Knowledge (XXG)

Direct process

Source 📝

710: 734: 722: 203:
Si. This intermediate facilitates the formation of the Si-Cl and Si-Me bonds. It is proposed that close proximity of the Si-Cl to a copper-chloromethane "adduct" allows for formation of the Me-SiCl units. Transfer of a second chloromethane allows for the release of the
243:. However, many other products are formed. Unlike most reactions, this distribution is actually desirable because the product isolation is very efficient. Each methylchlorosilane has specific and often substantial applications. Me 226:
In addition to copper, the catalyst optimally contains promoter metals that facilitate the reaction. Among the many promoter metals, zinc, tin, antimony, magnesium, calcium, bismuth, arsenic, and cadmium have been mentioned.
251:
is the most useful. It is the precursor for the majority of silicon products produced on an industrial scale. The other products are used in the preparation of siloxane polymers as well as specialized applications.
334:°C), the distillation utilizes columns with high separating capacities, connected in series. The purity of the products crucially affects the production of siloxane polymers, otherwise chain branching arises. 215:
The chain reaction can be terminated in many ways. These termination processes give rise to the other products that are seen in the reaction. For example, combining two Si-Cl groups gives the SiCl
368: 552: 455: 255:
Dichlorodimethylsilane is the major product of the reaction, as is expected, being obtained in about 70–90% yield. The next most abundant product is
496: 442: 419: 640: 385: 93:
Few companies actually carry out the Rochow process, because of the complex technology and has high capital requirements. Since the
545: 595: 402:
Pachaly, B.; Weis, J. (1997). "The Direct Process to Methylchlorosilanes: Reflections on Chemistry and Process Technology".
726: 62:. Although theoretically possible with any alkyl halide, the best results in terms of selectivity and yield occur with 760: 714: 695: 538: 78:
bar. These conditions allow for 90–98% conversion for silicon and 30–90% for chloromethane. Approximately 1.4 Mton of
52: 625: 520: 630: 575: 462: 605: 58:
The process involves copper-catalyzed reactions of alkyl halides with elemental silicon, which take place in a
670: 287: 173: 685: 635: 157: 79: 680: 256: 181: 59: 212:. Thus, copper is oxidized from the zero oxidation state and then reduced to regenerate the catalyst. 600: 580: 615: 733: 561: 514: 660: 655: 650: 585: 502: 492: 438: 415: 381: 765: 738: 645: 620: 407: 373: 48: 690: 191:
The mechanism of the direct process is still not well understood, despite much research.
665: 754: 675: 196: 102: 63: 44: 17: 590: 290:. Although the boiling points of the various chloromethylsilanes are similar (Me 98: 411: 506: 377: 235:
The major product for the direct process should be dichlorodimethylsilane, Me
486: 169: 47:
compounds on an industrial scale. It was first reported independently by
366:
Rösch, L.; John, P.; Reitmeier, R. (2003). "Organic Silicon Compounds".
437:
Elschenbroich, Christoph Organometallics VCH, Weinheim, Germany: 1992.
94: 530: 219:
group, which undergoes Cu-catalyzed reaction with MeCl to give MeSiCl
192: 491:. P. W. Atkins (5 ed.). Oxford: Oxford University Press. 2010. 534: 105:, the companies practicing this technology are referred to as 195:
plays an important role. The copper and silicon form
568: 263:), at 5–15% of the total. Other products include Me 433: 431: 369:Ullmann's Encyclopedia of Industrial Chemistry 546: 8: 43:is the most common technology for preparing 90:) is produced annually using this process. 553: 539: 531: 488:Shriver & Atkins' inorganic chemistry 361: 359: 357: 355: 353: 351: 349: 347: 343: 168:) is of particular value (precursor to 512: 456:"Basic Silicone Chemistry – A Review" 7: 721: 199:with the approximate composition Cu 117:The relevant reactions are (Me = CH 231:Product distribution and isolation 25: 732: 720: 709: 708: 70:Cl). Typical conditions are 300 1: 696:Volume combustion synthesis 404:Organosilicon Chemistry III 782: 626:Enantioselective synthesis 412:10.1002/9783527619900.ch79 704: 631:Fully automated synthesis 576:Artificial gene synthesis 606:Custom peptide synthesis 378:10.1002/14356007.a24_021 372:. Weinheim: Wiley-VCH. 288:fractional distillation 174:trimethylsilyl chloride 101:prior to reaction in a 686:Solvothermal synthesis 636:Hydrothermal synthesis 519:: CS1 maint: others ( 158:Dimethyldichlorosilane 113:Reaction and mechanism 80:dimethyldichlorosilane 681:Solid-phase synthesis 257:methyltrichlorosilane 188:) are also valuable. 182:methyltrichlorosilane 60:fluidized bed reactor 41:Müller-Rochow process 18:Müller-Rochow process 601:Convergent synthesis 581:Biomimetic synthesis 406:. pp. 478–483. 267:SiCl (2–4%), MeHSiCl 616:Divergent synthesis 761:Chemical synthesis 562:Chemical synthesis 275:HSiCl (0.1–0.5%). 31:, also called the 748: 747: 661:Peptide synthesis 656:Organic synthesis 651:One-pot synthesis 586:Bioretrosynthesis 498:978-0-19-923617-6 443:978-3-527-29390-2 421:978-3-527-29450-3 16:(Redirected from 773: 736: 724: 723: 712: 711: 646:Mechanosynthesis 621:Electrosynthesis 555: 548: 541: 532: 525: 524: 518: 510: 483: 477: 476: 474: 473: 467: 461:. Archived from 460: 452: 446: 435: 426: 425: 399: 393: 391: 363: 333: 325: 317: 309: 301: 125:x MeCl + Si → Me 107:silicon crushers 77: 73: 49:Eugene G. Rochow 33:direct synthesis 21: 781: 780: 776: 775: 774: 772: 771: 770: 751: 750: 749: 744: 700: 691:Total synthesis 564: 559: 529: 528: 511: 499: 485: 484: 480: 471: 469: 465: 458: 454: 453: 449: 436: 429: 422: 401: 400: 396: 388: 365: 364: 345: 340: 331: 329: 323: 321: 315: 313: 307: 305: 299: 297: 293: 286:is purified by 285: 281: 274: 270: 266: 262: 250: 246: 242: 238: 233: 222: 218: 211: 207: 202: 187: 179: 167: 163: 152: 148: 144: 140: 136: 132: 128: 120: 115: 89: 85: 75: 71: 69: 23: 22: 15: 12: 11: 5: 779: 777: 769: 768: 763: 753: 752: 746: 745: 743: 742: 730: 718: 705: 702: 701: 699: 698: 693: 688: 683: 678: 673: 671:Retrosynthesis 668: 666:Radiosynthesis 663: 658: 653: 648: 643: 638: 633: 628: 623: 618: 613: 611:Direct process 608: 603: 598: 596:Chemosynthesis 593: 588: 583: 578: 572: 570: 566: 565: 560: 558: 557: 550: 543: 535: 527: 526: 497: 478: 447: 427: 420: 394: 387:978-3527306732 386: 342: 341: 339: 336: 327: 319: 311: 303: 295: 291: 283: 279: 272: 271:(1–4%), and Me 268: 264: 260: 248: 244: 240: 236: 232: 229: 220: 216: 209: 205: 200: 197:intermetallics 185: 177: 165: 161: 155: 154: 150: 146: 142: 138: 134: 130: 126: 118: 114: 111: 87: 83: 67: 55:in the 1940s. 53:Richard Müller 37:Rochow process 29:direct process 24: 14: 13: 10: 9: 6: 4: 3: 2: 778: 767: 764: 762: 759: 758: 756: 741: 740: 735: 731: 729: 728: 719: 717: 716: 707: 706: 703: 697: 694: 692: 689: 687: 684: 682: 679: 677: 676:Semisynthesis 674: 672: 669: 667: 664: 662: 659: 657: 654: 652: 649: 647: 644: 642: 639: 637: 634: 632: 629: 627: 624: 622: 619: 617: 614: 612: 609: 607: 604: 602: 599: 597: 594: 592: 589: 587: 584: 582: 579: 577: 574: 573: 571: 567: 563: 556: 551: 549: 544: 542: 537: 536: 533: 522: 516: 508: 504: 500: 494: 490: 489: 482: 479: 468:on 2011-05-16 464: 457: 451: 448: 444: 440: 434: 432: 428: 423: 417: 413: 409: 405: 398: 395: 389: 383: 379: 375: 371: 370: 362: 360: 358: 356: 354: 352: 350: 348: 344: 337: 335: 289: 276: 258: 253: 230: 228: 224: 213: 198: 194: 189: 183: 175: 171: 159: 124: 123: 122: 112: 110: 108: 104: 103:fluidized bed 100: 96: 91: 81: 65: 64:chloromethane 61: 56: 54: 50: 46: 45:organosilicon 42: 38: 34: 30: 19: 737: 725: 713: 610: 591:Biosynthesis 487: 481: 470:. Retrieved 463:the original 450: 403: 397: 367: 277: 254: 234: 225: 214: 190: 156: 116: 106: 92: 57: 40: 36: 32: 28: 26: 318:°C, MeHSiCl 755:Categories 472:2010-01-26 338:References 302:°C, MeSiCl 180:SiCl) and 74:°C and 2–5 515:cite book 507:430678988 330:HSiCl: 35 170:silicones 715:Category 314:SiCl: 57 137:, MeSiCl 129:SiCl, Me 766:Silicon 727:Commons 259:(MeSiCl 184:(MeSiCl 172:), but 99:crushed 95:silicon 739:Portal 505:  495:  441:  418:  384:  332:  326:°C, Me 324:  316:  310:°C, Me 308:  300:  278:The Me 193:Copper 76:  72:  39:, and 641:LASiS 569:Types 466:(PDF) 459:(PDF) 521:link 503:OCLC 493:ISBN 439:ISBN 416:ISBN 382:ISBN 322:: 41 306:: 66 298:: 70 294:SiCl 282:SiCl 247:SiCl 239:SiCl 208:SiCl 164:SiCl 141:, Me 133:SiCl 86:SiCl 51:and 27:The 408:doi 374:doi 176:(Me 160:(Me 153:, … 121:): 97:is 82:(Me 66:(CH 757:: 517:}} 513:{{ 501:. 430:^ 414:. 380:. 346:^ 223:. 204:Me 149:Cl 145:Si 109:. 35:, 554:e 547:t 540:v 523:) 509:. 475:. 445:. 424:. 410:: 392:. 390:. 376:: 328:2 320:2 312:3 304:3 296:2 292:2 284:2 280:2 273:2 269:2 265:3 261:3 249:2 245:2 241:2 237:2 221:3 217:2 210:2 206:2 201:3 186:3 178:3 166:2 162:2 151:2 147:2 143:4 139:3 135:2 131:2 127:3 119:3 88:2 84:2 68:3 20:)

Index

Müller-Rochow process
organosilicon
Eugene G. Rochow
Richard Müller
fluidized bed reactor
chloromethane
dimethyldichlorosilane
silicon
crushed
fluidized bed
Dimethyldichlorosilane
silicones
trimethylsilyl chloride
methyltrichlorosilane
Copper
intermetallics
methyltrichlorosilane
fractional distillation








Ullmann's Encyclopedia of Industrial Chemistry
doi
10.1002/14356007.a24_021
ISBN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.