Knowledge

Head direction cell

Source 📝

168:, were not simple sensory responses. In these models and their subsequent versions, information about changes in the animal's orientation provided by vestibular and visual motion signals were provided by off-shifted connections, while information from distal cues were provided by learned input connections. Direct evidence for such an organization in insects was recently reported: in mammals it is assumed that the "ring" is distributed, and not a geometric anatomical form. While direct anatomical evidence for such excitatory interconnections between head direction cells is lacking, several predictions from the models have been confirmed, such as how the tuning curves would change during left and right rotations, self-coherent representations during sleep, and changes during drift and reorientation. 184:, in the rat dorsal presubiculum, a structure that lies near the hippocampus on the dorsocaudal brain surface. Ranck reported his discovery in a Society for Neuroscience abstract in 1984. Jeffrey Taube, a postdoctoral fellow working in Ranck's laboratory, made these cells the subject of his research. Taube, Ranck and Bob Muller summarized their findings in a pair of papers in the Journal of Neuroscience in 1990. These seminal papers served as the foundation for all of the work that has been done subsequently. Taube, after taking a position at Dartmouth College, has devoted his career to the study of head direction cells, and been responsible for a number of the most important discoveries, as well as writing several key review papers. 121:, which signal rotations of the head. The HD system integrates the vestibular output to maintain a signal reflecting cumulative rotation. The integration is less than perfect, though, especially for slow head rotations. If an animal is placed on an isolated platform and slowly rotated in the dark, the alignment of the HD system usually shifts a little bit for each rotation. If an animal explores a dark environment with no directional cues, the HD alignment tends to drift slowly and randomly over time. 142:
animals behave like HD cells in intact animals in the absence of light. Also, only a minority of cells recorded in the postsubiculum are HD cells, and many of the others show visual responses. In familiar environments, HD cells show consistent preferred directions across time as long as there is a polarizing cue of some sort that allows directions to be identified (in a cylinder with unmarked walls and no cues in the distance, preferred directions may drift over time).
164:
multiple incoherent orientations. Thus, these cells can be conceptualized as forming an imaginary ring, with each cell exciting cells coding for its own or neighboring directions, and suppressing cells coding for other directions. A key insight provided by these models was that the topology of the orientation selectivity (the ring) came from internal connections, while external cues were associated with those internal representations. Thus head direction cells, like
101:, a brain state rich in dreaming activity in humans and whose electrical activity is virtually indistinguishable from the waking brain, this directional signal moves as if the animal is awake: that is, HD neurons are sequentially activated, and the individual neurons representing a common direction during wake are still active, or silent, at the same time. 134:
more see landmarks, the HD system usually comes rapidly back into the normal alignment. Occasionally the realignment is delayed: the HD cells may maintain an abnormal alignment for as long as a few minutes, but then abruptly snap back. Consistent with the drifting in the dark, HD cells are not sensitive to the polarity of geomagnetic fields.
196:. Chen et al. found limited numbers of HD cells in posterior parts of the neocortex. The observation in 1998 of HD cells in the lateral mammillary area of the hypothalamus completed an interesting pattern: the parahippocampus, mammillary nuclei, anterior thalamus, and retrosplenial cortex are all elements in a neural loop called the 215:
HD cells have been described in many different animal species, including rats, mice, non human primates and bats. In bats, the HD system is three dimensional, and not only along the horizontal plane as in rodents. A HD-like neuronal network is also present in the drosophila, in which the HD cells are
137:
If these sorts of misalignment experiments are done too often, the system may break down. If an animal is repeatedly disoriented, and then placed into an environment for a few minutes each time, the landmarks gradually lose their ability to control the HD system, and eventually, the system goes into
150:
The properties of the head direction system - particularly its persistence in the dark, and also the constant relationship of firing directions between cells regardless of environmental changes - suggested to early theoreticians the still-accepted notion that the cells might be organized in the form
207:
The remarkable properties of HD cells, most particularly their conceptual simplicity and their ability to maintain firing when visual cues were removed or perturbed, led to considerable interest from theoretical neuroscientists. Several mathematical models were developed, which differed on details
133:
It is possible to temporarily disrupt the alignment of the HD system, for example by turning out the lights for a few minutes. Even in the dark, the HD system continues to operate, but its alignment to the environment may gradually drift. When the lights are turned back on and the animal can once
129:
One of the most interesting aspects of head direction cells is that their firing is not fully determined by sensory features of the environment. When an animal comes into a novel environment for the first time, the alignment of the head direction system is arbitrary. Over the first few minutes of
141:
There is evidence that the visual control of HD cells is mediated by the postsubiculum. Lesions of the postsubiculum do not eliminate thalamic HD cells, but they often cause the directionality to drift over time, even when there are plenty of visual cues. Thus, HD cells in postsubiculum-lesioned
92:
Some HD cells exhibit anticipatory behaviour: the best match between HD activity and the animal's actual head direction has been found to be up to 95 ms in future. That is, activity of head direction cells predicts, 95 ms in advance, what the animal's head direction will be. This possibly reflects
163:
with pairs of cells representing nearby directions being more strongly coupled than pairs of cells representing distant orientations. With global inhibition, these interactions cause activity to stabilize, such that a representation of a single orientation is more stable than states representing
73:
A striking characteristic of HD cells is that in most brain regions they maintain the same relative preferred firing directions, even if the animal is moved to a different room, or if landmarks are moved. This has suggested that the cells interact so as to maintain a unitary stable heading signal
200:, proposed by Walter Papez in 1939 as the neural substrate of emotion. Limited numbers of robust HD cells have also been observed in the hippocampus and dorsal striatum. Recently, substantial numbers of HD cells have been found in the medial entorhinal cortex, intermingled with spatially tuned 171:
An alternative model has also been proposed by Song and Wang, in which the same attractor mechanism could be implemented with inhibitory interconnections instead. More complex connection matrices that can produce mathematically equivalent systems have also been proposed, but evidence for these
1499:
Tryon, Valerie L.; Kim, Esther U.; Zafar, Talal J.; Unruh, April M.; Staley, Shelly R.; Calton, Jeffrey L. (2012-12-01). "Magnetic field polarity fails to influence the directional signal carried by the head direction cell network and the behavior of rats in a task requiring magnetic field
187:
The postsubiculum has numerous anatomical connections. Tracing these connections led to the discovery of head direction cells in other parts of the brain. In 1993, Mizumori and Williams reported finding HD cells in a small region of the rat thalamus called the
96:
HD cells continue to fire in an organized manner during sleep, as if animals were awake. However, instead of always pointing toward the same direction—the animals are asleep and thus immobile—the neuronal "compass needle" moves constantly. In particular, during
85:, which is mostly orientation-invariant and location-specific, whereas HD cells are mostly orientation-specific and location-invariant. However, HD cells do not require a functional hippocampus to express their head direction specificity. They depend on the 34:
found in a number of brain regions that increase their firing rates above baseline levels only when the animal's head points in a specific direction. They have been reported in rats, monkeys, mice, chinchillas and bats, but are thought to be common to all
130:
exploration, the animal learns to associate the landmarks in the environment with directions. When the animal comes back into the same environment at a later time, if the head direction system is misaligned, the learned associations serve to realign it.
74:(see "Theoretical models"). Recently, however, a subpopulation of HD neurons has been found in the dysgranular part of retrosplenial cortex that can operate independently of the rest of the network, and which seems more responsive to environmental cues. 39:, perhaps all vertebrates and perhaps even some invertebrates, and to underlie the "sense of direction". When the animal's head is facing in the cell's "preferred firing direction" these neurons fire at a steady rate (i.e., they do not show 2375:
For a review on the HD system and place field system, see Muller (1996): "A quarter of a Century of Place Cells", Sharp et al. (2001): "The anatomical and computational basis of rat HD signal."
752:
Chen, L. L.; Lin, L. H.; Green, E. J.; Barnes, C. A.; McNaughton, B. L. (1994-01-01). "Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation".
109:
The HD network makes use of inertial and other movement-related inputs, and thus continues to operate even in the absence of light. These inertial properties are dependent on the
70:. It is thought that the cortical head direction cells process information about the environment, while the subcortical ones process information about angular head movements. 231: 2141:
Chen, LL; Lin LH; Green EJ; Barnes CA; McNaughton BL (1994). "Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation".
1344:"Anticipatory head direction signals in anterior thalamus: evidence for a thalamocortical circuit that integrates angular head motion to compute head direction" 43:), but firing decreases back to baseline rates as the animal's head turns away from the preferred direction (usually about 45° away from this direction). 2278:
Finkelstein, A; Derdikman D; Rubin A; Foerster JN; Las L; Ulanovsky N (January 8, 2015). "Three-dimensional head-direction coding in the bat brain".
1142:
O'Keefe, J.; Dostrovsky, J. (1971-11-01). "The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat".
416:
Muir, Gary M.; Brown, Joel E.; Carey, John P.; Hirvonen, Timo P.; Della Santina, Charles C.; Minor, Lloyd B.; Taube, Jeffrey S. (2009-11-18).
1910: 1653: 1852:"Angular Path Integration by Moving "Hill of Activity": A Spiking Neuron Model without Recurrent Excitation of the Head-Direction System" 1242:
Blair, H. T.; Sharp, P. E. (1996-08-01). "Visual and vestibular influences on head-direction cells in the anterior thalamus of the rat".
308:
Robertson, R. G.; Rolls, E. T.; Georges-François, P.; Panzeri, S. (1999-01-01). "Head direction cells in the primate pre-subiculum".
2248: 321: 46:
HD cells are found in many brain areas, including the cortical regions of postsubiculum (also known as the dorsal presubiculum),
1187:"Head direction cells in rats with hippocampal or overlying neocortical lesions: evidence for impaired angular path integration" 2335:"Role of the lateral mammillary nucleus in the rat head direction circuit: a combined single unit recording and lesion study" 530:
Ben-Yishay, Elhanan; Krivoruchko, Ksenia; Ron, Shaked; Ulanovsky, Nachum; Derdikman, Dori; Gutfreund, Yoram (2021-06-21).
418:"Disruption of the head direction cell signal after occlusion of the semicircular canals in the freely moving chinchilla" 1992:"Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations" 1941:"Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis" 253:"Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis" 2235:
Robertson, RG; Rolls ET; Georges-François P; Panzeri S (1999). "Head direction cells in the primate pre-subiculum".
1085:
Jacob, Pierre-Yves; Casali, Giulio; Spieser, Laure; Page, Hector; Overington, Dorothy; Jeffery, Kate (2016-12-19).
979:"Firing properties of rat lateral mammillary single units: head direction, head pitch, and angular head velocity" 2186:"Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory" 1545:"Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory" 98: 63: 2041:"Directionally selective mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus of rats" 922:"Directionally selective mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus of rats" 1925:
Ranck Jr, J. B. "Head direction cells in the deep cell layer of dorsal presubiculum in freely moving rats."
587:
Vinepinsky, Ehud; Cohen, Lear; Perchik, Shay; Ben-Shahar, Ohad; Donchin, Opher; Segev, Ronen (2020-09-08).
589:"Representation of edges, head direction, and swimming kinematics in the brain of freely-navigating fish" 208:
but had in common a dependence on mutually excitatory feedback to sustain activity patterns: a type of
93:
inputs from the motor system ("motor efference copy") preparing the network for an impending head turn.
806:; Stensola, Tor; Bonnevie, Tora; Van Cauter, Tiffany; Moser, May-Britt; Moser, Edvard I. (2014-02-03). 2287: 1796: 1682: 1287:"Head direction is coded more strongly than movement direction in a population of entorhinal neurons" 819: 665: 600: 543: 47: 181: 114: 361:"Head direction cell activity in mice: robust directional signal depends on intact otolith organs" 2364: 2311: 2260: 2166: 1601: 785: 341: 225: 156: 2356: 2303: 2252: 2217: 2158: 2123: 2072: 2021: 1972: 1906: 1881: 1832: 1814: 1765: 1747: 1708: 1649: 1621: 1582: 1564: 1525: 1517: 1481: 1430: 1381: 1363: 1324: 1306: 1267: 1259: 1224: 1206: 1167: 1159: 1124: 1106: 1087:"An independent, landmark-dominated head-direction signal in dysgranular retrosplenial cortex" 1067: 1016: 998: 959: 941: 902: 884: 845: 837: 777: 769: 734: 699: 681: 634: 616: 569: 561: 512: 494: 455: 437: 398: 380: 333: 325: 290: 272: 160: 110: 86: 51: 40: 2388: 2346: 2295: 2244: 2207: 2197: 2150: 2113: 2103: 2062: 2052: 2011: 2003: 1962: 1952: 1871: 1863: 1822: 1804: 1755: 1739: 1698: 1690: 1613: 1572: 1556: 1509: 1471: 1461: 1420: 1412: 1371: 1355: 1314: 1298: 1285:
Raudies, Florian; Brandon, Mark P.; Chapman, G. William; Hasselmo, Michael E. (2015-09-24).
1251: 1214: 1198: 1151: 1114: 1098: 1057: 1047: 1006: 990: 949: 933: 892: 876: 827: 761: 726: 689: 673: 624: 608: 551: 502: 486: 445: 429: 388: 372: 317: 280: 264: 730: 89:, and the firing is independent of the position of the animal's body relative to its head. 2291: 1902:
Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems
1827: 1800: 1784: 1686: 823: 669: 604: 547: 2212: 2202: 2185: 2118: 2108: 2091: 2067: 2057: 2040: 2016: 2007: 1991: 1967: 1957: 1940: 1876: 1851: 1760: 1727: 1703: 1670: 1577: 1560: 1544: 1476: 1449: 1425: 1400: 1376: 1359: 1343: 1319: 1286: 1219: 1202: 1186: 1119: 1086: 1062: 1035: 1011: 994: 978: 954: 937: 921: 897: 880: 864: 694: 653: 629: 588: 507: 474: 450: 417: 393: 360: 285: 268: 252: 209: 59: 2351: 2334: 717:
Taube, JS (2007). "The head direction signal: Origins and sensory-motor integration".
2382: 2092:"Head direction cells recorded in the anterior thalamic nuclei of freely moving rats" 1726:
Peyrache, Adrien; Lacroix, Marie M.; Petersen, Peter C.; Buzsáki, György (May 2015).
1155: 865:"Head direction cells recorded in the anterior thalamic nuclei of freely moving rats" 197: 2264: 2170: 789: 345: 2315: 1867: 1302: 803: 490: 433: 376: 152: 2368: 1900: 1783:
Ajabi, Zaki; Keinath, Alexandra T.; Wei, Xue-Xin; Brandon, Mark P. (March 2023).
1643: 1255: 82: 1809: 612: 1785:"Population dynamics of head-direction neurons during drift and reorientation" 1617: 832: 807: 556: 531: 201: 165: 151:
of a ring attractor, including simultaneously proposed models by Zhang and by
78: 1818: 1751: 1625: 1568: 1521: 1466: 1367: 1310: 1263: 1210: 1163: 1110: 1052: 1002: 945: 888: 841: 773: 685: 620: 565: 498: 441: 384: 329: 276: 118: 2307: 2256: 1885: 1836: 1769: 1712: 1529: 1485: 1434: 1328: 1228: 1128: 1071: 849: 738: 703: 638: 573: 516: 459: 402: 337: 2360: 2221: 2162: 2127: 2076: 2025: 1976: 1586: 1385: 1271: 1171: 1020: 963: 906: 781: 294: 138:
a state where it shows a different, and random, alignment on each trial .
1450:"The vestibular contribution to the head direction signal and navigation" 1036:"The vestibular contribution to the head direction signal and navigation" 67: 55: 2299: 1694: 677: 2154: 1671:"Neural dynamics for landmark orientation and angular path integration" 765: 654:"Neural dynamics for landmark orientation and angular path integration" 2249:
10.1002/(sici)1098-1063(1999)9:3<206::aid-hipo2>3.0.co;2-h
322:
10.1002/(SICI)1098-1063(1999)9:3<206::AID-HIPO2>3.0.CO;2-H
1513: 36: 31: 1743: 1416: 1102: 1600:
Redish, A David; Elga, Adam N; Touretzky, David S (January 1996).
473:
Rubin, Alon; Yartsev, Michael M.; Ulanovsky, Nachum (2014-01-15).
808:"Topography of head direction cells in medial entorhinal cortex" 1602:"A coupled attractor model of the rodent head direction system" 475:"Encoding of head direction by hippocampal place cells in bats" 58:(the anterior dorsal and the lateral dorsal thalamic nuclei), 1728:"Internally organized mechanisms of the head direction sense" 1645:
Beyond the Cognitive Map: From Place Cells to Episodic Memory
1401:"Internally organized mechanisms of the head direction sense" 532:"Directional tuning in the hippocampal formation of birds" 1399:
Peyrache, A; Lacroix MM; Petersen PC; Buzsaki G (2015).
251:
Taube, J. S.; Muller, R. U.; Ranck, J. B. (1990-02-01).
1939:
Taube, JS; Muller RU; Ranck JB Jr. (1 February 1990).
192:. Two years later, Taube found HD cells in the nearby 652:
Seelig, Johannes D.; Jayaraman, Vivek (2015-05-14).
232:
List of distinct cell types in the adult human body
228:, primate hippocampal counterpart for visual field. 1990:Taube, JS; Muller, RU; Ranck, JB (February 1990). 1448:Yoder, Ryan M.; Taube, Jeffrey S. (2014-01-01). 1034:Yoder, Ryan M.; Taube, Jeffrey S. (2014-01-01). 359:Yoder, Ryan M.; Taube, Jeffrey S. (2009-01-28). 2039:Mizumori, SJ; Williams JD (September 1, 1993). 1899:Eliasmith, Chris; Anderson, Charles H. (2003). 1850:Song, Pengcheng; Wang, Xiao-Jing (2005-01-26). 920:Mizumori, S. J.; Williams, J. D. (1993-09-01). 16:Type of neuron involved in spatial processing 8: 977:Stackman, R. W.; Taube, J. S. (1998-11-01). 2350: 2211: 2201: 2117: 2107: 2066: 2056: 2015: 1966: 1956: 1875: 1826: 1808: 1759: 1702: 1576: 1475: 1465: 1424: 1375: 1342:Blair, H. T.; Sharp, P. E. (1995-09-01). 1318: 1218: 1185:Golob, E. J.; Taube, J. S. (1999-08-15). 1118: 1061: 1051: 1010: 953: 896: 831: 693: 628: 555: 506: 449: 392: 284: 1669:Seelig, JD; Jayaraman V (May 14, 2015). 180:Head direction cells were discovered by 159:. In these models, which are a type of 54:, and subcortical regions including the 243: 1606:Network: Computation in Neural Systems 731:10.1146/annurev.neuro.29.051605.112854 1637: 1635: 1454:Frontiers in Integrative Neuroscience 1040:Frontiers in Integrative Neuroscience 7: 216:anatomically arranged along a ring. 2333:Blair, HT; Cho J; Sharp PE (1998). 125:Visual and other sensory influences 2203:10.1523/JNEUROSCI.16-06-02112.1996 2109:10.1523/JNEUROSCI.15-01-00070.1995 2058:10.1523/JNEUROSCI.13-09-04015.1993 2008:10.1523/JNEUROSCI.10-02-00436.1990 1958:10.1523/JNEUROSCI.10-02-00420.1990 1561:10.1523/JNEUROSCI.16-06-02112.1996 1360:10.1523/JNEUROSCI.15-09-06260.1995 1203:10.1523/JNEUROSCI.19-16-07198.1999 995:10.1523/JNEUROSCI.18-21-09020.1998 938:10.1523/JNEUROSCI.13-09-04015.1993 881:10.1523/JNEUROSCI.15-01-00070.1995 269:10.1523/JNEUROSCI.10-02-00420.1990 14: 1868:10.1523/jneurosci.4172-04.2005 1303:10.1016/j.brainres.2014.10.053 491:10.1523/JNEUROSCI.5393-12.2014 434:10.1523/JNEUROSCI.3450-09.2009 377:10.1523/JNEUROSCI.1679-08.2009 1: 2352:10.1016/S0896-6273(00)80657-1 2090:Taube, JS (January 1, 1995). 172:alternate models is lacking. 77:The system is related to the 1929:. Vol. 10. No. 176.12. 1984. 1156:10.1016/0006-8993(71)90358-1 2184:Zhang, K (March 15, 1996). 1549:The Journal of Neuroscience 1348:The Journal of Neuroscience 1256:10.1037/0735-7044.110.4.643 1191:The Journal of Neuroscience 983:The Journal of Neuroscience 926:The Journal of Neuroscience 869:The Journal of Neuroscience 863:Taube, J. S. (1995-01-01). 754:Experimental Brain Research 479:The Journal of Neuroscience 422:The Journal of Neuroscience 365:The Journal of Neuroscience 257:The Journal of Neuroscience 2405: 1810:10.1038/s41586-023-05813-2 613:10.1038/s41598-020-71217-1 60:lateral mammillary nucleus 1642:Redish, A. David (1999). 1618:10.1088/0954-898X_7_4_004 833:10.1016/j.cub.2013.12.002 557:10.1016/j.cub.2021.04.029 1543:Zhang, K. (1996-03-15). 1467:10.3389/fnint.2014.00032 1053:10.3389/fnint.2014.00032 194:anterior thalamic nuclei 99:rapid eye movement sleep 64:dorsal tegmental nucleus 1856:Journal of Neuroscience 1502:Behavioral Neuroscience 1244:Behavioral Neuroscience 81:system, located in the 190:lateral dorsal nucleus 105:Vestibular influences 542:(12): 2592–2602.e4. 48:retrosplenial cortex 2300:10.1038/nature14031 2292:2015Natur.517..159F 1801:2023Natur.615..892A 1732:Nature Neuroscience 1695:10.1038/nature14446 1687:2015Natur.521..186S 1091:Nature Neuroscience 824:2014CBio...24..252G 719:Annu. Rev. Neurosci 678:10.1038/nature14446 670:2015Natur.521..186S 605:2020NatSR..1014762V 548:2021CBio...31E2592B 428:(46): 14521–14533. 182:James B. Ranck, Jr. 115:semicircular canals 2155:10.1007/BF00243212 1927:Soc Neurosci Abstr 766:10.1007/bf00243212 593:Scientific Reports 226:Spatial view cells 146:Theoretical models 2286:(7533): 159–164. 1912:978-0-262-55060-4 1795:(7954): 892–899. 1681:(7551): 186–191. 1655:978-0-262-18194-5 1197:(16): 7198–7211. 989:(21): 9020–9037. 875:(1 Pt 1): 70–86. 664:(7551): 186–191. 161:attractor network 113:, especially the 111:vestibular system 87:vestibular system 52:entorhinal cortex 2396: 2372: 2354: 2345:(6): 1387–1397. 2320: 2319: 2275: 2269: 2268: 2232: 2226: 2225: 2215: 2205: 2196:(6): 2112–2126. 2181: 2175: 2174: 2138: 2132: 2131: 2121: 2111: 2087: 2081: 2080: 2070: 2060: 2051:(9): 4015–4028. 2036: 2030: 2029: 2019: 1987: 1981: 1980: 1970: 1960: 1936: 1930: 1923: 1917: 1916: 1896: 1890: 1889: 1879: 1862:(4): 1002–1014. 1847: 1841: 1840: 1830: 1812: 1780: 1774: 1773: 1763: 1723: 1717: 1716: 1706: 1666: 1660: 1659: 1639: 1630: 1629: 1597: 1591: 1590: 1580: 1555:(6): 2112–2126. 1540: 1534: 1533: 1514:10.1037/a0030248 1496: 1490: 1489: 1479: 1469: 1445: 1439: 1438: 1428: 1396: 1390: 1389: 1379: 1354:(9): 6260–6270. 1339: 1333: 1332: 1322: 1282: 1276: 1275: 1239: 1233: 1232: 1222: 1182: 1176: 1175: 1139: 1133: 1132: 1122: 1082: 1076: 1075: 1065: 1055: 1031: 1025: 1024: 1014: 974: 968: 967: 957: 932:(9): 4015–4028. 917: 911: 910: 900: 860: 854: 853: 835: 804:Giocomo, Lisa M. 800: 794: 793: 749: 743: 742: 714: 708: 707: 697: 649: 643: 642: 632: 584: 578: 577: 559: 527: 521: 520: 510: 485:(3): 1067–1080. 470: 464: 463: 453: 413: 407: 406: 396: 371:(4): 1061–1076. 356: 350: 349: 305: 299: 298: 288: 248: 2404: 2403: 2399: 2398: 2397: 2395: 2394: 2393: 2379: 2378: 2332: 2329: 2327:Further reading 2324: 2323: 2277: 2276: 2272: 2234: 2233: 2229: 2183: 2182: 2178: 2140: 2139: 2135: 2089: 2088: 2084: 2038: 2037: 2033: 1989: 1988: 1984: 1938: 1937: 1933: 1924: 1920: 1913: 1898: 1897: 1893: 1849: 1848: 1844: 1782: 1781: 1777: 1744:10.1038/nn.3968 1725: 1724: 1720: 1668: 1667: 1663: 1656: 1641: 1640: 1633: 1599: 1598: 1594: 1542: 1541: 1537: 1498: 1497: 1493: 1447: 1446: 1442: 1417:10.1038/nn.3968 1398: 1397: 1393: 1341: 1340: 1336: 1284: 1283: 1279: 1241: 1240: 1236: 1184: 1183: 1179: 1141: 1140: 1136: 1103:10.1038/nn.4465 1084: 1083: 1079: 1033: 1032: 1028: 976: 975: 971: 919: 918: 914: 862: 861: 857: 812:Current Biology 802: 801: 797: 751: 750: 746: 716: 715: 711: 651: 650: 646: 586: 585: 581: 536:Current Biology 529: 528: 524: 472: 471: 467: 415: 414: 410: 358: 357: 353: 307: 306: 302: 250: 249: 245: 240: 222: 178: 148: 127: 107: 17: 12: 11: 5: 2402: 2400: 2392: 2391: 2381: 2380: 2377: 2376: 2373: 2328: 2325: 2322: 2321: 2270: 2227: 2176: 2143:Exp. Brain Res 2133: 2082: 2031: 2002:(2): 436–447. 1982: 1951:(2): 420–435. 1931: 1918: 1911: 1891: 1842: 1775: 1738:(4): 569–575. 1718: 1661: 1654: 1631: 1612:(4): 671–685. 1592: 1535: 1508:(6): 835–844. 1500:orientation". 1491: 1440: 1411:(4): 569–575. 1391: 1334: 1291:Brain Research 1277: 1250:(4): 643–660. 1234: 1177: 1150:(1): 171–175. 1144:Brain Research 1134: 1097:(2): 173–175. 1077: 1026: 969: 912: 855: 818:(3): 252–262. 795: 744: 709: 644: 579: 522: 465: 408: 351: 316:(3): 206–219. 300: 263:(2): 420–435. 242: 241: 239: 236: 235: 234: 229: 221: 218: 212:, as it were. 210:working memory 177: 174: 147: 144: 126: 123: 106: 103: 20:Head direction 15: 13: 10: 9: 6: 4: 3: 2: 2401: 2390: 2387: 2386: 2384: 2374: 2370: 2366: 2362: 2358: 2353: 2348: 2344: 2340: 2336: 2331: 2330: 2326: 2317: 2313: 2309: 2305: 2301: 2297: 2293: 2289: 2285: 2281: 2274: 2271: 2266: 2262: 2258: 2254: 2250: 2246: 2243:(3): 206–19. 2242: 2238: 2231: 2228: 2223: 2219: 2214: 2209: 2204: 2199: 2195: 2191: 2187: 2180: 2177: 2172: 2168: 2164: 2160: 2156: 2152: 2148: 2144: 2137: 2134: 2129: 2125: 2120: 2115: 2110: 2105: 2101: 2097: 2093: 2086: 2083: 2078: 2074: 2069: 2064: 2059: 2054: 2050: 2046: 2042: 2035: 2032: 2027: 2023: 2018: 2013: 2009: 2005: 2001: 1997: 1993: 1986: 1983: 1978: 1974: 1969: 1964: 1959: 1954: 1950: 1946: 1942: 1935: 1932: 1928: 1922: 1919: 1914: 1908: 1905:. MIT Press. 1904: 1903: 1895: 1892: 1887: 1883: 1878: 1873: 1869: 1865: 1861: 1857: 1853: 1846: 1843: 1838: 1834: 1829: 1824: 1820: 1816: 1811: 1806: 1802: 1798: 1794: 1790: 1786: 1779: 1776: 1771: 1767: 1762: 1757: 1753: 1749: 1745: 1741: 1737: 1733: 1729: 1722: 1719: 1714: 1710: 1705: 1700: 1696: 1692: 1688: 1684: 1680: 1676: 1672: 1665: 1662: 1657: 1651: 1648:. MIT Press. 1647: 1646: 1638: 1636: 1632: 1627: 1623: 1619: 1615: 1611: 1607: 1603: 1596: 1593: 1588: 1584: 1579: 1574: 1570: 1566: 1562: 1558: 1554: 1550: 1546: 1539: 1536: 1531: 1527: 1523: 1519: 1515: 1511: 1507: 1503: 1495: 1492: 1487: 1483: 1478: 1473: 1468: 1463: 1459: 1455: 1451: 1444: 1441: 1436: 1432: 1427: 1422: 1418: 1414: 1410: 1406: 1405:Nat. Neurosci 1402: 1395: 1392: 1387: 1383: 1378: 1373: 1369: 1365: 1361: 1357: 1353: 1349: 1345: 1338: 1335: 1330: 1326: 1321: 1316: 1312: 1308: 1304: 1300: 1296: 1292: 1288: 1281: 1278: 1273: 1269: 1265: 1261: 1257: 1253: 1249: 1245: 1238: 1235: 1230: 1226: 1221: 1216: 1212: 1208: 1204: 1200: 1196: 1192: 1188: 1181: 1178: 1173: 1169: 1165: 1161: 1157: 1153: 1149: 1145: 1138: 1135: 1130: 1126: 1121: 1116: 1112: 1108: 1104: 1100: 1096: 1092: 1088: 1081: 1078: 1073: 1069: 1064: 1059: 1054: 1049: 1045: 1041: 1037: 1030: 1027: 1022: 1018: 1013: 1008: 1004: 1000: 996: 992: 988: 984: 980: 973: 970: 965: 961: 956: 951: 947: 943: 939: 935: 931: 927: 923: 916: 913: 908: 904: 899: 894: 890: 886: 882: 878: 874: 870: 866: 859: 856: 851: 847: 843: 839: 834: 829: 825: 821: 817: 813: 809: 805: 799: 796: 791: 787: 783: 779: 775: 771: 767: 763: 759: 755: 748: 745: 740: 736: 732: 728: 724: 720: 713: 710: 705: 701: 696: 691: 687: 683: 679: 675: 671: 667: 663: 659: 655: 648: 645: 640: 636: 631: 626: 622: 618: 614: 610: 606: 602: 598: 594: 590: 583: 580: 575: 571: 567: 563: 558: 553: 549: 545: 541: 537: 533: 526: 523: 518: 514: 509: 504: 500: 496: 492: 488: 484: 480: 476: 469: 466: 461: 457: 452: 447: 443: 439: 435: 431: 427: 423: 419: 412: 409: 404: 400: 395: 390: 386: 382: 378: 374: 370: 366: 362: 355: 352: 347: 343: 339: 335: 331: 327: 323: 319: 315: 311: 304: 301: 296: 292: 287: 282: 278: 274: 270: 266: 262: 258: 254: 247: 244: 237: 233: 230: 227: 224: 223: 219: 217: 213: 211: 205: 203: 199: 198:Papez circuit 195: 191: 185: 183: 175: 173: 169: 167: 162: 158: 154: 145: 143: 139: 135: 131: 124: 122: 120: 116: 112: 104: 102: 100: 94: 90: 88: 84: 80: 75: 71: 69: 65: 61: 57: 53: 49: 44: 42: 38: 33: 29: 25: 21: 2342: 2338: 2283: 2279: 2273: 2240: 2236: 2230: 2193: 2189: 2179: 2146: 2142: 2136: 2102:(1): 70–86. 2099: 2095: 2085: 2048: 2044: 2034: 1999: 1995: 1985: 1948: 1944: 1934: 1926: 1921: 1901: 1894: 1859: 1855: 1845: 1792: 1788: 1778: 1735: 1731: 1721: 1678: 1674: 1664: 1644: 1609: 1605: 1595: 1552: 1548: 1538: 1505: 1501: 1494: 1457: 1453: 1443: 1408: 1404: 1394: 1351: 1347: 1337: 1294: 1290: 1280: 1247: 1243: 1237: 1194: 1190: 1180: 1147: 1143: 1137: 1094: 1090: 1080: 1043: 1039: 1029: 986: 982: 972: 929: 925: 915: 872: 868: 858: 815: 811: 798: 757: 753: 747: 722: 718: 712: 661: 657: 647: 599:(1): 14762. 596: 592: 582: 539: 535: 525: 482: 478: 468: 425: 421: 411: 368: 364: 354: 313: 309: 303: 260: 256: 246: 214: 206: 193: 189: 186: 179: 170: 149: 140: 136: 132: 128: 108: 95: 91: 76: 72: 45: 27: 23: 19: 18: 2237:Hippocampus 2190:J. Neurosci 2149:(1): 8–23. 2096:J. Neurosci 2045:J. Neurosci 1996:J. Neurosci 1945:J. Neurosci 1297:: 355–367. 760:(1): 8–23. 725:: 181–207. 310:Hippocampus 166:place cells 83:hippocampus 238:References 202:grid cells 79:place cell 41:adaptation 1819:1476-4687 1752:1546-1726 1626:0954-898X 1569:0270-6474 1522:1939-0084 1368:0270-6474 1311:1872-6240 1264:0735-7044 1211:1529-2401 1164:0006-8993 1111:1546-1726 1003:0270-6474 946:0270-6474 889:0270-6474 842:1879-0445 774:0014-4819 686:1476-4687 621:2045-2322 566:0960-9822 499:1529-2401 442:1529-2401 385:1529-2401 330:1050-9631 277:0270-6474 157:Touretzky 119:inner ear 2383:Category 2308:25470055 2265:13520009 2257:10401637 2171:25125371 1886:15673682 1837:36949190 1828:10060160 1770:25730672 1713:25971509 1530:23025828 1486:24795578 1435:25730672 1329:25451111 1229:10436073 1129:27991898 1072:24795578 850:24440398 790:25125371 739:17341158 704:25971509 639:32901058 574:33974847 517:24431464 460:19923286 403:19176815 346:13520009 338:10401637 220:See also 68:striatum 56:thalamus 2389:Neurons 2361:9883731 2316:4457477 2288:Bibcode 2222:8604055 2213:6578512 2163:7843305 2128:7823153 2119:6578288 2077:8366357 2068:6576470 2026:2303852 2017:6570161 1977:2303851 1968:6570151 1877:6725619 1797:Bibcode 1761:4376557 1704:4704792 1683:Bibcode 1587:8604055 1578:6578512 1477:4001061 1426:4376557 1386:7666208 1377:6577663 1320:4427560 1272:8864258 1220:6782884 1172:5124915 1120:5274535 1063:4001061 1021:9787007 1012:1550347 964:8366357 955:6576470 907:7823153 898:6578288 820:Bibcode 782:7843305 695:4704792 666:Bibcode 630:7479115 601:Bibcode 544:Bibcode 508:6608343 451:2821030 394:2768409 295:2303851 286:6570151 176:History 117:of the 37:mammals 32:neurons 2369:848928 2367:  2359:  2339:Neuron 2314:  2306:  2280:Nature 2263:  2255:  2220:  2210:  2169:  2161:  2126:  2116:  2075:  2065:  2024:  2014:  1975:  1965:  1909:  1884:  1874:  1835:  1825:  1817:  1789:Nature 1768:  1758:  1750:  1711:  1701:  1675:Nature 1652:  1624:  1585:  1575:  1567:  1528:  1520:  1484:  1474:  1460:: 32. 1433:  1423:  1384:  1374:  1366:  1327:  1317:  1309:  1270:  1262:  1227:  1217:  1209:  1170:  1162:  1127:  1117:  1109:  1070:  1060:  1046:: 32. 1019:  1009:  1001:  962:  952:  944:  905:  895:  887:  848:  840:  788:  780:  772:  737:  702:  692:  684:  658:Nature 637:  627:  619:  572:  564:  515:  505:  497:  458:  448:  440:  401:  391:  383:  344:  336:  328:  293:  283:  275:  153:Redish 50:, and 2365:S2CID 2312:S2CID 2261:S2CID 2167:S2CID 786:S2CID 342:S2CID 28:cells 2357:PMID 2304:PMID 2253:PMID 2218:PMID 2159:PMID 2124:PMID 2073:PMID 2022:PMID 1973:PMID 1907:ISBN 1882:PMID 1833:PMID 1815:ISSN 1766:PMID 1748:ISSN 1709:PMID 1650:ISBN 1622:ISSN 1583:PMID 1565:ISSN 1526:PMID 1518:ISSN 1482:PMID 1431:PMID 1382:PMID 1364:ISSN 1325:PMID 1307:ISSN 1295:1621 1268:PMID 1260:ISSN 1225:PMID 1207:ISSN 1168:PMID 1160:ISSN 1125:PMID 1107:ISSN 1068:PMID 1017:PMID 999:ISSN 960:PMID 942:ISSN 903:PMID 885:ISSN 846:PMID 838:ISSN 778:PMID 770:ISSN 735:PMID 700:PMID 682:ISSN 635:PMID 617:ISSN 570:PMID 562:ISSN 513:PMID 495:ISSN 456:PMID 438:ISSN 399:PMID 381:ISSN 334:PMID 326:ISSN 291:PMID 273:ISSN 155:and 66:and 30:are 2347:doi 2296:doi 2284:517 2245:doi 2208:PMC 2198:doi 2151:doi 2147:101 2114:PMC 2104:doi 2063:PMC 2053:doi 2012:PMC 2004:doi 1963:PMC 1953:doi 1872:PMC 1864:doi 1823:PMC 1805:doi 1793:615 1756:PMC 1740:doi 1699:PMC 1691:doi 1679:521 1614:doi 1573:PMC 1557:doi 1510:doi 1506:126 1472:PMC 1462:doi 1421:PMC 1413:doi 1372:PMC 1356:doi 1315:PMC 1299:doi 1252:doi 1248:110 1215:PMC 1199:doi 1152:doi 1115:PMC 1099:doi 1058:PMC 1048:doi 1007:PMC 991:doi 950:PMC 934:doi 893:PMC 877:doi 828:doi 762:doi 758:101 727:doi 690:PMC 674:doi 662:521 625:PMC 609:doi 552:doi 503:PMC 487:doi 446:PMC 430:doi 389:PMC 373:doi 318:doi 281:PMC 265:doi 2385:: 2363:. 2355:. 2343:21 2341:. 2337:. 2310:. 2302:. 2294:. 2282:. 2259:. 2251:. 2239:. 2216:. 2206:. 2194:16 2192:. 2188:. 2165:. 2157:. 2145:. 2122:. 2112:. 2100:15 2098:. 2094:. 2071:. 2061:. 2049:13 2047:. 2043:. 2020:. 2010:. 2000:10 1998:. 1994:. 1971:. 1961:. 1949:10 1947:. 1943:. 1880:. 1870:. 1860:25 1858:. 1854:. 1831:. 1821:. 1813:. 1803:. 1791:. 1787:. 1764:. 1754:. 1746:. 1736:18 1734:. 1730:. 1707:. 1697:. 1689:. 1677:. 1673:. 1634:^ 1620:. 1608:. 1604:. 1581:. 1571:. 1563:. 1553:16 1551:. 1547:. 1524:. 1516:. 1504:. 1480:. 1470:. 1456:. 1452:. 1429:. 1419:. 1409:18 1407:. 1403:. 1380:. 1370:. 1362:. 1352:15 1350:. 1346:. 1323:. 1313:. 1305:. 1293:. 1289:. 1266:. 1258:. 1246:. 1223:. 1213:. 1205:. 1195:19 1193:. 1189:. 1166:. 1158:. 1148:34 1146:. 1123:. 1113:. 1105:. 1095:20 1093:. 1089:. 1066:. 1056:. 1042:. 1038:. 1015:. 1005:. 997:. 987:18 985:. 981:. 958:. 948:. 940:. 930:13 928:. 924:. 901:. 891:. 883:. 873:15 871:. 867:. 844:. 836:. 826:. 816:24 814:. 810:. 784:. 776:. 768:. 756:. 733:. 723:30 721:. 698:. 688:. 680:. 672:. 660:. 656:. 633:. 623:. 615:. 607:. 597:10 595:. 591:. 568:. 560:. 550:. 540:31 538:. 534:. 511:. 501:. 493:. 483:34 481:. 477:. 454:. 444:. 436:. 426:29 424:. 420:. 397:. 387:. 379:. 369:29 367:. 363:. 340:. 332:. 324:. 312:. 289:. 279:. 271:. 261:10 259:. 255:. 204:. 62:, 26:) 24:HD 2371:. 2349:: 2318:. 2298:: 2290:: 2267:. 2247:: 2241:9 2224:. 2200:: 2173:. 2153:: 2130:. 2106:: 2079:. 2055:: 2028:. 2006:: 1979:. 1955:: 1915:. 1888:. 1866:: 1839:. 1807:: 1799:: 1772:. 1742:: 1715:. 1693:: 1685:: 1658:. 1628:. 1616:: 1610:7 1589:. 1559:: 1532:. 1512:: 1488:. 1464:: 1458:8 1437:. 1415:: 1388:. 1358:: 1331:. 1301:: 1274:. 1254:: 1231:. 1201:: 1174:. 1154:: 1131:. 1101:: 1074:. 1050:: 1044:8 1023:. 993:: 966:. 936:: 909:. 879:: 852:. 830:: 822:: 792:. 764:: 741:. 729:: 706:. 676:: 668:: 641:. 611:: 603:: 576:. 554:: 546:: 519:. 489:: 462:. 432:: 405:. 375:: 348:. 320:: 314:9 297:. 267:: 22:(

Index

neurons
mammals
adaptation
retrosplenial cortex
entorhinal cortex
thalamus
lateral mammillary nucleus
dorsal tegmental nucleus
striatum
place cell
hippocampus
vestibular system
rapid eye movement sleep
vestibular system
semicircular canals
inner ear
Redish
Touretzky
attractor network
place cells
James B. Ranck, Jr.
Papez circuit
grid cells
working memory
Spatial view cells
List of distinct cell types in the adult human body
"Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis"
doi
10.1523/JNEUROSCI.10-02-00420.1990
ISSN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.