Knowledge

Average crossing number

Source 📝

22: 769: 502: 214: 383: 314: 561: 899: 98:
in a knot diagram of the knot obtained by projection onto the plane orthogonal to the direction. The average crossing number is often seen in the context of
874:
Diao, Yuanan; Ernst, Claus (2001). "The Crossing Numbers of Thick Knots and Links". In Jorgr Alberto Calvo; Kennrth C. Millet; Eric J. Rawdon (eds.).
519:. This will count, for a generic direction, the number of crossings in a knot diagram given by projecting along that direction. Using the 917: 883: 65: 43: 394: 151: 764:{\displaystyle {\frac {1}{4\pi }}\int _{T^{2}}{\frac {|(f'(s)\times f'(t))\cdot (f(s)-f(t))|}{|(f(s)-f(t))|^{3}}}\,ds\,dt.} 555:. Instead of integrating this form, integrate the absolute value of it, to avoid the sign issue. The resulting integral is 329: 268: 95: 227:. The integral makes sense because the set of directions where projection doesn't give a knot diagram is a set of 36: 30: 912:. K&E Series on Knots and Everything. Vol. 33. Singapore: World Scientific Publixhing Co. Pte. Ltd. 252: 47: 937: 845:
Ernst, C.; Por, A. (2012), "Average crossing number, total curvature and ropelength of thick knots",
99: 893: 91: 536: 913: 879: 854: 825: 240: 866: 837: 862: 833: 520: 829: 931: 251:
A less intuitive but computationally useful definition is an integral similar to the
258:
A derivation analogous to the derivation of the linking integral will be given. Let
228: 126: 816:
Buck, Gregory; Simon, Jonathan (1999), "Thickness and crossing number of knots",
142: 115: 83: 79: 858: 121:
giving the direction, orthogonal projection onto the plane perpendicular to
515:.) We want to count the number of times a point (direction) is covered by 224: 138: 523:, as in the linking integral, would count the number of crossings with 876:
Physical Knots: Knotting, Linking, and Folding Geometric Objects in R
528: 320: 878:. Contemporary Mathematics. Vol. 304. Las Vegas, Nevada. 15: 507:(Technically, one needs to avoid the diagonal: points where 497:{\displaystyle g(s,t)={\frac {f(s)-f(t)}{|f(s)-f(t)|}}.} 209:{\displaystyle {\frac {1}{4\pi }}\int _{S^{2}}n(v)\,dA} 137:). The average crossing number is then defined as the 564: 397: 332: 271: 154: 378:{\displaystyle g:S^{1}\times S^{1}\rightarrow S^{2}} 309:{\displaystyle f:S^{1}\rightarrow \mathbb {R} ^{3}.} 94:is the result of averaging over all directions the 763: 496: 377: 308: 208: 129:, and we can compute the crossing number, denoted 8: 847:Journal of Knot Theory and Its Ramifications 898:: CS1 maint: location missing publisher ( 787: 751: 744: 735: 730: 691: 684: 600: 597: 589: 584: 565: 563: 483: 451: 419: 396: 369: 356: 343: 331: 297: 293: 292: 282: 270: 199: 179: 174: 155: 153: 66:Learn how and when to remove this message 114:is a smooth knot, then for almost every 29:This article includes a list of general 780: 910:Energy of knots and conformal geometry 891: 799: 7: 35:it lacks sufficient corresponding 14: 20: 731: 726: 723: 717: 708: 702: 696: 692: 685: 681: 678: 672: 663: 657: 651: 645: 642: 636: 622: 616: 605: 601: 484: 480: 474: 465: 459: 452: 446: 440: 431: 425: 413: 401: 362: 288: 196: 190: 1: 830:10.1016/S0166-8641(97)00211-3 818:Topology and Its Applications 319:Then define the map from the 262:be a knot, parameterized by 954: 859:10.1142/S0218216511009601 223:is the area form on the 247:Alternative formulation 88:average crossing number 50:more precise citations. 765: 498: 379: 310: 253:Gauss linking integral 210: 788:Diao & Ernst 2001 766: 499: 380: 311: 211: 908:O’Hara, Jun (2003). 562: 395: 330: 269: 152: 100:physical knot theory 110:More precisely, if 96:number of crossings 761: 551: ×  494: 375: 306: 206: 853:(3): 1250028, 9, 742: 578: 535:to pull back the 521:degree of the map 489: 168: 76: 75: 68: 945: 923: 903: 897: 889: 869: 840: 803: 797: 791: 785: 770: 768: 767: 762: 743: 741: 740: 739: 734: 695: 689: 688: 635: 615: 604: 598: 596: 595: 594: 593: 579: 577: 566: 503: 501: 500: 495: 490: 488: 487: 455: 449: 420: 384: 382: 381: 376: 374: 373: 361: 360: 348: 347: 323:to the 2-sphere 315: 313: 312: 307: 302: 301: 296: 287: 286: 241:locally constant 215: 213: 212: 207: 186: 185: 184: 183: 169: 167: 156: 71: 64: 60: 57: 51: 46:this article by 37:inline citations 24: 23: 16: 953: 952: 948: 947: 946: 944: 943: 942: 928: 927: 920: 907: 890: 886: 873: 844: 815: 812: 810:Further reading 807: 806: 798: 794: 786: 782: 777: 729: 690: 628: 608: 599: 585: 580: 570: 560: 559: 450: 421: 393: 392: 365: 352: 339: 328: 327: 291: 278: 267: 266: 249: 175: 170: 160: 150: 149: 108: 72: 61: 55: 52: 42:Please help to 41: 25: 21: 12: 11: 5: 951: 949: 941: 940: 930: 929: 926: 925: 918: 905: 884: 871: 842: 824:(3): 245–257, 811: 808: 805: 804: 792: 779: 778: 776: 773: 772: 771: 760: 757: 754: 750: 747: 738: 733: 728: 725: 722: 719: 716: 713: 710: 707: 704: 701: 698: 694: 687: 683: 680: 677: 674: 671: 668: 665: 662: 659: 656: 653: 650: 647: 644: 641: 638: 634: 631: 627: 624: 621: 618: 614: 611: 607: 603: 592: 588: 583: 576: 573: 569: 505: 504: 493: 486: 482: 479: 476: 473: 470: 467: 464: 461: 458: 454: 448: 445: 442: 439: 436: 433: 430: 427: 424: 418: 415: 412: 409: 406: 403: 400: 386: 385: 372: 368: 364: 359: 355: 351: 346: 342: 338: 335: 317: 316: 305: 300: 295: 290: 285: 281: 277: 274: 248: 245: 243:when defined. 217: 216: 205: 202: 198: 195: 192: 189: 182: 178: 173: 166: 163: 159: 107: 104: 74: 73: 56:September 2013 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 950: 939: 936: 935: 933: 921: 919:981-238-316-6 915: 911: 906: 901: 895: 887: 885:0-8218-3200-X 881: 877: 872: 868: 864: 860: 856: 852: 848: 843: 839: 835: 831: 827: 823: 819: 814: 813: 809: 801: 796: 793: 789: 784: 781: 774: 758: 755: 752: 748: 745: 736: 720: 714: 711: 705: 699: 675: 669: 666: 660: 654: 648: 639: 632: 629: 625: 619: 612: 609: 590: 586: 581: 574: 571: 567: 558: 557: 556: 554: 550: 547: =  546: 543:to the torus 542: 538: 534: 530: 527:, giving the 526: 522: 518: 514: 510: 491: 477: 471: 468: 462: 456: 443: 437: 434: 428: 422: 416: 410: 407: 404: 398: 391: 390: 389: 370: 366: 357: 353: 349: 344: 340: 336: 333: 326: 325: 324: 322: 303: 298: 283: 279: 275: 272: 265: 264: 263: 261: 256: 254: 246: 244: 242: 238: 234: 230: 226: 222: 203: 200: 193: 187: 180: 176: 171: 164: 161: 157: 148: 147: 146: 144: 140: 136: 132: 128: 124: 120: 117: 113: 105: 103: 101: 97: 93: 89: 85: 81: 70: 67: 59: 49: 45: 39: 38: 32: 27: 18: 17: 909: 875: 850: 846: 821: 817: 795: 783: 552: 548: 544: 540: 532: 524: 516: 512: 508: 506: 387: 318: 259: 257: 250: 236: 232: 229:measure zero 220: 218: 134: 130: 127:knot diagram 122: 118: 111: 109: 87: 80:mathematical 77: 62: 53: 34: 938:Knot theory 800:O’Hara 2003 143:unit sphere 116:unit vector 84:knot theory 82:subject of 48:introducing 775:References 106:Definition 31:references 894:cite book 712:− 667:− 649:⋅ 626:× 582:∫ 575:π 537:area form 469:− 435:− 363:→ 350:× 289:→ 172:∫ 165:π 141:over the 932:Category 633:′ 613:′ 225:2-sphere 139:integral 125:gives a 867:2887660 838:1666650 78:In the 44:improve 916:  882:  865:  836:  531:. Use 529:writhe 219:where 86:, the 33:, but 321:torus 239:) is 90:of a 914:ISBN 900:link 880:ISBN 525:sign 231:and 92:knot 855:doi 826:doi 539:on 388:by 934:: 896:}} 892:{{ 863:MR 861:, 851:21 849:, 834:MR 832:, 822:91 820:, 511:= 255:. 221:dA 145:: 102:. 924:. 922:. 904:. 902:) 888:. 870:. 857:: 841:. 828:: 802:. 790:. 759:. 756:t 753:d 749:s 746:d 737:3 732:| 727:) 724:) 721:t 718:( 715:f 709:) 706:s 703:( 700:f 697:( 693:| 686:| 682:) 679:) 676:t 673:( 670:f 664:) 661:s 658:( 655:f 652:( 646:) 643:) 640:t 637:( 630:f 623:) 620:s 617:( 610:f 606:( 602:| 591:2 587:T 572:4 568:1 553:S 549:S 545:T 541:S 533:g 517:g 513:t 509:s 492:. 485:| 481:) 478:t 475:( 472:f 466:) 463:s 460:( 457:f 453:| 447:) 444:t 441:( 438:f 432:) 429:s 426:( 423:f 417:= 414:) 411:t 408:, 405:s 402:( 399:g 371:2 367:S 358:1 354:S 345:1 341:S 337:: 334:g 304:. 299:3 294:R 284:1 280:S 276:: 273:f 260:K 237:v 235:( 233:n 204:A 201:d 197:) 194:v 191:( 188:n 181:2 177:S 162:4 158:1 135:v 133:( 131:n 123:v 119:v 112:K 69:) 63:( 58:) 54:( 40:.

Index

references
inline citations
improve
introducing
Learn how and when to remove this message
mathematical
knot theory
knot
number of crossings
physical knot theory
unit vector
knot diagram
integral
unit sphere
2-sphere
measure zero
locally constant
Gauss linking integral
torus
degree of the map
writhe
area form
Diao & Ernst 2001
O’Hara 2003
doi
10.1016/S0166-8641(97)00211-3
MR
1666650
doi
10.1142/S0218216511009601

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.