016/j.asr.2005.04.048 3592:10.1103/physrevfocus.3.23 3494:Palmer, Frederic (1911). 3445:Palmer, Frederic (1908). 3138:10.1080/14786448808628270 2682:Reviews of Modern Physics 2648:10.1103/RevModPhys.75.473 2626:Reviews of Modern Physics 2577:10.1103/PhysRev.136.A1030 2166:courses.lumenlearning.com 1667:electronic band structure 1286:of potassium and sodium, 1270:(1855–1923), students in 620:{\displaystyle K_{\max }} 479:electronic band structure 164:electromagnetic radiation 6419:Albert Einstein Archives 6349:Bernhard Caesar Einstein 6096:Relics: Einstein's Brain 6044:The Evolution of Physics 5925:Bose–Einstein statistics 5920:Bose–Einstein condensate 5900:Einstein field equations 5453:Synchrotron light source 5062:Strasskirchen Solar Park 4953:American Solar Challenge 4799:Solar-powered flashlight 4786:Solar-powered calculator 4781:Solar cell phone charger 4470:Amorphous silicon (a-Si) 4273:The Photoelectric Effect 4217:The Photoelectric Effect 4201:The Photoelectric effect 4198:Department of Physics, " 4179:The Photoelectric Effect 4118:Knoll, Glenn F. (1999). 3892:Arizona State University 3560:10.1002/andp.19013090310 3265:10.1002/andp.19073280807 3044:10.1002/andp.18882690206 2965:10.1002/andp.18872670707 2926:10.1002/andp.18872670827 2898:Hertz, Heinrich (1887). 2526:Fromhold, A. T. (1991). 2216:10.1002/andp.19023130510 1936:Light–matter interaction 1761:electrostatic levitation 1483:In 1900, while studying 894:{\displaystyle \nu _{o}} 730:{\displaystyle \varphi } 573:has become known as the 172:condensed matter physics 30:Not to be confused with 6429:Einstein Papers Project 5945:Einstein–de Haas effect 5472:Interaction with matter 5431:Sources and instruments 4968:Frisian Solar Challenge 4938:List of solar car teams 4696:Space-based solar power 4676:Constant voltage method 4605:Solar charge controller 4491:Timeline of solar cells 4486:Growth of photovoltaics 3907:, NASA.gov, 2005-03-30. 3748:Resnick, Robert (1972) 3683:Resnick, Robert (1972) 3120:Stoletov, M.A. (1888). 2755:10.1103/PhysRevB.2.4334 1800:, yet another process, 1487:, the German physicist 1236:discovered the related 490:Theoretical explanation 354:light sources prevail. 331:. At the present time, 6361:Thomas Martin Einstein 6269:Introducing Relativity 6241:Einstein for Beginners 6144:Einstein and Eddington 5935:Einstein–Cartan theory 5604:Diffraction tomography 4958:Formula Sun Grand Prix 4790:Solar-powered fountain 4733:Solar air conditioning 4534:Quantum dot solar cell 4524:Nanocrystal solar cell 4419:Sun-free photovoltaics 3728:Penrose, Roger (2005) 3345:: CS1 maint: others ( 3287:Knoblauch, O. (1899). 3239:Hallwachs, W. (1907). 3126:Philosophical Magazine 2991:Bloch, Eugene (1914). 2484:10.1103/PhysRev.23.137 2264:10.1103/PhysRev.4.73.2 2132:Serway, R. A. (1990). 1981:High-energy phenomena: 1891: 1793: 1649: 1580: 1522:Annus Mirabilis papers 1510:Nobel Prize in Physics 1348: 1204: 1149: 1078: 1029: 1001: 961: 895: 868: 833: 771: 731: 711: 687: 667: 621: 594: 567: 547: 527: 499: 367: 341:radio-frequency plasma 313:external photoemission 309:internal photoemission 151: 76:"Photoelectric effect" 52:relies excessively on 6434:Einstein refrigerator 6424:Einstein's Blackboard 6303:(second wife; cousin) 6234:Einstein and Religion 6183:Albert Einstein Medal 6178:Albert Einstein Award 6036:The World as I See It 5975:Wave–particle duality 5955:Bohr–Einstein debates 5915:Cosmological constant 5895:Equivalence principle 5885:Einstein coefficients 5715:X-ray crystallography 5584:Soft x-ray microscopy 5552:Panoramic radiography 5392:Synchrotron radiation 4948:World Solar Challenge 4771:Photovoltaic keyboard 4701:PV system performance 4574:Perovskite solar cell 4372:Solar cell efficiency 4161:Wave-Particle Duality 4064:Evans, R. D. (1955). 3888:"Spacecraft charging" 3428:Proc. Camb. Phil. Soc 3206:Stoletov, A. (1890). 2310:10.1103/PhysRev.7.355 2277:Millikan, R. (1916). 2232:Millikan, R. (1914). 2059:Wave–particle duality 1962:Mid-energy phenomena: 1950:Low-energy phenomena: 1892: 1783: 1679:synchrotron radiation 1640: 1603:in the early days of 1578: 1538:infinite divisibility 1341: 1205: 1150: 1148:{\displaystyle E_{F}} 1079: 1030: 1028:{\displaystyle E_{B}} 1002: 1000:{\displaystyle h\nu } 962: 896: 869: 834: 772: 732: 712: 710:{\displaystyle \Phi } 688: 668: 622: 595: 593:{\displaystyle h\nu } 568: 548: 528: 526:{\displaystyle h\nu } 497: 360: 250:wave–particle duality 142: 6500:Electrical phenomena 6313:Hans Albert Einstein 6262:I Am Albert Einstein 6208:Einstein Prize (APS) 5880:Photoelectric effect 5853:Theory of relativity 5484:Photoelectric effect 5417:Characteristic X-ray 5218:Individual producers 4926:Solar vehicle racing 4615:Solar micro-inverter 4544:Plasmonic solar cell 4389:Thin-film solar cell 4357:Photoelectric effect 4282:Applet: Photo Effect 4264:Photoelectric Effect 4170:Photoelectric effect 3979:10.1029/2019GL083611 3862:Lai, Shu T. (2011). 3789:Burns, R. W. (1998) 3533:Planck, Max (1901). 2109:"X-Ray Data Booklet" 2064:Photomagnetic effect 1956:Photoelectric effect 1917:materials make good 1825: 1712:where they strike a 1692:Night vision devices 1485:black-body radiation 1466:wave theory of light 1159: 1132: 1039: 1012: 988: 905: 878: 845: 781: 741: 721: 701: 677: 631: 604: 581: 557: 546:{\displaystyle \nu } 537: 514: 156:photoelectric effect 5965:Thought experiments 5504:Photodisintegration 5479:Rayleigh scattering 5458:Free-electron laser 4814:Solar traffic light 4794:Solar-powered radio 4761:Solar-powered watch 4569:Printed solar panel 4404:Solar cell research 4105:1965abgs.conf...37D 4007:2006AdSpR..37...59S 3970:2019GeoRL..46.9405Y 3825:1979Sci...206..151W 3648:Lamb, Willis E. Jr. 3551:1901AnP...309..553P 3512:1911PhRvI..32....1P 3463:1908Natur..77..582P 3257:1907AnP...328..459H 3212:Journal de Physique 3036:1888AnP...269..301H 2957:1887AnP...267..421H 2918:1887AnP...267..983H 2827:1873Natur...7R.303. 2747:1970PhRvB...2.4334M 2704:2021RvMP...93b5006S 2595:HĂŒfner, S. (2003). 2569:1964PhRv..136.1030B 2563:(4A): A1030–A1044. 2476:1924PhRv...23..137B 2439:1996PhLA..216..125Z 2301:1916PhRv....7..355M 2256:1914PhRv....4R..73M 2208:1902AnP...313..149L 2188:Lenard, P. (1902). 2054:Photo–Dember effect 1994:Photodisintegration 1719:micro-channel plate 1710:electrostatic field 1534:James Clerk Maxwell 1385:With regard to the 1376:Aleksander Stoletov 1238:photovoltaic effect 455:threshold frequency 337:noble-gas discharge 333:mercury-vapor lamps 258:photovoltaic effect 158:is the emission of 32:Photovoltaic effect 6414:Things named after 6276:Subtle is the Lord 6099:(1994 documentary) 6091:(1923 documentary) 6083:(1922 documentary) 5980:Gravitational wave 5863:General relativity 5858:Special relativity 5745:X-ray reflectivity 5524:X-ray fluorescence 5489:Compton scattering 5422:High-energy X-rays 4850:The Quiet Achiever 4809:Solar street light 4756:Solar-powered pump 4529:Organic solar cell 4409:Thermophotovoltaic 4377:Quantum efficiency 4287:2010-03-14 at the 4214:Fowler, Michael, " 4206:2009-08-01 at the 4067:The Atomic Nucleus 3629:. Nobel Foundation 3608:. Nobel Foundation 3539:Annalen der Physik 3395:Bloch, E. (1908). 3245:Annalen der Physik 3024:Annalen der Physik 2939:Hertz, H. (1887). 2905:Annalen der Physik 2849:Asimov, A. (1964) 2809:Smith, W. (1873). 2402:. pp. 60–61. 2195:Annalen der Physik 2044:Compton scattering 1975:Compton scattering 1968:Thomson scattering 1887: 1802:Compton scattering 1794: 1650: 1601:Video camera tubes 1590:secondary emission 1581: 1506:Robert A. Millikan 1472:of the radiation. 1399:Aleksandr Stoletov 1349: 1242:electrolytic cells 1200: 1145: 1074: 1025: 997: 957: 891: 864: 829: 767: 727: 707: 683: 663: 617: 590: 563: 543: 523: 500: 406:stopping potential 368: 345:ultraviolet lasers 268:Emission mechanism 184:electronic devices 152: 6515:Energy conversion 6495:Quantum mechanics 6482: 6481: 6384:Awards and honors 6367:Siegbert Einstein 6255:Einstein's Cosmos 5805: 5804: 5801: 5800: 5793:X-ray lithography 5725:Backscatter X-ray 5720:X-ray diffraction 5547:X-ray radiography 5519:X-ray diffraction 5412:Siegbahn notation 5329: 5328: 5293: 5292: 5188: 5187: 5001: 5000: 4876:Mauro Solar Riser 4871:Electric aircraft 4804:Solar-powered fan 4709: 4708: 4600:Balance of system 4588:System components 4539:Hybrid solar cell 4499: 4498: 4460:Cadmium telluride 4176:ACEPT W3 Group, " 4155:". AstronomyCast. 3964:(16): 9405–9413. 3873:978-0-691-12947-1 3819:(4415): 151–156. 3779:978-92-9221-938-3 3752:, Wiley, p. 138, 3732:, Knopf, p. 502, 3687:, Wiley, p. 137, 3324:978-0-262-26948-3 2884:978-0-8153-1561-2 2787:978-3-540-79358-8 2741:(11): 4334–4350. 2735:Physical Review B 2541:978-0-486-66741-6 2512:978-0-340-94564-3 2426:Physics Letters A 2383:. 24 August 2017. 2035: 2034: 1885: 1723:electron affinity 1706:image intensifier 1700:material such as 1502:quantum mechanics 1437:Wilhelm Hallwachs 1368:Wilhelm Hallwachs 1254:photoconductivity 929: 686:{\displaystyle W} 566:{\displaystyle h} 293:quantum mechanics 180:quantum chemistry 168:ultraviolet light 143:Photoemission of 137: 136: 129: 111: 16:(Redirected from 6537: 6530:Electrochemistry 6470: 6469: 6369:(distant cousin) 6363:(great-grandson) 6325:Hermann Einstein 6307:Lieserl Einstein 5985:Tea leaf paradox 5832: 5825: 5818: 5809: 5631:X-ray holography 5537: 5509:Radiation damage 5356: 5349: 5342: 5333: 5317: 5316: 5305: 5304: 5199: 5040:Building-mounted 5018:PV power station 5014: 4943:Solar challenges 4933:Solar car racing 4901:Solar Challenger 4891:Gossamer Penguin 4718: 4512: 4362:Solar irradiance 4342: 4324: 4317: 4310: 4301: 4270:Fendt, Walter, " 4164:". HyperPhysics. 4151:Astronomy Cast " 4140: 4139: 4115: 4109: 4108: 4092: 4086: 4085: 4061: 4055: 4054: 4043: 4037: 4036: 4026: 4024:2060/20050175993 3990: 3984: 3983: 3981: 3949: 3943: 3942: 3926: 3920: 3914: 3908: 3902: 3896: 3895: 3884: 3878: 3877: 3859: 3853: 3852: 3808: 3802: 3787: 3781: 3767: 3761: 3746: 3740: 3726: 3720: 3705: 3696: 3681: 3675: 3668: 3662: 3661: 3656: 3644: 3638: 3637: 3635: 3634: 3623: 3617: 3616: 3614: 3613: 3602: 3596: 3595: 3571: 3565: 3564: 3562: 3530: 3524: 3523: 3491: 3485: 3484: 3474: 3472:10.1038/077582b0 3442: 3436: 3435: 3423: 3417: 3416: 3392: 3386: 3385: 3374:10.2307/27757381 3357: 3351: 3350: 3344: 3336: 3311: 3305: 3299: 3293: 3292: 3284: 3278: 3275: 3269: 3268: 3236: 3230: 3227: 3202: 3189: 3173: 3157: 3141: 3117: 3101: 3092: 3089: 3083: 3080: 3074: 3071: 3065: 3062: 3056: 3055: 3015: 3009: 3008: 3006: 3004: 2988: 2977: 2976: 2936: 2930: 2929: 2895: 2889: 2888: 2870: 2864: 2847: 2841: 2840: 2838: 2836:10.1038/007303e0 2806: 2800: 2799: 2765: 2759: 2758: 2730: 2724: 2723: 2697: 2677: 2668: 2667: 2641: 2639:cond-mat/0208504 2621: 2615: 2614: 2592: 2581: 2580: 2552: 2546: 2545: 2534:. pp. 5–6. 2523: 2517: 2516: 2503:Hodder Education 2494: 2488: 2487: 2457: 2451: 2450: 2420: 2414: 2413: 2398:(2nd ed.). 2391: 2385: 2384: 2377: 2371: 2370: 2363: 2357: 2356: 2349: 2343: 2342: 2335: 2329: 2328: 2321: 2315: 2314: 2312: 2274: 2268: 2267: 2229: 2220: 2219: 2185: 2176: 2175: 2173: 2172: 2158: 2152: 2151: 2140:. p. 1150. 2136:(3rd ed.). 2129: 2123: 2122: 2120: 2119: 2105: 2099: 2098: 2089: 2027: 2020: 2013: 1945: 1933: 1896: 1894: 1893: 1888: 1886: 1884: 1883: 1874: 1873: 1864: 1859: 1807: 1799: 1765:Surveyor program 1702:gallium arsenide 1609:Philo Farnsworth 1565:Photomultipliers 1560:Uses and effects 1266:(1854–1920) and 1250:Willoughby Smith 1209: 1207: 1206: 1201: 1199: 1198: 1171: 1170: 1154: 1152: 1151: 1146: 1144: 1143: 1095:three-step model 1083: 1081: 1080: 1075: 1073: 1072: 1051: 1050: 1034: 1032: 1031: 1026: 1024: 1023: 1006: 1004: 1003: 998: 982:binding energies 966: 964: 963: 958: 956: 952: 951: 950: 930: 922: 917: 916: 900: 898: 897: 892: 890: 889: 873: 871: 870: 865: 863: 862: 838: 836: 835: 830: 825: 821: 820: 819: 793: 792: 776: 774: 773: 768: 763: 762: 736: 734: 733: 728: 716: 714: 713: 708: 692: 690: 689: 684: 672: 670: 669: 664: 643: 642: 626: 624: 623: 618: 616: 615: 599: 597: 596: 591: 572: 570: 569: 564: 552: 550: 549: 544: 532: 530: 529: 524: 352:insertion device 223:Gilbert N. Lewis 221:—term coined by 132: 125: 121: 118: 112: 110: 69: 45: 37: 21: 6545: 6544: 6540: 6539: 6538: 6536: 6535: 6534: 6505:Albert Einstein 6485: 6484: 6483: 6478: 6458: 6409:Religious views 6404:Political views 6372: 6357:(granddaughter) 6355:Evelyn Einstein 6343:Robert Einstein 6337:Eduard Einstein 6281: 6218: 6212: 6166: 6136:Einstein's Gift 6070: 6063: 6004:Annus mirabilis 5989: 5960:Teleparallelism 5905:Einstein radius 5875:Brownian motion 5841: 5839:Albert Einstein 5836: 5806: 5797: 5781:X-ray astronomy 5769: 5701: 5650: 5636:X-ray telescope 5528: 5499:Photoionization 5467: 5463:X-ray nanoprobe 5426: 5382:Absorption edge 5370:Characteristics 5365: 5360: 5330: 5325: 5289: 5213: 5184: 5066: 5035: 5008: 4997: 4921: 4910:Water transport 4905: 4859: 4845:Solar golf cart 4818: 4776:Solar road stud 4705: 4659:System concepts 4654: 4583: 4506: 4495: 4474: 4428: 4333: 4328: 4289:Wayback Machine 4208:Wayback Machine 4148: 4143: 4136: 4117: 4116: 4112: 4094: 4093: 4089: 4082: 4063: 4062: 4058: 4045: 4044: 4040: 3992: 3991: 3987: 3951: 3950: 3946: 3928: 3927: 3923: 3915: 3911: 3903: 3899: 3886: 3885: 3881: 3874: 3861: 3860: 3856: 3810: 3809: 3805: 3793:, IET, p. 358, 3788: 3784: 3768: 3764: 3747: 3743: 3727: 3723: 3706: 3699: 3682: 3678: 3669: 3665: 3654: 3646: 3645: 3641: 3632: 3630: 3625: 3624: 3620: 3611: 3609: 3604: 3603: 3599: 3573: 3572: 3568: 3532: 3531: 3527: 3500:Physical Review 3493: 3492: 3488: 3444: 3443: 3439: 3425: 3424: 3420: 3394: 3393: 3389: 3359: 3358: 3354: 3337: 3325: 3313: 3312: 3308: 3300: 3296: 3286: 3285: 3281: 3276: 3272: 3238: 3237: 3233: 3205: 3192: 3177: 3161: 3145: 3119: 3105: 3102: 3095: 3090: 3086: 3081: 3077: 3072: 3068: 3063: 3059: 3017: 3016: 3012: 3002: 3000: 2990: 2989: 2980: 2938: 2937: 2933: 2912:(8): 983–1000. 2897: 2896: 2892: 2885: 2872: 2871: 2867: 2848: 2844: 2808: 2807: 2803: 2788: 2767: 2766: 2762: 2732: 2731: 2727: 2679: 2678: 2671: 2623: 2622: 2618: 2611: 2594: 2593: 2584: 2557:Physical Review 2554: 2553: 2549: 2542: 2525: 2524: 2520: 2513: 2505:. p. 241. 2496: 2495: 2491: 2463:Physical Review 2459: 2458: 2454: 2422: 2421: 2417: 2410: 2393: 2392: 2388: 2379: 2378: 2374: 2365: 2364: 2360: 2351: 2350: 2346: 2337: 2336: 2332: 2323: 2322: 2318: 2288:Physical Review 2276: 2275: 2271: 2243:Physical Review 2231: 2230: 2223: 2187: 2186: 2179: 2170: 2168: 2160: 2159: 2155: 2148: 2131: 2130: 2126: 2117: 2115: 2107: 2106: 2102: 2091: 2090: 2086: 2082: 2031: 1987:Pair production 1931: 1875: 1865: 1823: 1822: 1810:pair production 1805: 1797: 1778: 1753: 1736: 1694: 1635: 1623:Main articles: 1621: 1613:Image dissector 1598: 1579:Photomultiplier 1573: 1571:Photomultiplier 1567: 1562: 1498:Planck constant 1458: 1230: 1225: 1190: 1162: 1157: 1156: 1135: 1130: 1129: 1119:universal curve 1103:selection rules 1090: 1064: 1042: 1037: 1036: 1015: 1010: 1009: 986: 985: 978: 942: 935: 931: 908: 903: 902: 881: 876: 875: 854: 843: 842: 811: 804: 800: 784: 779: 778: 754: 739: 738: 719: 718: 699: 698: 675: 674: 634: 629: 628: 607: 602: 601: 579: 578: 575:Planck constant 555: 554: 535: 534: 512: 511: 492: 443: 436: 429: 418: 403: 384: 365: 321: 270: 254:photoconductive 232:requires a few 211:Albert Einstein 133: 122: 116: 113: 70: 68: 62: 58:primary sources 46: 35: 28: 23: 22: 15: 12: 11: 5: 6543: 6541: 6533: 6532: 6527: 6525:Photochemistry 6522: 6517: 6512: 6510:Heinrich Hertz 6507: 6502: 6497: 6487: 6486: 6480: 6479: 6477: 6476: 6463: 6460: 6459: 6457: 6456: 6451: 6446: 6441: 6436: 6431: 6426: 6421: 6416: 6411: 6406: 6401: 6396: 6391: 6386: 6380: 6378: 6374: 6373: 6371: 6370: 6364: 6358: 6352: 6346: 6340: 6334: 6328: 6322: 6316: 6310: 6304: 6298: 6291: 6289: 6283: 6282: 6280: 6279: 6272: 6265: 6258: 6251: 6244: 6237: 6230: 6222: 6220: 6214: 6213: 6211: 6210: 6205: 6200: 6195: 6190: 6185: 6180: 6174: 6172: 6168: 6167: 6165: 6164: 6156: 6148: 6147:(2008 TV film) 6140: 6132: 6124: 6116: 6112:Young Einstein 6108: 6104:Insignificance 6100: 6092: 6084: 6075: 6073: 6065: 6064: 6062: 6061: 6055: 6052:Why Socialism? 6048: 6040: 6032: 6024: 6016: 6009: 5999: 5997: 5991: 5990: 5988: 5987: 5982: 5977: 5972: 5967: 5962: 5957: 5952: 5947: 5942: 5937: 5932: 5927: 5922: 5917: 5912: 5907: 5902: 5897: 5892: 5890:Einstein solid 5887: 5882: 5877: 5872: 5867: 5866: 5865: 5860: 5849: 5847: 5843: 5842: 5837: 5835: 5834: 5827: 5820: 5812: 5803: 5802: 5799: 5798: 5796: 5795: 5790: 5789: 5788: 5777: 5775: 5771: 5770: 5768: 5767: 5762: 5757: 5752: 5747: 5742: 5737: 5732: 5727: 5722: 5717: 5711: 5709: 5703: 5702: 5700: 5699: 5694: 5689: 5684: 5679: 5674: 5669: 5664: 5658: 5656: 5652: 5651: 5649: 5648: 5643: 5638: 5633: 5628: 5623: 5622: 5621: 5616: 5611: 5601: 5596: 5591: 5586: 5581: 5580: 5579: 5574: 5564: 5559: 5554: 5549: 5543: 5541: 5534: 5530: 5529: 5527: 5526: 5521: 5516: 5511: 5506: 5501: 5496: 5491: 5486: 5481: 5475: 5473: 5469: 5468: 5466: 5465: 5460: 5455: 5450: 5445: 5440: 5434: 5432: 5428: 5427: 5425: 5424: 5419: 5414: 5409: 5404: 5399: 5394: 5389: 5384: 5379: 5373: 5371: 5367: 5366: 5361: 5359: 5358: 5351: 5344: 5336: 5327: 5326: 5324: 5323: 5311: 5298: 5295: 5294: 5291: 5290: 5288: 5287: 5282: 5277: 5272: 5267: 5262: 5257: 5255:Solar Frontier 5252: 5247: 5242: 5237: 5232: 5230:Hanwha Q CELLS 5227: 5221: 5219: 5215: 5214: 5212: 5211: 5205: 5203: 5196: 5190: 5189: 5186: 5185: 5183: 5182: 5177: 5175:United Kingdom 5172: 5167: 5162: 5157: 5152: 5147: 5142: 5137: 5132: 5127: 5122: 5117: 5112: 5110:Czech Republic 5107: 5102: 5097: 5092: 5087: 5082: 5076: 5074: 5068: 5067: 5065: 5064: 5059: 5054: 5049: 5043: 5041: 5037: 5036: 5034: 5033: 5028: 5022: 5020: 5011: 5003: 5002: 4999: 4998: 4996: 4995: 4990: 4985: 4980: 4975: 4970: 4965: 4960: 4955: 4950: 4945: 4940: 4935: 4929: 4927: 4923: 4922: 4920: 4919: 4913: 4911: 4907: 4906: 4904: 4903: 4898: 4896:Qinetiq Zephyr 4893: 4888: 4883: 4878: 4873: 4867: 4865: 4861: 4860: 4858: 4857: 4852: 4847: 4842: 4837: 4832: 4826: 4824: 4823:Land transport 4820: 4819: 4817: 4816: 4811: 4806: 4801: 4796: 4791: 4788: 4783: 4778: 4773: 4768: 4763: 4758: 4753: 4750: 4748:Solar backpack 4745: 4740: 4735: 4730: 4724: 4722: 4715: 4711: 4710: 4707: 4706: 4704: 4703: 4698: 4693: 4688: 4683: 4678: 4673: 4668: 4662: 4660: 4656: 4655: 4653: 4652: 4650:Synchronverter 4647: 4642: 4640:Solar shingles 4637: 4632: 4627: 4622: 4617: 4612: 4610:Solar inverter 4607: 4602: 4597: 4591: 4589: 4585: 4584: 4582: 4581: 4576: 4571: 4566: 4561: 4556: 4551: 4546: 4541: 4536: 4531: 4526: 4520: 4518: 4509: 4501: 4500: 4497: 4496: 4494: 4493: 4488: 4482: 4480: 4476: 4475: 4473: 4472: 4467: 4462: 4457: 4452: 4447: 4442: 4436: 4434: 4430: 4429: 4427: 4426: 4421: 4416: 4411: 4406: 4401: 4396: 4391: 4386: 4381: 4380: 4379: 4369: 4367:Solar constant 4364: 4359: 4354: 4348: 4346: 4339: 4335: 4334: 4329: 4327: 4326: 4319: 4312: 4304: 4298: 4297: 4277: 4268: 4259: 4242: 4241: 4235: 4230: 4221: 4212: 4196: 4183: 4174: 4165: 4156: 4147: 4146:External links 4144: 4142: 4141: 4134: 4110: 4087: 4080: 4056: 4038: 3985: 3944: 3921: 3909: 3897: 3879: 3872: 3854: 3803: 3782: 3762: 3741: 3721: 3697: 3676: 3670:Einstein, A. " 3663: 3639: 3618: 3597: 3566: 3525: 3486: 3437: 3418: 3387: 3352: 3323: 3306: 3294: 3279: 3270: 3251:(8): 459–516. 3231: 3229: 3228: 3203: 3197:(in Russian). 3190: 3181:Comptes Rendus 3175: 3165:Comptes Rendus 3159: 3149:Comptes Rendus 3143: 3118:(Reprinted in 3109:Comptes Rendus 3093: 3084: 3075: 3066: 3057: 3030:(2): 301–312. 3010: 2978: 2951:(7): 421–448. 2931: 2890: 2883: 2865: 2842: 2801: 2786: 2760: 2725: 2669: 2632:(2): 473–541. 2616: 2609: 2582: 2547: 2540: 2518: 2511: 2489: 2470:(2): 137–143. 2452: 2415: 2408: 2386: 2372: 2358: 2344: 2330: 2316: 2295:(3): 355–388. 2269: 2221: 2202:(5): 149–198. 2177: 2153: 2146: 2124: 2100: 2083: 2081: 2078: 2077: 2076: 2071: 2069:Photochemistry 2066: 2061: 2056: 2051: 2046: 2041: 2033: 2032: 2030: 2029: 2022: 2015: 2007: 2004: 2003: 1997: 1996: 1990: 1989: 1983: 1982: 1978: 1977: 1971: 1970: 1964: 1963: 1959: 1958: 1952: 1951: 1947: 1946: 1938: 1937: 1930: 1927: 1898: 1897: 1882: 1878: 1872: 1868: 1862: 1858: 1855: 1852: 1849: 1846: 1843: 1840: 1837: 1833: 1830: 1806:1.022 MeV 1777: 1774: 1752: 1749: 1735: 1732: 1693: 1690: 1620: 1617: 1597: 1594: 1569:Main article: 1566: 1563: 1561: 1558: 1457: 1454: 1441:Philipp Lenard 1404:Stoletov's law 1353:Heinrich Hertz 1229: 1226: 1224: 1221: 1216:one-step model 1212: 1211: 1197: 1193: 1189: 1186: 1183: 1180: 1177: 1174: 1169: 1165: 1142: 1138: 1122: 1114: 1089: 1086: 1071: 1067: 1063: 1060: 1057: 1054: 1049: 1045: 1022: 1018: 996: 993: 977: 974: 955: 949: 945: 941: 938: 934: 928: 925: 920: 915: 911: 888: 884: 861: 857: 853: 850: 828: 824: 818: 814: 810: 807: 803: 799: 796: 791: 787: 766: 761: 757: 752: 749: 746: 726: 706: 682: 662: 659: 656: 653: 649: 646: 641: 637: 614: 610: 589: 586: 562: 542: 522: 519: 491: 488: 441: 434: 427: 416: 401: 382: 372:monochromatize 363: 320: 317: 297:kinetic energy 289:Compton effect 278:binding energy 269: 266: 238:core electrons 203:kinetic energy 135: 134: 49: 47: 40: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6542: 6531: 6528: 6526: 6523: 6521: 6520:Photovoltaics 6518: 6516: 6513: 6511: 6508: 6506: 6503: 6501: 6498: 6496: 6493: 6492: 6490: 6475: 6474: 6465: 6464: 6461: 6455: 6452: 6450: 6447: 6445: 6442: 6440: 6437: 6435: 6432: 6430: 6427: 6425: 6422: 6420: 6417: 6415: 6412: 6410: 6407: 6405: 6402: 6400: 6397: 6395: 6392: 6390: 6387: 6385: 6382: 6381: 6379: 6375: 6368: 6365: 6362: 6359: 6356: 6353: 6350: 6347: 6344: 6341: 6338: 6335: 6332: 6331:Maja Einstein 6329: 6326: 6323: 6320: 6317: 6314: 6311: 6308: 6305: 6302: 6301:Elsa Einstein 6299: 6296: 6293: 6292: 6290: 6288: 6284: 6278: 6277: 6273: 6271: 6270: 6266: 6264: 6263: 6259: 6257: 6256: 6252: 6250: 6249: 6245: 6243: 6242: 6238: 6236: 6235: 6231: 6229: 6228: 6224: 6223: 6221: 6215: 6209: 6206: 6204: 6201: 6199: 6196: 6194: 6191: 6189: 6188:Kalinga Prize 6186: 6184: 6181: 6179: 6176: 6175: 6173: 6169: 6162: 6161: 6157: 6155:(2017 series) 6154: 6153: 6149: 6146: 6145: 6141: 6138: 6137: 6133: 6130: 6129: 6125: 6122: 6121: 6117: 6114: 6113: 6109: 6106: 6105: 6101: 6098: 6097: 6093: 6090: 6089: 6085: 6082: 6081: 6077: 6076: 6074: 6072: 6066: 6059: 6056: 6053: 6049: 6046: 6045: 6041: 6038: 6037: 6033: 6030: 6029: 6025: 6022: 6021: 6017: 6014: 6010: 6007: 6005: 6001: 6000: 5998: 5996: 5992: 5986: 5983: 5981: 5978: 5976: 5973: 5971: 5968: 5966: 5963: 5961: 5958: 5956: 5953: 5951: 5948: 5946: 5943: 5941: 5938: 5936: 5933: 5931: 5928: 5926: 5923: 5921: 5918: 5916: 5913: 5911: 5908: 5906: 5903: 5901: 5898: 5896: 5893: 5891: 5888: 5886: 5883: 5881: 5878: 5876: 5873: 5871: 5868: 5864: 5861: 5859: 5856: 5855: 5854: 5851: 5850: 5848: 5844: 5840: 5833: 5828: 5826: 5821: 5819: 5814: 5813: 5810: 5794: 5791: 5787: 5784: 5783: 5782: 5779: 5778: 5776: 5772: 5766: 5763: 5761: 5758: 5756: 5753: 5751: 5748: 5746: 5743: 5741: 5738: 5736: 5733: 5731: 5728: 5726: 5723: 5721: 5718: 5716: 5713: 5712: 5710: 5708: 5704: 5698: 5695: 5693: 5690: 5688: 5685: 5683: 5680: 5678: 5675: 5673: 5670: 5668: 5665: 5663: 5660: 5659: 5657: 5653: 5647: 5644: 5642: 5639: 5637: 5634: 5632: 5629: 5627: 5624: 5620: 5617: 5615: 5612: 5610: 5607: 5606: 5605: 5602: 5600: 5597: 5595: 5592: 5590: 5587: 5585: 5582: 5578: 5575: 5573: 5570: 5569: 5568: 5565: 5563: 5560: 5558: 5557:Tomosynthesis 5555: 5553: 5550: 5548: 5545: 5544: 5542: 5538: 5535: 5531: 5525: 5522: 5520: 5517: 5515: 5512: 5510: 5507: 5505: 5502: 5500: 5497: 5495: 5492: 5490: 5487: 5485: 5482: 5480: 5477: 5476: 5474: 5470: 5464: 5461: 5459: 5456: 5454: 5451: 5449: 5446: 5444: 5441: 5439: 5436: 5435: 5433: 5429: 5423: 5420: 5418: 5415: 5413: 5410: 5408: 5405: 5403: 5400: 5398: 5395: 5393: 5390: 5388: 5387:Moseley's law 5385: 5383: 5380: 5378: 5375: 5374: 5372: 5368: 5364: 5363:X-ray science 5357: 5352: 5350: 5345: 5343: 5338: 5337: 5334: 5322: 5321: 5312: 5310: 5309: 5300: 5299: 5296: 5286: 5283: 5281: 5278: 5276: 5273: 5271: 5268: 5266: 5263: 5261: 5258: 5256: 5253: 5251: 5248: 5246: 5243: 5241: 5238: 5236: 5233: 5231: 5228: 5226: 5223: 5222: 5220: 5216: 5210: 5207: 5206: 5204: 5200: 5197: 5195: 5191: 5181: 5178: 5176: 5173: 5171: 5168: 5166: 5163: 5161: 5158: 5156: 5153: 5151: 5148: 5146: 5143: 5141: 5138: 5136: 5133: 5131: 5128: 5126: 5123: 5121: 5118: 5116: 5113: 5111: 5108: 5106: 5103: 5101: 5098: 5096: 5093: 5091: 5088: 5086: 5083: 5081: 5078: 5077: 5075: 5073: 5069: 5063: 5060: 5058: 5055: 5053: 5050: 5048: 5045: 5044: 5042: 5038: 5032: 5029: 5027: 5024: 5023: 5021: 5019: 5015: 5012: 5010: 5004: 4994: 4991: 4989: 4986: 4984: 4981: 4979: 4976: 4974: 4971: 4969: 4966: 4964: 4961: 4959: 4956: 4954: 4951: 4949: 4946: 4944: 4941: 4939: 4936: 4934: 4931: 4930: 4928: 4924: 4918: 4915: 4914: 4912: 4908: 4902: 4899: 4897: 4894: 4892: 4889: 4887: 4884: 4882: 4879: 4877: 4874: 4872: 4869: 4868: 4866: 4864:Air transport 4862: 4856: 4853: 4851: 4848: 4846: 4843: 4841: 4840:Solar roadway 4838: 4836: 4833: 4831: 4830:Solar vehicle 4828: 4827: 4825: 4821: 4815: 4812: 4810: 4807: 4805: 4802: 4800: 4797: 4795: 4792: 4789: 4787: 4784: 4782: 4779: 4777: 4774: 4772: 4769: 4767: 4764: 4762: 4759: 4757: 4754: 4751: 4749: 4746: 4744: 4743:Solar charger 4741: 4739: 4736: 4734: 4731: 4729: 4726: 4725: 4723: 4719: 4716: 4712: 4702: 4699: 4697: 4694: 4692: 4689: 4687: 4684: 4682: 4679: 4677: 4674: 4672: 4669: 4667: 4664: 4663: 4661: 4657: 4651: 4648: 4646: 4643: 4641: 4638: 4636: 4635:Solar tracker 4633: 4631: 4628: 4626: 4623: 4621: 4618: 4616: 4613: 4611: 4608: 4606: 4603: 4601: 4598: 4596: 4593: 4592: 4590: 4586: 4580: 4577: 4575: 4572: 4570: 4567: 4565: 4562: 4560: 4557: 4555: 4552: 4550: 4547: 4545: 4542: 4540: 4537: 4535: 4532: 4530: 4527: 4525: 4522: 4521: 4519: 4517: 4513: 4510: 4508: 4502: 4492: 4489: 4487: 4484: 4483: 4481: 4477: 4471: 4468: 4466: 4463: 4461: 4458: 4456: 4453: 4451: 4448: 4446: 4443: 4441: 4438: 4437: 4435: 4431: 4425: 4422: 4420: 4417: 4415: 4412: 4410: 4407: 4405: 4402: 4400: 4397: 4395: 4392: 4390: 4387: 4385: 4382: 4378: 4375: 4374: 4373: 4370: 4368: 4365: 4363: 4360: 4358: 4355: 4353: 4352:Photovoltaics 4350: 4349: 4347: 4343: 4340: 4336: 4332: 4331:Photovoltaics 4325: 4320: 4318: 4313: 4311: 4306: 4305: 4302: 4295: 4291: 4290: 4286: 4283: 4278: 4275: 4274: 4269: 4266: 4265: 4260: 4257: 4256: 4251: 4250: 4249: 4248: 4247: 4240: 4236: 4234: 4231: 4228: 4227: 4222: 4219: 4218: 4213: 4210: 4209: 4205: 4202: 4197: 4194: 4190: 4189: 4184: 4181: 4180: 4175: 4172: 4171: 4166: 4163: 4162: 4157: 4154: 4150: 4149: 4145: 4137: 4135:0-471-49545-X 4131: 4127: 4123: 4122: 4114: 4111: 4106: 4102: 4098: 4091: 4088: 4083: 4081:0-89874-414-8 4077: 4073: 4069: 4068: 4060: 4057: 4053:. 2009-09-17. 4052: 4048: 4042: 4039: 4034: 4030: 4025: 4020: 4016: 4012: 4008: 4004: 4000: 3996: 3989: 3986: 3980: 3975: 3971: 3967: 3963: 3959: 3955: 3948: 3945: 3940: 3936: 3932: 3925: 3922: 3918: 3913: 3910: 3906: 3901: 3898: 3893: 3889: 3883: 3880: 3875: 3869: 3865: 3858: 3855: 3850: 3846: 3842: 3838: 3834: 3830: 3826: 3822: 3818: 3814: 3807: 3804: 3800: 3799:0-85296-914-7 3796: 3792: 3786: 3783: 3780: 3776: 3772: 3766: 3763: 3759: 3758:0-471-71702-9 3755: 3751: 3745: 3742: 3739: 3738:0-679-45443-8 3735: 3731: 3725: 3722: 3718: 3717:0-8053-8685-8 3714: 3710: 3704: 3702: 3698: 3694: 3693:0-471-71702-9 3690: 3686: 3680: 3677: 3673: 3667: 3664: 3660: 3653: 3649: 3643: 3640: 3628: 3622: 3619: 3607: 3601: 3598: 3593: 3589: 3585: 3581: 3577: 3570: 3567: 3561: 3556: 3552: 3548: 3544: 3540: 3536: 3529: 3526: 3521: 3517: 3513: 3509: 3505: 3501: 3497: 3490: 3487: 3482: 3478: 3473: 3468: 3464: 3460: 3457:(2008): 582. 3456: 3452: 3448: 3441: 3438: 3433: 3429: 3422: 3419: 3414: 3410: 3406: 3402: 3398: 3391: 3388: 3383: 3379: 3375: 3371: 3367: 3363: 3356: 3353: 3348: 3342: 3334: 3330: 3326: 3320: 3316: 3310: 3307: 3303: 3298: 3295: 3290: 3283: 3280: 3274: 3271: 3266: 3262: 3258: 3254: 3250: 3246: 3242: 3235: 3232: 3225: 3221: 3217: 3213: 3209: 3204: 3200: 3196: 3191: 3187: 3183: 3182: 3176: 3171: 3167: 3166: 3160: 3155: 3151: 3150: 3144: 3139: 3135: 3131: 3127: 3123: 3115: 3111: 3110: 3104: 3103: 3100: 3098: 3094: 3088: 3085: 3079: 3076: 3070: 3067: 3061: 3058: 3053: 3049: 3045: 3041: 3037: 3033: 3029: 3025: 3021: 3014: 3011: 2998: 2994: 2987: 2985: 2983: 2979: 2974: 2970: 2966: 2962: 2958: 2954: 2950: 2946: 2942: 2935: 2932: 2927: 2923: 2919: 2915: 2911: 2907: 2906: 2901: 2894: 2891: 2886: 2880: 2876: 2869: 2866: 2862: 2861:0-385-04693-6 2858: 2855:, Doubleday, 2854: 2853: 2846: 2843: 2837: 2832: 2828: 2824: 2820: 2816: 2812: 2805: 2802: 2797: 2793: 2789: 2783: 2779: 2775: 2771: 2764: 2761: 2756: 2752: 2748: 2744: 2740: 2736: 2729: 2726: 2721: 2717: 2713: 2709: 2705: 2701: 2696: 2691: 2688:(2): 025006. 2687: 2683: 2676: 2674: 2670: 2665: 2661: 2657: 2653: 2649: 2645: 2640: 2635: 2631: 2627: 2620: 2617: 2612: 2610:3-540-41802-4 2606: 2602: 2598: 2591: 2589: 2587: 2583: 2578: 2574: 2570: 2566: 2562: 2558: 2551: 2548: 2543: 2537: 2533: 2529: 2522: 2519: 2514: 2508: 2504: 2500: 2493: 2490: 2485: 2481: 2477: 2473: 2469: 2465: 2464: 2456: 2453: 2448: 2444: 2440: 2436: 2432: 2428: 2427: 2419: 2416: 2411: 2409:0-07-024830-3 2405: 2401: 2397: 2390: 2387: 2382: 2376: 2373: 2368: 2362: 2359: 2354: 2348: 2345: 2340: 2334: 2331: 2326: 2320: 2317: 2311: 2306: 2302: 2298: 2294: 2290: 2289: 2284: 2282: 2273: 2270: 2265: 2261: 2257: 2253: 2249: 2245: 2244: 2239: 2237: 2228: 2226: 2222: 2217: 2213: 2209: 2205: 2201: 2197: 2196: 2191: 2184: 2182: 2178: 2167: 2163: 2157: 2154: 2149: 2147:0-03-030258-7 2143: 2139: 2135: 2128: 2125: 2114: 2110: 2104: 2101: 2096: 2095: 2088: 2085: 2079: 2075: 2072: 2070: 2067: 2065: 2062: 2060: 2057: 2055: 2052: 2050: 2049:Dember effect 2047: 2045: 2042: 2040: 2037: 2036: 2028: 2023: 2021: 2016: 2014: 2009: 2008: 2006: 2005: 2002: 1999: 1998: 1995: 1992: 1991: 1988: 1985: 1984: 1979: 1976: 1973: 1972: 1969: 1966: 1965: 1960: 1957: 1954: 1953: 1948: 1944: 1940: 1939: 1934: 1928: 1926: 1924: 1920: 1916: 1911: 1907: 1906:atomic number 1903: 1880: 1876: 1870: 1866: 1860: 1831: 1828: 1821: 1820: 1819: 1816: 1815:cross section 1811: 1803: 1791: 1787: 1786:cross section 1782: 1775: 1773: 1770: 1766: 1762: 1758: 1750: 1748: 1746: 1745:static charge 1741: 1733: 1731: 1728: 1724: 1720: 1715: 1711: 1707: 1703: 1699: 1698:semiconductor 1691: 1689: 1687: 1682: 1680: 1675: 1671: 1668: 1663: 1659: 1656: 1655:monochromatic 1647: 1643: 1639: 1634: 1630: 1626: 1618: 1616: 1614: 1610: 1606: 1602: 1596:Image sensors 1595: 1593: 1591: 1586: 1577: 1572: 1564: 1559: 1557: 1553: 1551: 1547: 1541: 1539: 1535: 1531: 1527: 1526:energy quanta 1523: 1519: 1514: 1511: 1507: 1503: 1499: 1494: 1490: 1486: 1481: 1477: 1473: 1471: 1467: 1463: 1455: 1453: 1451: 1446: 1442: 1438: 1433: 1431: 1427: 1426:Crookes tubes 1423: 1422:J. J. Thomson 1418: 1415: 1413: 1409: 1405: 1400: 1395: 1392: 1388: 1383: 1381: 1377: 1373: 1372:Augusto Righi 1369: 1364: 1362: 1358: 1354: 1345: 1340: 1336: 1333: 1329: 1325: 1321: 1317: 1313: 1309: 1305: 1301: 1297: 1293: 1289: 1285: 1281: 1277: 1273: 1269: 1265: 1264:Johann Elster 1261: 1259: 1255: 1251: 1247: 1246:photovoltaics 1243: 1239: 1235: 1227: 1222: 1220: 1217: 1195: 1191: 1187: 1184: 1181: 1178: 1175: 1172: 1167: 1163: 1140: 1136: 1127: 1123: 1120: 1115: 1112: 1108: 1104: 1100: 1099: 1098: 1096: 1087: 1085: 1069: 1065: 1061: 1058: 1055: 1052: 1047: 1043: 1020: 1016: 994: 991: 983: 975: 973: 971: 953: 947: 943: 939: 936: 932: 926: 923: 918: 913: 909: 886: 882: 859: 855: 851: 848: 839: 826: 822: 816: 812: 808: 805: 801: 797: 794: 785: 764: 759: 755: 750: 747: 744: 724: 696: 695:work function 680: 660: 657: 654: 651: 647: 644: 635: 608: 587: 584: 576: 560: 540: 520: 517: 509: 505: 496: 489: 487: 485: 480: 476: 471: 468: 462: 460: 456: 452: 447: 444: 440: 437: =  433: 426: 422: 415: 411: 407: 400: 394: 391: 386: 381: 377: 374:the light, a 373: 359: 355: 353: 350: 346: 342: 339:UV lamps and 338: 334: 330: 325: 318: 316: 314: 310: 305: 303: 298: 294: 290: 286: 281: 279: 275: 274:photon energy 267: 265: 263: 259: 255: 251: 247: 246:atomic number 243: 239: 235: 234:electron-volt 231: 226: 224: 220: 216: 212: 208: 204: 200: 196: 192: 187: 185: 181: 177: 173: 169: 165: 161: 157: 150: 146: 141: 131: 128: 120: 109: 106: 102: 99: 95: 92: 88: 85: 81: 78: â€“  77: 73: 72:Find sources: 66: 60: 59: 55: 50:This article 48: 44: 39: 38: 33: 19: 18:Photoelectric 6471: 6439:Einsteinhaus 6319:Pauline Koch 6297:(first wife) 6295:Mileva Marić 6274: 6267: 6260: 6253: 6246: 6239: 6232: 6225: 6158: 6150: 6142: 6134: 6126: 6118: 6110: 6102: 6094: 6086: 6078: 6042: 6034: 6026: 6018: 6003: 5879: 5655:Spectroscopy 5599:Ptychography 5533:Applications 5494:Auger effect 5483: 5397:Water window 5319: 5306: 5285:Yingli Solar 5265:Sungen Solar 5240:Motech Solar 5194:PV companies 5155:South Africa 4973:Solar Splash 4714:Applications 4645:Solar mirror 4505:Photovoltaic 4356: 4280: 4271: 4262: 4253: 4244: 4243: 4224: 4215: 4199: 4195:, Chapter 3. 4186: 4177: 4168: 4159: 4120: 4113: 4096: 4090: 4066: 4059: 4050: 4041: 4001:(1): 59–66. 3998: 3994: 3988: 3961: 3957: 3947: 3930: 3924: 3912: 3900: 3891: 3882: 3863: 3857: 3816: 3812: 3806: 3790: 3785: 3770: 3765: 3749: 3744: 3729: 3724: 3708: 3684: 3679: 3666: 3658: 3642: 3631:. Retrieved 3621: 3610:. Retrieved 3600: 3583: 3579: 3569: 3542: 3538: 3528: 3503: 3502:. Series I. 3499: 3489: 3454: 3450: 3440: 3431: 3427: 3421: 3404: 3400: 3390: 3365: 3361: 3355: 3314: 3309: 3301: 3297: 3288: 3282: 3273: 3248: 3244: 3234: 3215: 3211: 3198: 3194: 3185: 3179: 3169: 3163: 3153: 3147: 3132:(160): 317. 3129: 3128:. Series 5. 3125: 3113: 3107: 3087: 3078: 3069: 3060: 3027: 3023: 3013: 3001:. Retrieved 2996: 2948: 2944: 2934: 2909: 2903: 2893: 2874: 2868: 2850: 2845: 2821:(173): 303. 2818: 2814: 2804: 2769: 2763: 2738: 2734: 2728: 2685: 2681: 2629: 2625: 2619: 2596: 2560: 2556: 2550: 2527: 2521: 2498: 2492: 2467: 2461: 2455: 2433:(1–5): 125. 2430: 2424: 2418: 2395: 2389: 2375: 2361: 2347: 2333: 2319: 2292: 2286: 2280: 2272: 2250:(1): 73–75. 2247: 2241: 2235: 2199: 2193: 2169:. Retrieved 2165: 2156: 2133: 2127: 2116:. Retrieved 2112: 2103: 2093: 2087: 2001:Photofission 1955: 1922: 1914: 1909: 1901: 1899: 1798:511 keV 1795: 1789: 1754: 1737: 1695: 1683: 1672: 1651: 1599: 1585:photocathode 1582: 1554: 1549: 1545: 1542: 1529: 1525: 1515: 1492: 1482: 1478: 1474: 1459: 1456:20th century 1450:Hertz effect 1449: 1434: 1430:cathode rays 1419: 1416: 1408:photocurrent 1396: 1387:Hertz effect 1386: 1384: 1380:electroscope 1365: 1350: 1344:electroscope 1262: 1231: 1228:19th century 1215: 1213: 1125: 1107:Auger effect 1094: 1091: 979: 840: 501: 475:polarization 472: 466: 463: 454: 448: 445: 438: 431: 424: 420: 413: 409: 405: 398: 395: 389: 387: 379: 369: 326: 322: 312: 308: 306: 282: 271: 256:effect, the 244:with a high 227: 188: 155: 153: 123: 114: 104: 97: 90: 83: 71: 51: 6444:Einsteinium 6217:Books about 6163:(2023 film) 6160:Oppenheimer 6139:(2003 play) 6131:(1994 film) 6123:(1993 play) 6115:(1988 film) 6107:(1985 film) 5950:EPR paradox 5448:Synchrotron 5280:Trina Solar 5225:First Solar 5165:Switzerland 5145:Netherlands 4983:Tour de Sol 4681:Fill factor 4620:Solar cable 4595:Solar panel 4516:Solar cells 4158:Nave, R., " 3506:(1): 1–22. 3368:: 299–322. 2400:McGraw-Hill 2113:xdb.lbl.gov 1504:. In 1914, 1412:solar cells 1268:Hans Geitel 1252:discovered 459:probability 376:vacuum tube 349:synchrotron 302:Fermi level 176:solid state 6489:Categories 6449:Max Talmey 6351:(grandson) 6309:(daughter) 6069:In popular 5707:Scattering 5572:Helical CT 5438:X-ray tube 5202:By country 5072:By country 5007:Generation 4917:Solar boat 4766:Solar Tuki 4752:Solar tree 4738:Solar lamp 4721:Appliances 4345:Technology 3633:2015-03-29 3612:2008-10-09 3545:(3): 553. 3407:(8): 240. 2695:2008.02378 2171:2024-07-08 2118:2020-06-20 2080:References 1740:spacecraft 1734:Spacecraft 1605:television 1489:Max Planck 1445:electrodes 1342:Gold leaf 1272:Heidelberg 412:potential 285:irradiated 260:, and the 87:newspapers 54:references 5080:Australia 5057:Solar Ark 4963:Solar Cup 4855:Sunmobile 4835:Solar car 4433:Materials 4276:". (Java) 3401:Le Radium 3341:cite book 3052:1521-3889 2973:0003-3804 2796:108793685 2720:221006368 2664:118433150 2656:0034-6861 1919:gamma-ray 1861:⋅ 1829:σ 1769:Chang'e 3 1751:Moon dust 1550:intensity 1546:frequency 1530:intensity 1470:intensity 1420:In 1897, 1357:spark gap 1351:In 1887, 1296:magnesium 1280:potassium 1232:In 1839, 1188:− 1182:− 1179:ν 1062:− 1059:ν 995:ν 944:ν 940:− 937:ν 883:ν 856:ν 849:ν 813:ν 809:− 806:ν 756:ν 725:φ 705:Φ 655:− 652:ν 588:ν 541:ν 521:ν 502:In 1905, 451:radiation 343:sources, 225:in 1926. 207:frequency 199:intensity 160:electrons 145:electrons 117:July 2024 6473:Category 6399:Memorial 6345:(cousin) 6333:(sister) 6327:(father) 6321:(mother) 6219:Einstein 6054:" (1949) 6015:" (1905) 5443:Betatron 5308:Category 5270:Sunpower 5260:Solyndra 5235:JA Solar 5170:Thailand 5090:Bulgaria 4338:Concepts 4285:Archived 4204:Archived 4033:56226020 3849:23594185 3841:17801770 3382:27757381 3333:62183406 2601:Springer 2138:Saunders 1929:See also 1727:band gap 1714:phosphor 1681:source. 1370:, Hoor, 1312:platinum 1300:thallium 1276:rubidium 1258:selenium 504:Einstein 329:arc lamp 242:elements 166:such as 6377:Related 6071:culture 5846:Physics 5786:History 5540:Imaging 5320:Commons 5275:Suntech 5150:Romania 5120:Germany 5085:Belgium 5009:systems 4479:History 4246:Applets 4223:Go to " 4101:Bibcode 4003:Bibcode 3966:Bibcode 3821:Bibcode 3813:Science 3580:Physics 3547:Bibcode 3508:Bibcode 3481:4028617 3459:Bibcode 3253:Bibcode 3218:: 468. 3188:: 1241. 3156:: 1593. 3116:: 1149. 3032:Bibcode 2953:Bibcode 2914:Bibcode 2823:Bibcode 2743:Bibcode 2700:Bibcode 2565:Bibcode 2472:Bibcode 2435:Bibcode 2297:Bibcode 2252:Bibcode 2204:Bibcode 1904:is the 1493:packets 1332:mercury 1324:cadmium 1292:lithium 1223:History 1111:phonons 508:photons 410:cut off 219:photons 149:photons 101:scholar 6287:Family 6171:Prizes 6152:Genius 6060:(1955) 6047:(1938) 6039:(1934) 6031:(1922) 6023:(1916) 6008:(1905) 6006:papers 5774:Others 5735:GISAXS 5407:L-edge 5402:K-edge 5125:Greece 5115:France 5095:Canada 4507:system 4132:  4078:  4031:  3870:  3847:  3839:  3797:  3777:  3756:  3736:  3715:  3691:  3586:: 23. 3479:  3451:Nature 3434:: 417. 3380:  3331:  3321:  3201:: 159. 3050:  2971:  2881:  2859:  2815:Nature 2794:  2784:  2718:  2662:  2654:  2607:  2538:  2509:  2406:  2144:  1704:in an 1631:, and 1518:quanta 1462:energy 1361:quartz 1330:, and 1328:carbon 1308:copper 1306:; for 1288:sodium 673:Here, 347:, and 230:metals 215:a wave 195:energy 178:, and 103:  96:  89:  82:  74:  6394:House 6389:Brain 6339:(son) 6315:(son) 5995:Works 5765:EDXRD 5687:XANES 5682:EXAFS 5672:ARPES 5619:3DXRD 5377:X-ray 5250:Sharp 5160:Spain 5140:Japan 5135:Italy 5130:India 5105:China 5100:Chile 4029:S2CID 3845:S2CID 3655:(PDF) 3477:S2CID 3378:JSTOR 3186:CVIII 3172:: 91. 3003:2 May 2792:S2CID 2716:S2CID 2690:arXiv 2660:S2CID 2634:arXiv 1913:high- 1900:Here 1658:X-ray 1646:ARPES 1391:ozone 1284:alloy 108:JSTOR 94:books 6128:I.Q. 5750:RIXS 5740:WAXS 5730:SAXS 5641:DFXM 5609:XDCT 5594:STXM 5589:XPCI 5577:XACT 4294:Java 4130:ISBN 4076:ISBN 4051:NIST 3868:ISBN 3837:PMID 3795:ISBN 3775:ISBN 3754:ISBN 3734:ISBN 3713:ISBN 3689:ISBN 3347:link 3329:OCLC 3319:ISBN 3170:CVII 3048:ISSN 3005:2020 2969:ISSN 2879:ISBN 2857:ISBN 2782:ISBN 2652:ISSN 2605:ISBN 2536:ISBN 2507:ISBN 2404:ISBN 2142:ISBN 1908:and 1757:Moon 1684:The 1611:'s " 1439:and 1374:and 1320:iron 1316:lead 1304:zinc 1302:and 852:> 442:max. 154:The 80:news 5755:XRS 5697:XFH 5692:EDS 5677:AES 5667:XPS 5662:XAS 5646:DXA 5614:DCT 5562:CDI 5245:REC 4191:". 4072:712 4019:hdl 4011:doi 3974:doi 3935:doi 3829:doi 3817:206 3588:doi 3555:doi 3516:doi 3467:doi 3409:doi 3370:doi 3261:doi 3249:328 3220:doi 3154:CVI 3134:doi 3114:CVI 3040:doi 3028:269 2961:doi 2949:267 2922:doi 2910:267 2831:doi 2774:doi 2751:doi 2708:doi 2644:doi 2573:doi 2561:136 2480:doi 2443:doi 2431:216 2305:doi 2260:doi 2238:."" 2212:doi 2200:313 1759:by 1660:or 1256:in 790:max 717:or 640:max 627:is 613:max 423:is 408:or 402:max 240:in 56:to 6491:: 5760:XS 5567:CT 5180:US 4128:. 4126:49 4074:. 4049:. 4027:. 4017:. 4009:. 3999:37 3997:. 3972:. 3962:46 3960:. 3956:. 3890:. 3843:. 3835:. 3827:. 3815:. 3700:^ 3582:. 3578:. 3553:. 3541:. 3537:. 3514:. 3504:32 3498:. 3475:. 3465:. 3455:77 3453:. 3449:. 3432:14 3430:. 3403:. 3399:. 3376:. 3364:. 3343:}} 3339:{{ 3327:. 3259:. 3247:. 3243:. 3214:. 3210:. 3199:21 3184:. 3168:. 3152:. 3130:26 3124:. 3112:. 3096:^ 3046:. 3038:. 3026:. 3022:. 2995:. 2981:^ 2967:. 2959:. 2947:. 2943:. 2920:. 2908:. 2902:. 2829:. 2817:. 2813:. 2790:. 2780:. 2749:. 2737:. 2714:. 2706:. 2698:. 2686:93 2684:. 2672:^ 2658:. 2650:. 2642:. 2630:75 2628:. 2603:. 2599:. 2585:^ 2571:. 2559:. 2530:. 2501:. 2478:. 2468:23 2466:. 2441:. 2429:. 2303:. 2291:. 2285:. 2283:"" 2258:. 2246:. 2240:. 2224:^ 2210:. 2198:. 2192:. 2180:^ 2164:. 2111:. 1808:, 1790:hυ 1662:UV 1627:, 1414:. 1326:, 1322:, 1318:, 1314:, 1310:, 1298:, 1294:, 1290:, 1282:, 1278:, 972:. 486:. 467:I— 432:eV 425:eV 335:, 315:. 304:. 264:. 174:, 67:. 6050:" 6011:" 5831:e 5824:t 5817:v 5355:e 5348:t 5341:v 4323:e 4316:t 4309:v 4296:) 4279:" 4261:" 4252:" 4167:" 4138:. 4107:. 4103:: 4084:. 4035:. 4021:: 4013:: 4005:: 3982:. 3976:: 3968:: 3941:. 3937:: 3894:. 3876:. 3851:. 3831:: 3823:: 3801:. 3760:. 3719:. 3695:. 3636:. 3615:. 3594:. 3590:: 3584:3 3563:. 3557:: 3549:: 3543:4 3522:. 3518:: 3510:: 3483:. 3469:: 3461:: 3415:. 3411:: 3405:5 3384:. 3372:: 3366:9 3349:) 3335:. 3267:. 3263:: 3255:: 3226:. 3222:: 3216:9 3140:. 3136:: 3054:. 3042:: 3034:: 3007:. 2975:. 2963:: 2955:: 2928:. 2924:: 2916:: 2887:. 2863:. 2839:. 2833:: 2825:: 2819:7 2798:. 2776:: 2757:. 2753:: 2745:: 2739:2 2722:. 2710:: 2702:: 2692:: 2666:. 2646:: 2636:: 2613:. 2579:. 2575:: 2567:: 2544:. 2515:. 2486:. 2482:: 2474:: 2449:. 2445:: 2437:: 2412:. 2369:. 2355:. 2341:. 2327:. 2313:. 2307:: 2299:: 2293:7 2281:h 2266:. 2262:: 2254:: 2248:4 2236:h 2218:. 2214:: 2206:: 2174:. 2150:. 2121:. 2097:. 2026:e 2019:t 2012:v 1923:Z 1915:Z 1910:n 1902:Z 1881:3 1877:E 1871:n 1867:Z 1857:t 1854:n 1851:a 1848:t 1845:s 1842:n 1839:o 1836:c 1832:= 1644:( 1210:. 1196:B 1192:E 1185:W 1176:h 1173:= 1168:k 1164:E 1141:F 1137:E 1070:B 1066:E 1056:h 1053:= 1048:k 1044:E 1021:B 1017:E 992:h 954:) 948:o 933:( 927:e 924:h 919:= 914:o 910:V 887:o 860:o 827:. 823:) 817:o 802:( 798:h 795:= 786:K 765:, 760:o 751:h 748:= 745:W 681:W 661:. 658:W 648:h 645:= 636:K 609:K 585:h 561:h 518:h 439:K 435:o 428:o 421:e 417:o 414:V 399:K 390:I 383:C 380:V 364:C 362:V 130:) 124:( 119:) 115:( 105:· 98:· 91:· 84:· 61:. 34:. 20:)

Index

Photoelectric
Photovoltaic effect

references
primary sources
secondary or tertiary sources
"Photoelectric effect"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

electrons
photons
electrons
electromagnetic radiation
ultraviolet light
condensed matter physics
solid state
quantum chemistry
electronic devices
classical electromagnetism
energy
intensity
kinetic energy
frequency
Albert Einstein
a wave

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑