Knowledge (XXG)

Offset filtration

Source 📝

17: 983: 1160: 1195:
The offset filtration is also known to be stable with respect to perturbations of the underlying data set. This follows from the fact that the offset filtration can be viewed as a sublevel-set filtration with respect to the distance function of the metric space. The stability of sublevel-set
1191:
It is a well-known result of Niyogi, Smale, and Weinberger that given a sufficiently dense random point cloud sample of a smooth submanifold in Euclidean space, the union of balls of a certain radius recovers the homology of the object via a deformation retraction of the Čech complex.
67:. The construction was independently explored by Robins in 1998, and expanded to considering the collection of offsets indexed over a series of increasing scale parameters (i.e., a growing sequence of balls), in order to observe the stability of topological features with respect to 1566:-dimensional persistent homology barcode. While first stated in 2005, this sublevel stability result also follows directly from an algebraic stability property sometimes known as the "Isometry Theorem," which was proved in one direction in 2009, and the other direction in 2011. 1427: 885: 556: 1070: 1065: 615: 239: 353: 801: 803:
from the poset category of non-negative real numbers to the category of topological spaces and continuous maps. There are some advantages to the categorical viewpoint, as explored by Bubenik and others.
648: 474: 880: 1322: 1539: 1186: 681: 2079:
Kim, Jisu; Shin, Jaehyeok; Chazal, Frédéric; Rinaldo, Alessandro; Wasserman, Larry (2020-05-12). "Homotopy Reconstruction via the Cech Complex and the Vietoris-Rips Complex".
1317: 1220: 1499: 1564: 1291: 705: 413: 393: 263: 978:{\displaystyle \operatorname {Rips} _{\varepsilon }(X)\subset \operatorname {Cech} _{\varepsilon ^{\prime }}(X)\subset \operatorname {Rips} _{\varepsilon ^{\prime }}(X)} 1463: 1266: 159: 133: 1688: 1240: 1003: 733: 433: 373: 283: 101: 479: 71:. Homological persistence as introduced in these papers by Frosini and Robins was subsequently formalized by Edelsbrunner et al. in their seminal 2002 paper 1155:{\displaystyle \operatorname {Cech} _{\varepsilon }(X)\subset \operatorname {Rips} _{2\varepsilon }(X)\subset \operatorname {Cech} _{2\varepsilon }(X)} 847:
Although the Vietoris-Rips filtration is not identical to the Čech filtration in general, it is an approximation in a sense. In particular, for a set
1876:
Bauer, Ulrich; Kerber, Michael; Roll, Fabian; Rolle, Alexander (2023-02-16). "A unified view on the functorial nerve theorem and its variations".
1188:, implying that the Rips and Cech filtrations are 2-interleaved with respect to the interleaving distance as introduced by Chazal et al. in 2009. 1008: 561: 164: 2310: 2262: 2111: 2055: 1847: 1664: 288: 833: 741: 59:. Utilizing a union of balls to approximate the shape of geometric objects was first suggested by Frosini in 1992 in the context of 2638: 2235:
Anai, Hirokazu; Chazal, Frédéric; Glisse, Marc; Ike, Yuichi; Inakoshi, Hiroya; Tinarrage, Raphaël; Umeda, Yuhei (2020-05-26).
620: 1569:
A multiparameter extension of the offset filtration defined by considering points covered by multiple balls is given by the
75:
Since then, the offset filtration has become a primary example in the study of computational topology and data analysis.
2633: 1824:, Lecture Notes in Computer Science, vol. 9294, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 705–716, 2643: 829: 441: 56: 1422:{\displaystyle d_{B}({\mathcal {B}}_{i}(\gamma ),{\mathcal {B}}_{i}(\kappa ))\leq d_{\infty }(\gamma ,\kappa )} 850: 708: 1703: 1570: 1504: 20:
The offset filtration at six scale parameters on a point cloud sampled from two circles of different sizes.
2648: 1574: 837: 2289:
Chazal, Frédéric; Cohen-Steiner, David; Glisse, Marc; Guibas, Leonidas J.; Oudot, Steve Y. (2009-06-08).
1165: 653: 16: 2137:"An Introduction to Topological Data Analysis: Fundamental and Practical Aspects for Data Scientists" 1715: 1296: 1199: 1468: 824:
and the intersection of convex sets is convex. The nerve of the union of balls is also known as the
1816:
Halperin, Dan; Kerber, Michael; Shaharabani, Doron (2015), Bansal, Nikhil; Finocchi, Irene (eds.),
836:
to the Čech filtration (defined as the nerve of each offset across all scale parameters), so their
52: 1544: 1271: 690: 398: 378: 248: 2516: 2482: 2463: 2437: 2365: 2316: 2268: 2240: 2080: 2061: 2016: 1990: 1956: 1930: 1903: 1885: 1853: 1825: 1731: 1682: 242: 44: 2609: 2591: 2552: 2534: 2455: 2406: 2357: 2306: 2258: 2217: 2176: 2158: 2117: 2107: 2051: 2008: 1948: 1843: 1798: 1670: 1660: 1635: 1617: 1432: 684: 1245: 2599: 2583: 2542: 2526: 2447: 2396: 2347: 2298: 2250: 2207: 2166: 2148: 2043: 2000: 1940: 1895: 1835: 1788: 1750: 1723: 1625: 1607: 138: 106: 64: 825: 551:{\displaystyle {\mathcal {O}}(X):=\{X^{(\varepsilon )}\mid \varepsilon \in [0,\infty )\}} 2547: 2504: 2035: 1817: 1719: 2604: 2571: 2171: 2136: 1922: 1630: 1595: 1225: 988: 718: 418: 358: 268: 86: 2627: 2467: 2425: 2272: 2020: 1978: 1960: 1907: 1735: 817: 813: 2369: 2065: 2320: 1857: 2426:"The Theory of the Interleaving Distance on Multidimensional Persistence Modules" 2290: 1899: 1839: 841: 60: 2587: 2530: 2336:"Finding the Homology of Submanifolds with High Confidence from Random Samples" 1944: 2451: 2401: 2384: 2352: 2335: 2254: 2004: 1793: 1776: 1293:-dimensional homology modules on the sublevel-set filtrations with respect to 821: 2595: 2538: 2459: 2410: 2361: 2221: 2162: 2153: 2121: 2040:
Proceedings of the ninth annual symposium on Computational geometry - SCG '93
2012: 1952: 1802: 1674: 1621: 1612: 2503:
Corbet, René; Kerber, Michael; Lesnick, Michael; Osang, Georg (2023-02-20).
2302: 2195: 68: 2613: 2556: 2212: 2180: 1639: 2295:
Proceedings of the twenty-fifth annual symposium on Computational geometry
2101: 2047: 1654: 1196:
filtrations can be stated as follows: Given any two real-valued functions
2106:. J. Harer. Providence, R.I.: American Mathematical Society. p. 61. 738:
Note that it is also possible to view the offset filtration as a functor
48: 40: 1060:{\displaystyle \varepsilon ^{\prime }/\varepsilon \geq {\sqrt {2d/d+1}}} 610:{\displaystyle X^{(\varepsilon )}\subseteq X^{(\varepsilon ^{\prime })}} 234:{\displaystyle B(x,\varepsilon )=\{y\in X\mid d(x,y)\leq \varepsilon \}} 2042:. San Diego, California, United States: ACM Press. pp. 218–231. 1727: 1573:, and has also been an object of interest in persistent homology and 2521: 2245: 2085: 1935: 1890: 1708:
Intelligent Robots and Computer Vision X: Algorithms and Techniques
348:{\textstyle X^{(\varepsilon )}:=\bigcup _{x\in X}B(x,\varepsilon )} 2442: 1995: 1830: 15: 2383:
Cohen-Steiner, David; Edelsbrunner, Herbert; Harer, John (2007).
51:
features of a data set. The offset filtration commonly arises in
1501:
denote the bottleneck and sup-norm distances, respectively, and
796:{\displaystyle {\mathcal {O}}(X):[0,\infty )\to \mathbf {Top} } 1596:"Topology Applied to Machine Learning: From Global to Local" 1511: 1368: 1342: 1017: 956: 924: 747: 659: 635: 597: 485: 2334:
Niyogi, Partha; Smale, Stephen; Weinberger, Shmuel (2008).
1702:
Frosini, Patrizio (1992-02-01). Casasent, David P. (ed.).
2483:"Lecture notes for AMAT 840: Multiparameter Persistence" 643:{\displaystyle \varepsilon \leq \varepsilon ^{\prime }} 291: 2291:"Proximity of persistence modules and their diagrams" 2196:"Coverage in sensor networks via persistent homology" 1656:
A short course in computational geometry and topology
1547: 1507: 1471: 1435: 1325: 1299: 1274: 1248: 1228: 1202: 1168: 1073: 1011: 991: 888: 853: 744: 721: 693: 656: 623: 564: 482: 444: 421: 401: 381: 361: 271: 251: 167: 141: 109: 89: 1921:
Blumberg, Andrew J.; Lesnick, Michael (2022-10-17).
1558: 1533: 1493: 1457: 1421: 1311: 1285: 1260: 1234: 1214: 1180: 1154: 1059: 997: 977: 874: 795: 727: 699: 675: 642: 609: 550: 468: 438:By considering the collection of offsets over all 427: 407: 387: 367: 347: 277: 257: 233: 153: 127: 95: 2572:"The Multi-Cover Persistence of Euclidean Balls" 1751:"Towards computing homology from approximations" 1923:"Stability of 2-Parameter Persistent Homology" 2103:Computational topology : an introduction 8: 2570:Edelsbrunner, Herbert; Osang, Georg (2021). 2194:de Silva, Vin; Ghrist, Robert (2007-04-25). 1777:"Topological Persistence and Simplification" 545: 502: 228: 189: 2135:Chazal, Frédéric; Michel, Bertrand (2021). 1977:Bubenik, Peter; Scott, Jonathan A. (2014). 1775:Edelsbrunner; Letscher; Zomorodian (2002). 1319:are point-wise finite dimensional, we have 816:shows that the union of balls has the same 469:{\displaystyle \varepsilon \in [0,\infty )} 73:Topological Persistence and Simplification. 1687:: CS1 maint: location missing publisher ( 2603: 2546: 2520: 2441: 2400: 2351: 2297:. Aarhus Denmark: ACM. pp. 237–246. 2244: 2211: 2170: 2152: 2084: 1994: 1979:"Categorification of Persistent Homology" 1934: 1889: 1829: 1818:"The Offset Filtration of Convex Objects" 1792: 1629: 1611: 1551: 1546: 1516: 1510: 1509: 1506: 1476: 1470: 1440: 1434: 1398: 1373: 1367: 1366: 1347: 1341: 1340: 1330: 1324: 1298: 1278: 1273: 1247: 1227: 1201: 1167: 1131: 1103: 1078: 1072: 1067:. In general metric spaces, we have that 1041: 1033: 1022: 1016: 1010: 990: 955: 950: 923: 918: 893: 887: 875:{\displaystyle X\subset \mathbb {R} ^{d}} 866: 862: 861: 852: 782: 746: 745: 743: 720: 692: 658: 657: 655: 634: 622: 596: 588: 569: 563: 509: 484: 483: 481: 443: 420: 400: 380: 360: 315: 296: 290: 270: 250: 166: 140: 108: 88: 2430:Foundations of Computational Mathematics 1927:Foundations of Computational Mathematics 2505:"Computing the Multicover Bifiltration" 2036:"The union of balls and its dual shape" 1586: 985:between the Rips and Čech complexes on 1680: 2576:Discrete & Computational Geometry 2509:Discrete & Computational Geometry 2389:Discrete & Computational Geometry 2340:Discrete & Computational Geometry 2284: 2282: 1983:Discrete & Computational Geometry 1781:Discrete & Computational Geometry 1534:{\displaystyle {\mathcal {B}}_{i}(-)} 820:as its nerve, since closed balls are 47:used to detect the size and scale of 7: 2141:Frontiers in Artificial Intelligence 1972: 1970: 1704:"Measuring shapes by size functions" 1600:Frontiers in Artificial Intelligence 2385:"Stability of Persistence Diagrams" 1594:Adams, Henry; Moy, Michael (2021). 832:Therefore the offset filtration is 2200:Algebraic & Geometric Topology 1477: 1399: 773: 539: 460: 103:be a finite set in a metric space 14: 1181:{\displaystyle \varepsilon >0} 676:{\displaystyle {\mathcal {O}}(X)} 789: 786: 783: 2239:. Abel Symposia. Vol. 15. 1312:{\displaystyle \gamma ,\kappa } 1215:{\displaystyle \gamma ,\kappa } 828:, which is a subcomplex of the 2100:Edelsbrunner, Herbert (2010). 2034:Edelsbrunner, Herbert (1993). 1749:Robins, Vanessa (1999-01-01). 1653:Edelsbrunner, Herbert (2014). 1528: 1522: 1494:{\displaystyle d_{\infty }(-)} 1488: 1482: 1452: 1446: 1416: 1404: 1388: 1385: 1379: 1359: 1353: 1336: 1149: 1143: 1121: 1115: 1093: 1087: 972: 966: 940: 934: 908: 902: 882:we have a chain of inclusions 812:A standard application of the 779: 776: 764: 758: 752: 670: 664: 602: 589: 576: 570: 542: 530: 516: 510: 496: 490: 463: 451: 375:with respect to the parameter 342: 330: 303: 297: 219: 207: 183: 171: 122: 110: 1: 1900:10.1016/j.exmath.2023.04.005 1840:10.1007/978-3-662-48350-3_59 1559:{\displaystyle i{\text{th}}} 1286:{\displaystyle i{\text{th}}} 700:{\displaystyle \varepsilon } 408:{\displaystyle \varepsilon } 388:{\displaystyle \varepsilon } 258:{\displaystyle \varepsilon } 2665: 2588:10.1007/s00454-021-00281-9 2531:10.1007/s00454-022-00476-8 2490:University at Albany, SUNY 1945:10.1007/s10208-022-09576-6 476:we get a family of spaces 355:is known as the offset of 2481:Lesnick, Michael (2023). 2452:10.1007/s10208-015-9255-y 2424:Lesnick, Michael (2015). 2402:10.1007/s00454-006-1276-5 2353:10.1007/s00454-008-9053-2 2255:10.1007/978-3-030-43408-3 2237:Topological Data Analysis 2005:10.1007/s00454-014-9573-x 1878:Expositiones Mathematicae 1794:10.1007/s00454-002-2885-2 57:topological data analysis 2154:10.3389/frai.2021.667963 1613:10.3389/frai.2021.668302 1458:{\displaystyle d_{B}(-)} 2303:10.1145/1542362.1542407 1714:. Boston, MA: 122–133. 1571:multicover bifiltration 1261:{\displaystyle i\geq 0} 1222:on a topological space 2639:Computational topology 2213:10.2140/agt.2007.7.339 1575:computational geometry 1560: 1535: 1495: 1459: 1423: 1313: 1287: 1262: 1236: 1216: 1182: 1156: 1061: 999: 979: 876: 830:Vietoris-Rips complex. 797: 729: 701: 683:is a family of nested 677: 644: 611: 552: 470: 429: 409: 389: 369: 349: 279: 259: 235: 155: 154:{\displaystyle x\in X} 129: 97: 21: 2048:10.1145/160985.161139 1822:Algorithms - ESA 2015 1561: 1536: 1496: 1460: 1424: 1314: 1288: 1263: 1237: 1217: 1183: 1157: 1062: 1000: 980: 877: 798: 730: 702: 678: 645: 612: 553: 471: 430: 410: 390: 370: 350: 280: 260: 236: 156: 130: 128:{\displaystyle (M,d)} 98: 19: 1758:Topology Proceedings 1659:. Cham. p. 35. 1545: 1505: 1469: 1433: 1323: 1297: 1272: 1246: 1226: 1200: 1166: 1071: 1009: 989: 886: 851: 742: 719: 691: 654: 621: 562: 480: 442: 419: 399: 379: 359: 289: 269: 249: 165: 139: 107: 87: 2634:Applied mathematics 1720:1992SPIE.1607..122F 53:persistent homology 2644:Geometric topology 1556: 1531: 1491: 1455: 1419: 1309: 1283: 1258: 1242:such that for all 1232: 1212: 1178: 1152: 1057: 995: 975: 872: 793: 725: 707:, which defines a 697: 685:topological spaces 673: 640: 607: 548: 466: 425: 405: 385: 365: 345: 326: 275: 255: 231: 151: 125: 93: 22: 2312:978-1-60558-501-7 2264:978-3-030-43407-6 2113:978-0-8218-4925-5 2057:978-0-89791-582-3 1849:978-3-662-48349-7 1666:978-3-319-05957-0 1554: 1281: 1235:{\displaystyle T} 1055: 998:{\displaystyle X} 834:weakly equivalent 728:{\displaystyle X} 713:offset filtration 428:{\displaystyle X} 368:{\displaystyle X} 311: 285:. Then the union 278:{\displaystyle x} 96:{\displaystyle X} 55:and the field of 28:(also called the 26:offset filtration 2656: 2618: 2617: 2607: 2582:(4): 1296–1313. 2567: 2561: 2560: 2550: 2524: 2500: 2494: 2493: 2487: 2478: 2472: 2471: 2445: 2421: 2415: 2414: 2404: 2380: 2374: 2373: 2355: 2346:(1–3): 419–441. 2331: 2325: 2324: 2286: 2277: 2276: 2248: 2232: 2226: 2225: 2215: 2191: 2185: 2184: 2174: 2156: 2132: 2126: 2125: 2097: 2091: 2090: 2088: 2076: 2070: 2069: 2031: 2025: 2024: 1998: 1974: 1965: 1964: 1938: 1918: 1912: 1911: 1893: 1873: 1867: 1866: 1865: 1864: 1833: 1813: 1807: 1806: 1796: 1772: 1766: 1765: 1755: 1746: 1740: 1739: 1728:10.1117/12.57059 1699: 1693: 1692: 1686: 1678: 1650: 1644: 1643: 1633: 1615: 1591: 1565: 1563: 1562: 1557: 1555: 1552: 1540: 1538: 1537: 1532: 1521: 1520: 1515: 1514: 1500: 1498: 1497: 1492: 1481: 1480: 1464: 1462: 1461: 1456: 1445: 1444: 1428: 1426: 1425: 1420: 1403: 1402: 1378: 1377: 1372: 1371: 1352: 1351: 1346: 1345: 1335: 1334: 1318: 1316: 1315: 1310: 1292: 1290: 1289: 1284: 1282: 1279: 1267: 1265: 1264: 1259: 1241: 1239: 1238: 1233: 1221: 1219: 1218: 1213: 1187: 1185: 1184: 1179: 1161: 1159: 1158: 1153: 1139: 1138: 1111: 1110: 1083: 1082: 1066: 1064: 1063: 1058: 1056: 1045: 1034: 1026: 1021: 1020: 1004: 1002: 1001: 996: 984: 982: 981: 976: 962: 961: 960: 959: 930: 929: 928: 927: 898: 897: 881: 879: 878: 873: 871: 870: 865: 802: 800: 799: 794: 792: 751: 750: 734: 732: 731: 726: 706: 704: 703: 698: 682: 680: 679: 674: 663: 662: 649: 647: 646: 641: 639: 638: 616: 614: 613: 608: 606: 605: 601: 600: 580: 579: 557: 555: 554: 549: 520: 519: 489: 488: 475: 473: 472: 467: 434: 432: 431: 426: 414: 412: 411: 406: 394: 392: 391: 386: 374: 372: 371: 366: 354: 352: 351: 346: 325: 307: 306: 284: 282: 281: 276: 264: 262: 261: 256: 240: 238: 237: 232: 160: 158: 157: 152: 134: 132: 131: 126: 102: 100: 99: 94: 34:"union-of-disks" 30:"union-of-balls" 2664: 2663: 2659: 2658: 2657: 2655: 2654: 2653: 2624: 2623: 2622: 2621: 2569: 2568: 2564: 2502: 2501: 2497: 2485: 2480: 2479: 2475: 2423: 2422: 2418: 2382: 2381: 2377: 2333: 2332: 2328: 2313: 2288: 2287: 2280: 2265: 2234: 2233: 2229: 2193: 2192: 2188: 2134: 2133: 2129: 2114: 2099: 2098: 2094: 2078: 2077: 2073: 2058: 2033: 2032: 2028: 1976: 1975: 1968: 1920: 1919: 1915: 1875: 1874: 1870: 1862: 1860: 1850: 1815: 1814: 1810: 1774: 1773: 1769: 1753: 1748: 1747: 1743: 1701: 1700: 1696: 1679: 1667: 1652: 1651: 1647: 1593: 1592: 1588: 1583: 1543: 1542: 1508: 1503: 1502: 1472: 1467: 1466: 1436: 1431: 1430: 1394: 1365: 1339: 1326: 1321: 1320: 1295: 1294: 1270: 1269: 1244: 1243: 1224: 1223: 1198: 1197: 1164: 1163: 1127: 1099: 1074: 1069: 1068: 1012: 1007: 1006: 987: 986: 951: 946: 919: 914: 889: 884: 883: 860: 849: 848: 838:homology groups 810: 740: 739: 717: 716: 689: 688: 652: 651: 630: 619: 618: 592: 584: 565: 560: 559: 505: 478: 477: 440: 439: 417: 416: 397: 396: 395:(or simply the 377: 376: 357: 356: 292: 287: 286: 267: 266: 247: 246: 163: 162: 137: 136: 105: 104: 85: 84: 81: 65:Euclidean space 39:) is a growing 12: 11: 5: 2662: 2660: 2652: 2651: 2646: 2641: 2636: 2626: 2625: 2620: 2619: 2562: 2515:(2): 376–405. 2495: 2473: 2436:(3): 613–650. 2416: 2395:(1): 103–120. 2375: 2326: 2311: 2278: 2263: 2227: 2206:(1): 339–358. 2186: 2127: 2112: 2092: 2071: 2056: 2026: 1989:(3): 600–627. 1966: 1913: 1868: 1848: 1808: 1787:(4): 511–533. 1767: 1741: 1694: 1665: 1645: 1585: 1584: 1582: 1579: 1550: 1530: 1527: 1524: 1519: 1513: 1490: 1487: 1484: 1479: 1475: 1454: 1451: 1448: 1443: 1439: 1418: 1415: 1412: 1409: 1406: 1401: 1397: 1393: 1390: 1387: 1384: 1381: 1376: 1370: 1364: 1361: 1358: 1355: 1350: 1344: 1338: 1333: 1329: 1308: 1305: 1302: 1277: 1257: 1254: 1251: 1231: 1211: 1208: 1205: 1177: 1174: 1171: 1151: 1148: 1145: 1142: 1137: 1134: 1130: 1126: 1123: 1120: 1117: 1114: 1109: 1106: 1102: 1098: 1095: 1092: 1089: 1086: 1081: 1077: 1054: 1051: 1048: 1044: 1040: 1037: 1032: 1029: 1025: 1019: 1015: 994: 974: 971: 968: 965: 958: 954: 949: 945: 942: 939: 936: 933: 926: 922: 917: 913: 910: 907: 904: 901: 896: 892: 869: 864: 859: 856: 809: 806: 791: 788: 785: 781: 778: 775: 772: 769: 766: 763: 760: 757: 754: 749: 724: 696: 672: 669: 666: 661: 637: 633: 629: 626: 604: 599: 595: 591: 587: 583: 578: 575: 572: 568: 547: 544: 541: 538: 535: 532: 529: 526: 523: 518: 515: 512: 508: 504: 501: 498: 495: 492: 487: 465: 462: 459: 456: 453: 450: 447: 424: 404: 384: 364: 344: 341: 338: 335: 332: 329: 324: 321: 318: 314: 310: 305: 302: 299: 295: 274: 254: 230: 227: 224: 221: 218: 215: 212: 209: 206: 203: 200: 197: 194: 191: 188: 185: 182: 179: 176: 173: 170: 150: 147: 144: 135:, and for any 124: 121: 118: 115: 112: 92: 80: 77: 13: 10: 9: 6: 4: 3: 2: 2661: 2650: 2649:Data analysis 2647: 2645: 2642: 2640: 2637: 2635: 2632: 2631: 2629: 2615: 2611: 2606: 2601: 2597: 2593: 2589: 2585: 2581: 2577: 2573: 2566: 2563: 2558: 2554: 2549: 2544: 2540: 2536: 2532: 2528: 2523: 2518: 2514: 2510: 2506: 2499: 2496: 2491: 2484: 2477: 2474: 2469: 2465: 2461: 2457: 2453: 2449: 2444: 2439: 2435: 2431: 2427: 2420: 2417: 2412: 2408: 2403: 2398: 2394: 2390: 2386: 2379: 2376: 2371: 2367: 2363: 2359: 2354: 2349: 2345: 2341: 2337: 2330: 2327: 2322: 2318: 2314: 2308: 2304: 2300: 2296: 2292: 2285: 2283: 2279: 2274: 2270: 2266: 2260: 2256: 2252: 2247: 2242: 2238: 2231: 2228: 2223: 2219: 2214: 2209: 2205: 2201: 2197: 2190: 2187: 2182: 2178: 2173: 2168: 2164: 2160: 2155: 2150: 2146: 2142: 2138: 2131: 2128: 2123: 2119: 2115: 2109: 2105: 2104: 2096: 2093: 2087: 2082: 2075: 2072: 2067: 2063: 2059: 2053: 2049: 2045: 2041: 2037: 2030: 2027: 2022: 2018: 2014: 2010: 2006: 2002: 1997: 1992: 1988: 1984: 1980: 1973: 1971: 1967: 1962: 1958: 1954: 1950: 1946: 1942: 1937: 1932: 1928: 1924: 1917: 1914: 1909: 1905: 1901: 1897: 1892: 1887: 1883: 1879: 1872: 1869: 1859: 1855: 1851: 1845: 1841: 1837: 1832: 1827: 1823: 1819: 1812: 1809: 1804: 1800: 1795: 1790: 1786: 1782: 1778: 1771: 1768: 1763: 1759: 1752: 1745: 1742: 1737: 1733: 1729: 1725: 1721: 1717: 1713: 1709: 1705: 1698: 1695: 1690: 1684: 1676: 1672: 1668: 1662: 1658: 1657: 1649: 1646: 1641: 1637: 1632: 1627: 1623: 1619: 1614: 1609: 1605: 1601: 1597: 1590: 1587: 1580: 1578: 1576: 1572: 1567: 1548: 1525: 1517: 1485: 1473: 1449: 1441: 1437: 1413: 1410: 1407: 1395: 1391: 1382: 1374: 1362: 1356: 1348: 1331: 1327: 1306: 1303: 1300: 1275: 1255: 1252: 1249: 1229: 1209: 1206: 1203: 1193: 1189: 1175: 1172: 1169: 1146: 1140: 1135: 1132: 1128: 1124: 1118: 1112: 1107: 1104: 1100: 1096: 1090: 1084: 1079: 1075: 1052: 1049: 1046: 1042: 1038: 1035: 1030: 1027: 1023: 1013: 992: 969: 963: 952: 947: 943: 937: 931: 920: 915: 911: 905: 899: 894: 890: 867: 857: 854: 845: 843: 839: 835: 831: 827: 823: 819: 818:homotopy type 815: 814:nerve theorem 807: 805: 770: 767: 761: 755: 736: 722: 714: 711:known as the 710: 694: 687:indexed over 686: 667: 631: 627: 624: 593: 585: 581: 573: 566: 536: 533: 527: 524: 521: 513: 506: 499: 493: 457: 454: 448: 445: 436: 422: 402: 382: 362: 339: 336: 333: 327: 322: 319: 316: 312: 308: 300: 293: 272: 252: 244: 225: 222: 216: 213: 210: 204: 201: 198: 195: 192: 186: 180: 177: 174: 168: 148: 145: 142: 119: 116: 113: 90: 78: 76: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 35: 31: 27: 18: 2579: 2575: 2565: 2512: 2508: 2498: 2489: 2476: 2433: 2429: 2419: 2392: 2388: 2378: 2343: 2339: 2329: 2294: 2236: 2230: 2203: 2199: 2189: 2144: 2140: 2130: 2102: 2095: 2074: 2039: 2029: 1986: 1982: 1926: 1916: 1881: 1877: 1871: 1861:, retrieved 1821: 1811: 1784: 1780: 1770: 1761: 1757: 1744: 1711: 1707: 1697: 1655: 1648: 1603: 1599: 1589: 1568: 1541:denotes the 1194: 1190: 846: 826:Čech complex 811: 737: 712: 437: 265:centered at 82: 72: 61:submanifolds 45:metric balls 36: 33: 29: 25: 23: 415:-offset of 243:closed ball 49:topological 2628:Categories 2522:2103.07823 2246:1811.04757 2147:: 667963. 2086:1903.06955 1936:2010.09628 1891:2203.03571 1863:2023-02-25 1764:: 503–532. 1581:References 842:isomorphic 808:Properties 709:filtration 245:of radius 79:Definition 69:attractors 37:filtration 2596:0179-5376 2539:0179-5376 2468:254158297 2460:1615-3375 2443:1106.5305 2411:0179-5376 2362:0179-5376 2273:242491854 2222:1472-2739 2163:2624-8212 2122:427757156 2021:254027425 2013:0179-5376 1996:1205.3669 1961:224705357 1953:1615-3375 1908:247291819 1831:1407.6132 1803:0179-5376 1736:121295508 1683:cite book 1675:879343648 1622:2624-8212 1526:− 1486:− 1478:∞ 1450:− 1414:κ 1408:γ 1400:∞ 1392:≤ 1383:κ 1357:γ 1307:κ 1301:γ 1253:≥ 1210:κ 1204:γ 1170:ε 1141:⁡ 1136:ε 1125:⊂ 1113:⁡ 1108:ε 1097:⊂ 1085:⁡ 1080:ε 1031:≥ 1028:ε 1018:′ 1014:ε 1005:whenever 964:⁡ 957:′ 953:ε 944:⊂ 932:⁡ 925:′ 921:ε 912:⊂ 900:⁡ 895:ε 858:⊂ 780:→ 774:∞ 695:ε 636:′ 632:ε 628:≤ 625:ε 617:whenever 598:′ 594:ε 582:⊆ 574:ε 540:∞ 528:∈ 525:ε 522:∣ 514:ε 461:∞ 449:∈ 446:ε 403:ε 383:ε 340:ε 320:∈ 313:⋃ 301:ε 253:ε 226:ε 223:≤ 202:∣ 196:∈ 181:ε 146:∈ 2614:34720303 2557:37581017 2548:10423148 2181:34661095 1884:(4): 8. 1640:34056580 1162:for all 41:sequence 2605:8550220 2370:1788129 2172:8511823 2066:9599628 1716:Bibcode 1631:8160457 241:be the 2612:  2602:  2594:  2555:  2545:  2537:  2466:  2458:  2409:  2368:  2360:  2321:840484 2319:  2309:  2271:  2261:  2220:  2179:  2169:  2161:  2120:  2110:  2064:  2054:  2019:  2011:  1959:  1951:  1906:  1858:660889 1856:  1846:  1801:  1734:  1673:  1663:  1638:  1628:  1620:  1429:where 1268:, the 822:convex 558:where 2517:arXiv 2486:(PDF) 2464:S2CID 2438:arXiv 2366:S2CID 2317:S2CID 2269:S2CID 2241:arXiv 2081:arXiv 2062:S2CID 2017:S2CID 1991:arXiv 1957:S2CID 1931:arXiv 1904:S2CID 1886:arXiv 1854:S2CID 1826:arXiv 1754:(PDF) 1732:S2CID 1606:: 2. 650:. So 2610:PMID 2592:ISSN 2553:PMID 2535:ISSN 2456:ISSN 2407:ISSN 2358:ISSN 2307:ISBN 2259:ISBN 2218:ISSN 2177:PMID 2159:ISSN 2118:OCLC 2108:ISBN 2052:ISBN 2009:ISSN 1949:ISSN 1844:ISBN 1799:ISSN 1712:1607 1689:link 1671:OCLC 1661:ISBN 1636:PMID 1618:ISSN 1465:and 1173:> 1129:Cech 1101:Rips 1076:Cech 948:Rips 916:Cech 891:Rips 840:are 161:let 83:Let 24:The 2600:PMC 2584:doi 2543:PMC 2527:doi 2448:doi 2397:doi 2348:doi 2299:doi 2251:doi 2208:doi 2167:PMC 2149:doi 2044:doi 2001:doi 1941:doi 1896:doi 1836:doi 1789:doi 1724:doi 1626:PMC 1608:doi 844:. 715:on 435:). 63:of 43:of 32:or 2630:: 2608:. 2598:. 2590:. 2580:65 2578:. 2574:. 2551:. 2541:. 2533:. 2525:. 2513:70 2511:. 2507:. 2488:. 2462:. 2454:. 2446:. 2434:15 2432:. 2428:. 2405:. 2393:37 2391:. 2387:. 2364:. 2356:. 2344:39 2342:. 2338:. 2315:. 2305:. 2293:. 2281:^ 2267:. 2257:. 2249:. 2216:. 2202:. 2198:. 2175:. 2165:. 2157:. 2143:. 2139:. 2116:. 2060:. 2050:. 2038:. 2015:. 2007:. 1999:. 1987:51 1985:. 1981:. 1969:^ 1955:. 1947:. 1939:. 1929:. 1925:. 1902:. 1894:. 1882:41 1880:. 1852:, 1842:, 1834:, 1820:, 1797:. 1785:28 1783:. 1779:. 1762:24 1760:. 1756:. 1730:. 1722:. 1710:. 1706:. 1685:}} 1681:{{ 1669:. 1634:. 1624:. 1616:. 1602:. 1598:. 1577:. 1553:th 1280:th 735:. 500::= 309::= 2616:. 2586:: 2559:. 2529:: 2519:: 2492:. 2470:. 2450:: 2440:: 2413:. 2399:: 2372:. 2350:: 2323:. 2301:: 2275:. 2253:: 2243:: 2224:. 2210:: 2204:7 2183:. 2151:: 2145:4 2124:. 2089:. 2083:: 2068:. 2046:: 2023:. 2003:: 1993:: 1963:. 1943:: 1933:: 1910:. 1898:: 1888:: 1838:: 1828:: 1805:. 1791:: 1738:. 1726:: 1718:: 1691:) 1677:. 1642:. 1610:: 1604:4 1549:i 1529:) 1523:( 1518:i 1512:B 1489:) 1483:( 1474:d 1453:) 1447:( 1442:B 1438:d 1417:) 1411:, 1405:( 1396:d 1389:) 1386:) 1380:( 1375:i 1369:B 1363:, 1360:) 1354:( 1349:i 1343:B 1337:( 1332:B 1328:d 1304:, 1276:i 1256:0 1250:i 1230:T 1207:, 1176:0 1150:) 1147:X 1144:( 1133:2 1122:) 1119:X 1116:( 1105:2 1094:) 1091:X 1088:( 1053:1 1050:+ 1047:d 1043:/ 1039:d 1036:2 1024:/ 993:X 973:) 970:X 967:( 941:) 938:X 935:( 909:) 906:X 903:( 868:d 863:R 855:X 790:p 787:o 784:T 777:) 771:, 768:0 765:[ 762:: 759:) 756:X 753:( 748:O 723:X 671:) 668:X 665:( 660:O 603:) 590:( 586:X 577:) 571:( 567:X 546:} 543:) 537:, 534:0 531:[ 517:) 511:( 507:X 503:{ 497:) 494:X 491:( 486:O 464:) 458:, 455:0 452:[ 423:X 363:X 343:) 337:, 334:x 331:( 328:B 323:X 317:x 304:) 298:( 294:X 273:x 229:} 220:) 217:y 214:, 211:x 208:( 205:d 199:X 193:y 190:{ 187:= 184:) 178:, 175:x 172:( 169:B 149:X 143:x 123:) 120:d 117:, 114:M 111:( 91:X

Index


sequence
metric balls
topological
persistent homology
topological data analysis
submanifolds
Euclidean space
attractors
closed ball
topological spaces
filtration
nerve theorem
homotopy type
convex
Čech complex
Vietoris-Rips complex.
weakly equivalent
homology groups
isomorphic
multicover bifiltration
computational geometry
"Topology Applied to Machine Learning: From Global to Local"
doi
10.3389/frai.2021.668302
ISSN
2624-8212
PMC
8160457
PMID

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.