Knowledge

Boundary cell

Source 📝

68:
critical defining functional characteristics of associated with the different labelling schemes are rather arbitrary and any functional differences in cells found in different anatomical regions are not yet fully clear. For example, neurons classified as "border cells" may include some that fire at short range to any environmental boundary (regardless of direction). Additionally, the BVC model predicted the existence of a small proportion of cells with longer range tunings (i.e., firing parallel to, but at some distance from boundaries) and few such cells have been described to date. In general, although the general predictions of the BVC model regarding the existence of geometric boundary sensitive inputs were confirmed by the empirical observations it prompted, the more detailed characteristics such as the distribution of distance and direction tunings remain to be determined.
64:
the northeastern corner of a rectangular environment might continue to fire in the northeastern corner when the size of the environment was doubled. To explain these observations, the Burgess and O'Keefe groups developed a computational model (Boundary Vector Cell - or BVC - model) of place cells that relied on inputs sensitive to the geometry of the environment to determine where a given place cell would fire in environments of different shapes and sizes. The hypothetical input cells (BVCs) responded to environmental boundaries at particular distances and allocentric directions from the rat.
55: 59:
locational bin indicates spatially-smoothed firing rate in that bin (autoscaled to firing rate peak, dark blue: 0-20%; light blue: 20-40%; green: 40-60%; yellow: 60-80%; red: 80-100%. The maximum firing rate is 14.2 Hz). Right: path taken by rat is shown in black, locations where spikes were recorded indicated by green squares.
79:. During development MEC border cells (and HD cells but not grid cells) show adult-like firing fields as soon as rats are able to freely explore their environment at around 16-18 days old. This suggests HD and border cells, rather than grid cells, provide the first critical spatial input to hippocampal place cells. 63:
O'Keefe and Burgess had noted that the firing fields of place cells, which characteristically respond only in a circumscribed area of an animal's environment, tended to fire in 'corresponding' locations when the shape and size of the environment was altered. For example, a place cell that fired in
58:
Firing of a boundary cell recorded in rat subiculum in 1 x 1 metre square-walled box with 50 cm-high walls. A 50 cm-long barrier inserted into box elicits second field along north side of barrier in addition to original field along south wall. Left: Firing rate map, one of 5 colours in
67:
Separate studies emerging from different research groups identified cells with these characteristics in the subiculum, entorhinal cortex and pre- and para-subiculum where they were described variously as "BVCs", "boundary cells" and "border cells". These terms are somewhat interchangeable; the
42:
that respond to the presence of an environmental boundary at a particular distance and direction from an animal. The existence of cells with these firing characteristics were first predicted on the basis of properties of
551: 108: 462:
Boccara, C. N.; Sargolini, F.; Thoresen, V. Y. H.; Solstad, T.; Witter, M. P.; Moser, E. I.; Moser, M. B. (2010). "Grid cells in pre- and parasubiculum".
178:
Hartley, T.; Burgess, N.; Lever, C.; Cacucci, F.; O'Keefe, J. (2000). "Modeling place fields in terms of the cortical inputs to the hippocampus".
223:
Burgess, N.; Jackson, A.; Hartley, T.; O'Keefe, J. (2000). "Predictions derived from modelling the hippocampal role in navigation".
506: 201: 567: 71:
In medial entorhinal cortex border/boundary cells comprise about 10% of local population, being intermingled with
187: 266:
Barry, C.; Lever, C.; Hayman, R.; Hartley, T.; Burton, S.; O'Keefe, J.; Jeffery, K.; Burgess, N. (2006).
48: 39: 127:
O'Keefe, J.; Burgess, N. (1996). "Geometric determinants of the place fields of hippocampal neurons".
377: 136: 76: 192: 93: 487: 248: 160: 531: 479: 444: 415:"Influence of boundary removal on the spatial representations of the medial entorhinal cortex" 395: 346: 297: 240: 205: 152: 521: 471: 434: 426: 385: 336: 328: 287: 279: 232: 197: 144: 381: 140: 439: 414: 341: 316: 292: 267: 561: 283: 491: 332: 252: 164: 17: 526: 103: 44: 88: 72: 364:
Solstad, T.; Boccara, C. N.; Kropff, E.; Moser, M. -B.; Moser, E. I. (2008).
390: 365: 98: 535: 483: 448: 399: 350: 301: 244: 209: 54: 236: 156: 268:"The boundary vector cell model of place cell firing and spatial memory" 47:. Boundary cells were subsequently discovered in several regions of the 430: 315:
Lever, C.; Burton, S.; Jeewajee, A.; O'Keefe, J.; Burgess, N. (2009).
317:"Boundary Vector Cells in the Subiculum of the Hippocampal Formation" 148: 475: 53: 202:
10.1002/1098-1063(2000)10:4<369::AID-HIPO3>3.0.CO;2-0
366:"Representation of Geometric Borders in the Entorhinal Cortex" 507:"Representation of geometric borders in the developing rat" 413:
Savelli, F.; Yoganarasimha, D.; Knierim, J. J. (2008).
51:: the subiculum, presubiculum and entorhinal cortex. 505:
Bjerknes, T. L.; Moser, E. I.; Moser, M. B. (2014).
109:
List of distinct cell types in the adult human body
8: 554:, Neurophilosophy blog, December 22, 2008. 525: 438: 389: 340: 291: 191: 552:Rats know their limits with border cells 119: 7: 25: 284:10.1515/REVNEURO.2006.17.1-2.71 333:10.1523/JNEUROSCI.1319-09.2009 1: 527:10.1016/j.neuron.2014.02.014 272:Reviews in the Neurosciences 38:) are neurons found in the 584: 391:10.1126/science.1166466 321:Journal of Neuroscience 225:Biological Cybernetics 60: 237:10.1007/s004220000172 57: 49:hippocampal formation 40:hippocampal formation 36:boundary vector cells 77:head direction cells 568:Hippocampus (brain) 464:Nature Neuroscience 382:2008Sci...322.1865S 376:(5909): 1865–1868. 141:1996Natur.381..425O 94:Head direction cell 18:Border cell (brain) 431:10.1002/hipo.20511 61: 425:(12): 1270–1282. 327:(31): 9771–9777. 135:(6581): 425–428. 16:(Redirected from 575: 540: 539: 529: 511: 502: 496: 495: 459: 453: 452: 442: 410: 404: 403: 393: 361: 355: 354: 344: 312: 306: 305: 295: 263: 257: 256: 220: 214: 213: 195: 175: 169: 168: 149:10.1038/381425a0 124: 21: 583: 582: 578: 577: 576: 574: 573: 572: 558: 557: 548: 543: 509: 504: 503: 499: 476:10.1038/nn.2602 461: 460: 456: 412: 411: 407: 363: 362: 358: 314: 313: 309: 265: 264: 260: 222: 221: 217: 177: 176: 172: 126: 125: 121: 117: 85: 30:(also known as 23: 22: 15: 12: 11: 5: 581: 579: 571: 570: 560: 559: 556: 555: 547: 546:External links 544: 542: 541: 497: 470:(8): 987–994. 454: 405: 356: 307: 278:(1–2): 71–97. 258: 231:(3): 301–312. 215: 193:10.1.1.19.7928 186:(4): 369–379. 170: 118: 116: 113: 112: 111: 106: 101: 96: 91: 84: 81: 28:Boundary cells 24: 14: 13: 10: 9: 6: 4: 3: 2: 580: 569: 566: 565: 563: 553: 550: 549: 545: 537: 533: 528: 523: 519: 515: 508: 501: 498: 493: 489: 485: 481: 477: 473: 469: 465: 458: 455: 450: 446: 441: 436: 432: 428: 424: 420: 416: 409: 406: 401: 397: 392: 387: 383: 379: 375: 371: 367: 360: 357: 352: 348: 343: 338: 334: 330: 326: 322: 318: 311: 308: 303: 299: 294: 289: 285: 281: 277: 273: 269: 262: 259: 254: 250: 246: 242: 238: 234: 230: 226: 219: 216: 211: 207: 203: 199: 194: 189: 185: 181: 174: 171: 166: 162: 158: 154: 150: 146: 142: 138: 134: 130: 123: 120: 114: 110: 107: 105: 102: 100: 97: 95: 92: 90: 87: 86: 82: 80: 78: 74: 69: 65: 56: 52: 50: 46: 41: 37: 33: 29: 19: 517: 513: 500: 467: 463: 457: 422: 418: 408: 373: 369: 359: 324: 320: 310: 275: 271: 261: 228: 224: 218: 183: 179: 173: 132: 128: 122: 70: 66: 62: 35: 32:border cells 31: 27: 26: 520:(1): 71–8. 419:Hippocampus 180:Hippocampus 104:Speed cells 45:place cells 115:References 89:Place cell 73:grid cells 188:CiteSeerX 99:Grid cell 562:Category 536:24613417 484:20657591 449:19021262 400:19095945 351:19657030 302:16703944 245:11007303 210:10985276 83:See also 492:7851286 440:3007674 378:Bibcode 370:Science 342:2736390 293:2677716 253:8392843 165:4345249 157:8632799 137:Bibcode 534:  514:Neuron 490:  482:  447:  437:  398:  349:  339:  300:  290:  251:  243:  208:  190:  163:  155:  129:Nature 510:(PDF) 488:S2CID 249:S2CID 161:S2CID 532:PMID 480:PMID 445:PMID 396:PMID 347:PMID 298:PMID 241:PMID 206:PMID 153:PMID 75:and 522:doi 472:doi 435:PMC 427:doi 386:doi 374:322 337:PMC 329:doi 288:PMC 280:doi 233:doi 198:doi 145:doi 133:381 34:or 564:: 530:. 518:82 516:. 512:. 486:. 478:. 468:13 466:. 443:. 433:. 423:18 421:. 417:. 394:. 384:. 372:. 368:. 345:. 335:. 325:29 323:. 319:. 296:. 286:. 276:17 274:. 270:. 247:. 239:. 229:83 227:. 204:. 196:. 184:10 182:. 159:. 151:. 143:. 131:. 538:. 524:: 494:. 474:: 451:. 429:: 402:. 388:: 380:: 353:. 331:: 304:. 282:: 255:. 235:: 212:. 200:: 167:. 147:: 139:: 20:)

Index

Border cell (brain)
hippocampal formation
place cells
hippocampal formation

grid cells
head direction cells
Place cell
Head direction cell
Grid cell
Speed cells
List of distinct cell types in the adult human body
Bibcode
1996Natur.381..425O
doi
10.1038/381425a0
PMID
8632799
S2CID
4345249
CiteSeerX
10.1.1.19.7928
doi
10.1002/1098-1063(2000)10:4<369::AID-HIPO3>3.0.CO;2-0
PMID
10985276
doi
10.1007/s004220000172
PMID
11007303

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.