Knowledge (XXG)

Bright-field microscopy

Source 📝

174: 212: 158: 193: 617: 718: 31: 730: 68:
of the transmitted light in dense areas of the sample. Bright-field microscopy is the simplest of a range of techniques used for illumination of samples in light microscopes, and its simplicity makes it a popular technique. The typical appearance of a bright-field microscopy image is a dark sample on
285:
Samples that are naturally colorless and transparent cannot be seen well, e.g. many types of mammalian cells. These samples often have to be stained before viewing. Samples that do have their own color can be seen without preparation, e.g. the observation of
173: 211: 143:
is often required to increase contrast, which prevents use on live cells in many situations. Bright-field illumination is useful for samples that have an intrinsic color, for example mitochondria found in cells.
274:
The practical limit to magnification with a light microscope is around 1300X. Although higher magnifications are possible, it becomes increasingly difficult to maintain image clarity as the magnification
157: 83:
The light path of a bright-field microscope is extremely simple, no additional components are required beyond the normal light-microscope setup. The light path therefore consists of:
192: 660: 571: 499: 756: 703: 698: 566: 359: 665: 400: 601: 581: 429: 645: 641: 492: 445: 221: 670: 734: 722: 485: 345:
on the light source to highlight features not visible under white light. The use of filters is especially useful with
688: 378: 179: 561: 649: 631: 312: 65: 57: 551: 124: 556: 315:
lens and a special immersion oil placed on a glass cover over the specimen. Immersion oil has the same
287: 198: 120: 388:
Advanced Light Microscopy vol. 1 Principles and Basic Properties by Maksymilian Pluta, Elsevier (1988)
60:
techniques. Sample illumination is transmitted (i.e., illuminated from below and observed from above)
183: 636: 576: 397:
Microbiology: Principles and Explorations by Jacquelyn G. Black, John Wiley & Sons, Inc. (2005)
202: 394:
Introduction to Light Microscopy by S. Bradbury, B. Bracegirdle, BIOS Scientific Publishers (1998)
527: 279: 234: 54: 425: 373: 268: 136: 616: 606: 78: 61: 693: 391:
Advanced Light Microscopy vol. 2 Specialised Methods by Maksymilian Pluta, Elsevier (1989)
342: 39: 586: 335: 327: 305: 217: 102: 95: 17: 750: 655: 242: 230: 456: 148:
Comparison of transillumination techniques used to generate contrast in a sample of
323: 291: 149: 88: 338:) and differential stains (negative stains, flagellar stains, endospore stains). 229:
Bright-field microscopy is a standard light-microscopy technique, and therefore
591: 520: 508: 316: 238: 164: 35: 30: 331: 140: 108: 346: 596: 477: 139:
with most biological samples, as few absorb light to a great extent.
112: 29: 481: 105:, which collects light from the sample and magnifies the image; 319:
as glass and improves the resolution of the observed specimen.
304:
Reducing or increasing the amount of the light source by the
98:, which focuses light from the light source onto the sample; 182:
illumination, sample contrast comes from the rotation of
661:
Total internal reflection fluorescence microscopy (TIRF)
257:
Living cells can be seen with bright-field microscopes.
254:
Simplicity of setup with only basic equipment required.
163:
Bright-field illumination, sample contrast comes from
224:
of different path lengths of light through the sample
699:
Photo-activated localization microscopy (PALM/STORM)
679: 624: 537: 201:illumination, sample contrast comes from light 341:Use of a colored (usually blue) or polarizing 602:Interference reflection microscopy (IRM/RICM) 493: 87:a transillumination light source, commonly a 8: 424:(4th ed.). New York: Garland Science. 500: 486: 478: 322:Use of sample-staining methods for use in 135:Bright-field microscopy typically has low 64:, and contrast in the sample is caused by 38:. This image shows a cross-section of the 282:due to the blur of out-of-focus material; 220:illumination, sample contrast comes from 27:Optical microscopy illumination technique 572:Differential interference contrast (DIC) 412: 146: 567:Quantitative phase-contrast microscopy 69:a bright background, hence the name. 7: 729: 694:Stimulated emission depletion (STED) 420:Alberts, Bruce; et al. (2002). 25: 666:Lightsheet microscopy (LSFM/SPIM) 446:"Microscopy: Types of Microscopy" 401:Microscopy and Imaging Literature 728: 717: 716: 615: 210: 191: 172: 156: 119:Bright-field microscopy may use 671:Lattice light-sheet microscopy 582:Second harmonic imaging (SHIM) 453:Hillsborough Community College 1: 757:Optical microscopy techniques 422:Molecular biology of the cell 53:) is the simplest of all the 379:Resources in other libraries 271:of most biological samples; 773: 127:to illuminate the sample. 76: 712: 613: 515: 374:Resources in your library 326:, such as simple stains ( 115:to view the sample image. 186:light through the sample 91:in the microscope stand; 34:An example bright-field 632:Fluorescence microscopy 592:Structured illumination 547:Bright-field microscopy 365:Bright-field microscopy 313:oil-immersion objective 47:Bright-field microscopy 704:Near-field (NSOM/SNOM) 642:Multiphoton microscopy 167:of light in the sample 43: 18:Brightfield microscopy 557:Dark-field microscopy 288:cytoplasmic streaming 180:Cross-polarized light 33: 625:Fluorescence methods 656:Image deconvolution 637:Confocal microscopy 577:Dispersion staining 552:Köhler illumination 125:Köhler illumination 528:Optical microscopy 509:Optical microscopy 280:optical resolution 237:possible with the 233:is limited by the 55:optical microscopy 44: 744: 743: 689:Diffraction limit 360:Library resources 16:(Redirected from 764: 732: 731: 720: 719: 682:limit techniques 619: 540:contrast methods 538:Illumination and 502: 495: 488: 479: 472: 471: 469: 467: 462:on 20 April 2017 461: 455:. Archived from 450: 442: 436: 435: 417: 214: 195: 176: 160: 152:(1.559 μm/pixel) 79:light microscope 42:in a plant stem. 21: 772: 771: 767: 766: 765: 763: 762: 761: 747: 746: 745: 740: 708: 681: 680:Sub-diffraction 675: 620: 611: 539: 533: 511: 506: 476: 475: 465: 463: 459: 448: 444: 443: 439: 432: 419: 418: 414: 409: 385: 384: 383: 368: 367: 363: 356: 301: 264: 251: 235:resolving power 225: 215: 206: 196: 187: 177: 168: 161: 133: 81: 75: 40:vascular tissue 28: 23: 22: 15: 12: 11: 5: 770: 768: 760: 759: 749: 748: 742: 741: 739: 738: 726: 713: 710: 709: 707: 706: 701: 696: 691: 685: 683: 677: 676: 674: 673: 668: 663: 658: 653: 639: 634: 628: 626: 622: 621: 614: 612: 610: 609: 604: 599: 594: 589: 587:4Pi microscope 584: 579: 574: 569: 564: 562:Phase contrast 559: 554: 549: 543: 541: 535: 534: 532: 531: 524: 516: 513: 512: 507: 505: 504: 497: 490: 482: 474: 473: 437: 430: 411: 410: 408: 405: 404: 403: 398: 395: 392: 389: 382: 381: 376: 370: 369: 358: 357: 355: 352: 351: 350: 339: 336:crystal violet 328:methylene blue 320: 309: 306:iris diaphragm 300: 297: 296: 295: 283: 276: 272: 263: 260: 259: 258: 255: 250: 247: 227: 226: 218:Phase-contrast 216: 209: 207: 197: 190: 188: 178: 171: 169: 162: 155: 153: 132: 129: 117: 116: 106: 103:objective lens 99: 96:condenser lens 92: 77:Main article: 74: 71: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 769: 758: 755: 754: 752: 737: 736: 727: 725: 724: 715: 714: 711: 705: 702: 700: 697: 695: 692: 690: 687: 686: 684: 678: 672: 669: 667: 664: 662: 659: 657: 654: 651: 647: 643: 640: 638: 635: 633: 630: 629: 627: 623: 618: 608: 605: 603: 600: 598: 595: 593: 590: 588: 585: 583: 580: 578: 575: 573: 570: 568: 565: 563: 560: 558: 555: 553: 550: 548: 545: 544: 542: 536: 530: 529: 525: 523: 522: 518: 517: 514: 510: 503: 498: 496: 491: 489: 484: 483: 480: 458: 454: 447: 441: 438: 433: 431:0-8153-3218-1 427: 423: 416: 413: 406: 402: 399: 396: 393: 390: 387: 386: 380: 377: 375: 372: 371: 366: 361: 353: 348: 344: 340: 337: 333: 329: 325: 321: 318: 314: 310: 307: 303: 302: 298: 293: 289: 284: 281: 278:Low apparent 277: 273: 270: 266: 265: 261: 256: 253: 252: 248: 246: 244: 243:visible light 240: 236: 232: 231:magnification 223: 219: 213: 208: 205:by the sample 204: 200: 194: 189: 185: 181: 175: 170: 166: 159: 154: 151: 147: 145: 142: 138: 130: 128: 126: 122: 114: 110: 107: 104: 100: 97: 93: 90: 86: 85: 84: 80: 72: 70: 67: 63: 59: 56: 52: 48: 41: 37: 32: 19: 733: 721: 650:Three-photon 546: 526: 519: 464:. Retrieved 457:the original 452: 440: 421: 415: 364: 324:microbiology 299:Enhancements 228: 222:interference 150:tissue paper 134: 118: 89:halogen lamp 82: 58:illumination 50: 46: 45: 262:Limitations 131:Performance 66:attenuation 62:white light 646:Two-photon 521:Microscope 354:References 317:refraction 311:Use of an 275:increases; 249:Advantages 239:wavelength 199:Dark-field 165:absorbance 73:Light path 36:micrograph 267:Very low 203:scattered 184:polarized 111:and/or a 751:Category 723:Category 466:19 April 349:samples. 332:safranin 269:contrast 141:Staining 137:contrast 121:critical 735:Commons 347:mineral 109:oculars 597:Sarfus 428:  362:about 343:filter 294:cells. 113:camera 607:Raman 460:(PDF) 449:(PDF) 407:Notes 292:Chara 468:2017 426:ISBN 290:in 241:of 123:or 101:an 753:: 648:, 451:. 334:, 330:, 245:. 94:a 51:BF 652:) 644:( 501:e 494:t 487:v 470:. 434:. 308:. 49:( 20:)

Index

Brightfield microscopy

micrograph
vascular tissue
optical microscopy
illumination
white light
attenuation
light microscope
halogen lamp
condenser lens
objective lens
oculars
camera
critical
Köhler illumination
contrast
Staining
tissue paper
Bright-field illumination, sample contrast comes from absorbance of light in the sample
absorbance
Cross-polarized light illumination, sample contrast comes from the rotation of polarized light through the sample
Cross-polarized light
polarized
Dark-field illumination, sample contrast comes from light scattered by the sample
Dark-field
scattered
Phase-contrast illumination, sample contrast comes from interference of different path lengths of light through the sample
Phase-contrast
interference

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.