Knowledge (XXG)

Domino logic

Source đź“ť

24: 118:
connected to the inverter output, its source connected to the power supply, and its drain connected to the inverter input. The keeper transistor thus connects the dynamic node to the power supply whenever it is supposed to be in the "1" state, allowing the output to be correctly restored despite the charge sharing.
76:
to speed up performance. In CMOS dynamic logic gates, the gate output is precharged to the power supply voltage while the clock is off (the "precharge" phase), and then is evaluated to the correct logic state while the clock is on (the "evaluation" phase) by draining the relevant NMOS transistors in
89:
In order to cascade dynamic logic gates, one solution is domino logic, which inserts an ordinary static inverter between stages. In a multistage domino logic cascade structure, the evaluation of each stage ripples the next stage for evaluation, similar to dominoes falling one after the other. Once
80:
When cascading dynamic logic gates, however, a problem arises: the precharge "1" state of the first gate may cause the second gate to discharge prematurely, before the first gate has reached its correct state. This uses up the precharge of the second gate, which cannot be restored until the next
117:
can cause difficulties for domino logic signal integrity; during the evaluation phase, NMOS transistors next to the output which are on may cause undesired discharging from the output node. To fix this, a keeper transistor can be used. This keeper transistor is a PMOS transistor with its gate
144:
Traditional domino logic circuits are "footed", that is, they have an NMOS transistor controlled by the clock which is connected to the ground rail. Some domino logic circuits, however, are "footless": they lack this transistor, resulting in higher speed at the cost of greater power leakage.
105:
to multiple pFETs; the dynamic gate connects to exactly one inverter, so the gate is still very fast. Furthermore, since the inverter connects to only nFETs in dynamic logic gates, it too is very fast. Second, the pFET in an inverter can be made smaller than in some types of logic gates.
137:). To rectify this property, some variants of domino logic are differential or dual-rail in nature, using inverted as well as non-inverted inputs to implement the logic function as well as its inverse. These varieties also include cross-coupled pFETs to attenuate 317: 57:
between domino stages to avoid premature discharge of further cascaded dynamic logic gates. Domino logic allows a rail-to-rail logic swing, with the output being able to switch from the power supply voltage to the ground voltage.
121:
Another issue in domino logic is its noninverting property; that is, it can only implement gates that do not have inversions at their outputs (such as
534: 231: 679: 154: 67: 277: 315:, Abdel-Hafeez, S. & Ranjan, N., "Single Rail Domino Logic For Four-Phase Clocking Scheme", published 2000 651: 621: 294: 50:. Domino logic contrasts with other solutions to the cascade problem where cascading is interrupted by clocks or other means. 645: 39: 674: 527: 609: 46:. The term derives from the fact that in domino logic, each stage ripples the next stage for evaluation, similar to 639: 498: 633: 569: 53:
Domino logic was developed to speed up circuits, solving the premature cascade problem, typically by inserting
180: 93:
While the insertion of the inverter might seem to defeat the point of dynamic logic, since the inverter has a
710: 520: 27:
General domino logic implementation, with the pull-down network symbolising a network of NMOS transistors.
627: 581: 312: 469: 436: 138: 657: 401: 237: 393: 354: 273: 227: 689: 477: 444: 385: 344: 265: 219: 159: 502: 17: 473: 440: 615: 114: 101:
where possible, due to speed), there are two reasons it works well. First, there is no
90:
evaluated, the node states cannot return to "1" until the next precharge phase begins.
704: 405: 54: 47: 43: 241: 543: 73: 349: 332: 604: 23: 457: 389: 564: 559: 507: 481: 424: 259: 211: 397: 373: 358: 269: 223: 130: 333:"Low power domino logic circuits in deep-submicron technology using CMOS" 216:
Proceedings of the 8th Great Lakes Symposium on VLSI (Cat. No.98TB100222)
134: 122: 495: 258:
Natarajan, Suriyaprakash; Gupta, Sandeep K.; Breuer, Melvin A. (2001).
126: 102: 587: 551: 448: 42:
techniques consisting of a dynamic logic gate cascaded into a static
261:
Proceedings International Test Conference 2001 (Cat. No.01CH37260)
22: 512: 575: 423:
Wu, Chung-Yu; Cheng, Kuo-Hsing; Wan, Jinn-Shyan (January 1993).
35: 516: 425:"Analysis and design of a new race-free four-phase CMOS logic" 98: 94: 372:
Angeline, A. Anita; Bhaaskaran, V. S. Kanchana (2022-04-01).
179:
Sharma, Ankita; Rao, Divyanshu; Mohan, Ravi (December 2016).
188:
Journal of Network Communications and Emerging Technologies
181:"Design and Implementation of Domino Logic Circuit in CMOS" 378:
Journal of the Institution of Engineers (India): Series B
374:"Domino Logic Keeper Circuit Design Techniques: A Review" 72:
Dynamic logic differs from static logic by including a
81:
clock cycle, so there is no recovery from this error.
97:(one of the main goals of dynamic logic is to avoid 667: 597: 550: 456:Krambeck, R.H.; Lee, C.M.; Law, H.F. (June 1982). 331:Garg, Sandeep; Gupta, Tarun Kumar (2018-08-01). 212:"Issues in the design of domino logic circuits" 528: 8: 210:Srivastava, P.; Pua, A.; Welch, L. (1998). 535: 521: 513: 658:Current mode logic / Source-coupled logic 348: 16:For logic gates built from dominoes, see 264:. Vol. 13. IEEE. pp. 367–376. 458:"High-Speed Compact Circuits with CMOS" 171: 218:. IEEE Comput. Soc. pp. 108–112. 7: 462:IEEE Journal of Solid-State Circuits 429:IEEE Journal of Solid-State Circuits 253: 251: 205: 203: 201: 48:dominoes falling one after the other 155:Dynamic logic (digital electronics) 68:Dynamic logic (digital electronics) 337:Engineering Science and Technology 14: 496:Domino Logic, Boston University. 622:Direct-coupled transistor logic 1: 110:Modifications to domino logic 350:10.1016/j.jestch.2018.06.013 299:SC571 VLSI Design Principles 652:Transistor–transistor logic 508:Dynamic Logic, Paul DeMone. 295:"5. Dynamic Logic Circuits" 727: 640:Integrated injection logic 390:10.1007/s40031-021-00668-5 65: 15: 646:Resistor–transistor logic 634:Gunning transceiver logic 570:Depletion-load NMOS logic 482:10.1109/JSSC.1982.1051786 270:10.1109/test.2001.966628 224:10.1109/GLSV.1998.665208 77:the pull-down network. 610:Diode–transistor logic 85:Domino logic operation 28: 628:Emitter-coupled logic 582:Pass transistor logic 55:static CMOS inverters 26: 301:. Boston University. 38:-based evolution of 474:1982IJSSC..17..614K 441:1993IJSSC..28...18C 598:Other technologies 501:2016-03-04 at the 417:General references 29: 698: 697: 576:Complementary MOS 233:978-0-8186-8409-8 718: 690:Four-phase logic 572:(including HMOS) 537: 530: 523: 514: 485: 452: 449:10.1109/4.179199 410: 409: 369: 363: 362: 352: 328: 322: 321: 320: 316: 309: 303: 302: 290: 284: 283: 255: 246: 245: 207: 196: 195: 185: 176: 160:Sequential logic 129:, as opposed to 726: 725: 721: 720: 719: 717: 716: 715: 701: 700: 699: 694: 663: 593: 546: 541: 503:Wayback Machine 492: 455: 422: 419: 414: 413: 371: 370: 366: 330: 329: 325: 318: 311: 310: 306: 292: 291: 287: 280: 257: 256: 249: 234: 209: 208: 199: 183: 178: 177: 173: 168: 151: 112: 87: 70: 64: 21: 18:Domino computer 12: 11: 5: 724: 722: 714: 713: 711:Logic families 703: 702: 696: 695: 693: 692: 687: 682: 677: 671: 669: 665: 664: 662: 661: 655: 649: 643: 637: 631: 625: 619: 616:Open collector 613: 607: 601: 599: 595: 594: 592: 591: 585: 579: 573: 567: 562: 556: 554: 552:MOS technology 548: 547: 544:Logic families 542: 540: 539: 532: 525: 517: 511: 510: 505: 491: 490:External links 488: 487: 486: 453: 418: 415: 412: 411: 384:(2): 669–679. 364: 343:(4): 625–638. 323: 313:WO 2000/076068 304: 293:Knepper, R.W. 285: 278: 247: 232: 197: 170: 169: 167: 164: 163: 162: 157: 150: 147: 115:Charge sharing 111: 108: 86: 83: 66:Main article: 63: 60: 13: 10: 9: 6: 4: 3: 2: 723: 712: 709: 708: 706: 691: 688: 686: 683: 681: 678: 676: 673: 672: 670: 666: 659: 656: 653: 650: 647: 644: 641: 638: 635: 632: 629: 626: 623: 620: 617: 614: 611: 608: 606: 603: 602: 600: 596: 589: 586: 583: 580: 577: 574: 571: 568: 566: 563: 561: 558: 557: 555: 553: 549: 545: 538: 533: 531: 526: 524: 519: 518: 515: 509: 506: 504: 500: 497: 494: 493: 489: 483: 479: 475: 471: 467: 463: 459: 454: 450: 446: 442: 438: 434: 430: 426: 421: 420: 416: 407: 403: 399: 395: 391: 387: 383: 379: 375: 368: 365: 360: 356: 351: 346: 342: 338: 334: 327: 324: 314: 308: 305: 300: 296: 289: 286: 281: 279:0-7803-7169-0 275: 271: 267: 263: 262: 254: 252: 248: 243: 239: 235: 229: 225: 221: 217: 213: 206: 204: 202: 198: 193: 189: 182: 175: 172: 165: 161: 158: 156: 153: 152: 148: 146: 142: 140: 136: 132: 128: 124: 119: 116: 109: 107: 104: 100: 96: 91: 84: 82: 78: 75: 69: 62:Dynamic logic 61: 59: 56: 51: 49: 45: 44:CMOS inverter 41: 40:dynamic logic 37: 33: 25: 19: 685:Domino logic 684: 588:Bipolar–CMOS 468:(3): 614–9. 465: 461: 435:(1): 18–25. 432: 428: 381: 377: 367: 340: 336: 326: 307: 298: 288: 260: 215: 194:(12): 14–17. 191: 187: 174: 143: 120: 113: 92: 88: 79: 74:clock signal 71: 52: 32:Domino logic 31: 30: 605:Diode logic 565:NMOS logic 560:PMOS logic 166:References 131:NAND gates 660:(CML/SCL) 406:256342548 398:2250-2114 359:2215-0986 135:NOR gates 123:AND gates 705:Category 590:(BiCMOS) 499:Archived 242:45670900 149:See also 127:OR gates 680:Dynamic 470:Bibcode 437:Bibcode 103:fan-out 675:Static 624:(DCTL) 578:(CMOS) 404:  396:  357:  319:  276:  240:  230:  668:Types 654:(TTL) 648:(RTL) 636:(GTL) 630:(ECL) 612:(DTL) 584:(PTL) 402:S2CID 238:S2CID 184:(PDF) 139:noise 99:pFETs 34:is a 642:(IL) 618:(OC) 394:ISSN 355:ISSN 274:ISBN 228:ISBN 133:and 125:and 95:pFET 36:CMOS 478:doi 445:doi 386:doi 382:103 345:doi 266:doi 220:doi 707:: 476:. 466:17 464:. 460:. 443:. 433:28 431:. 427:. 400:. 392:. 380:. 376:. 353:. 341:21 339:. 335:. 297:. 272:. 250:^ 236:. 226:. 214:. 200:^ 190:. 186:. 141:. 536:e 529:t 522:v 484:. 480:: 472:: 451:. 447:: 439:: 408:. 388:: 361:. 347:: 282:. 268:: 244:. 222:: 192:6 20:.

Index

Domino computer

CMOS
dynamic logic
CMOS inverter
dominoes falling one after the other
static CMOS inverters
Dynamic logic (digital electronics)
clock signal
pFET
pFETs
fan-out
Charge sharing
AND gates
OR gates
NAND gates
NOR gates
noise
Dynamic logic (digital electronics)
Sequential logic
"Design and Implementation of Domino Logic Circuit in CMOS"



"Issues in the design of domino logic circuits"
doi
10.1109/GLSV.1998.665208
ISBN
978-0-8186-8409-8
S2CID

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑