Knowledge (XXG)

Metal–semiconductor junction

Source 📝

318: 341: 122: 637:). These highly dense surface states would be able to absorb a large quantity of charge donated from the metal, effectively shielding the semiconductor from the details of the metal. As a result, the semiconductor's bands would necessarily align to a location relative to the surface states which are in turn pinned to the Fermi level (due to their high density), all without influence from the metal. 192:
The Schottky barrier height is defined differently for n-type and p-type semiconductors (being measured from the conduction band edge and valence band edge, respectively). The alignment of the semiconductor's bands near the junction is typically independent of the semiconductor's doping level, so the
620:
In fact, empirically, it is found that neither of the above extremes is quite correct. The choice of metal does have some effect, and there appears to be a weak correlation between the metal work function and the barrier height, however the influence of the work function is only a fraction of that
841:
in 1939. Although it gives the correct direction of rectification, it has also been proven that the Mott theory and its Schottky-Davydov extension gives the wrong current limiting mechanism and wrong current-voltage formulae in silicon metal/semiconductor diode rectifiers. The correct theory was
912:
The Schottky diode, also known as the Schottky-barrier diode, was theorized for years, but was first practically realized as a result of the work of Atalla and Kahng during 1960–1961. They published their results in 1962 and called their device the "hot electron" triode structure with
628:
that the Fermi level pinning phenomenon would naturally arise if there were chargeable states in the semiconductor right at the interface, with energies inside the semiconductor's gap. These would either be induced during the direct chemical bonding of the metal and semiconductor
909:. One of those clamp circuits used a single germanium diode to clamp a silicon transistor in a circuit configuration that is the same as the Schottky transistor. The circuit relied on the germanium diode having a lower forward voltage drop than a silicon diode would have. 1335: 897:
type and density in the semiconductor, the droplet spreading depends on the magnitude and sign of the voltage applied to the mercury droplet. This effect has been termed ‘Schottky electrowetting’, effectively linking electrowetting and semiconductor effects.
653:-type germanium, since the valence band edge is strongly pinned to the metal's Fermi level. The solution to this inflexibility requires additional processing steps such as adding an intermediate insulating layer to unpin the bands. (In the case of germanium, 640:
The Fermi level pinning effect is strong in many commercially important semiconductors (Si, Ge, GaAs), and thus can be problematic for the design of semiconductor devices. For example, nearly all metals form a significant Schottky barrier to
523:
in the semiconductor, it was found experimentally that it would give grossly incorrect predictions for the height of the Schottky barrier. A phenomenon referred to as "Fermi level pinning" caused some point of the band gap, at which finite
904:
The first silicon oxide gate transistor were invented by Frosch and Derick in 1957 at Bell Labs. In 1956, Richard Baker described some discrete diode clamp circuits to keep transistors from saturating. The circuits are now known as
1983: 503: 283: 601: 358:. They are bent again just before contact (to match work functions). Upon contact however, the band bending changes completely, in a way that depends on the chemistry of the Ag-Si bonding. 901:
Between 1953-1958, Fuller and Ditzenberger's work on the diffusion of impurities into silicon. In 1956 Miller and Savage studied the diffusion of aluminium in crystal silicon.
1139: 724: 110: 938:, publishing their results in January 1963. Their work was a breakthrough in metal–semiconductor junction and Schottky barrier research, as it overcame most of the 774:
were used (and are still used) to convert alternating current to direct current in electrical power applications. During 1925–1940, diodes consisting of a pointed
1687: 949:
In 1967, Robert Kerwin, Donald Klein and John Sarace at Bell Labs, patented a method to replaced the aluminum gate with a polycrystalline layer of silicon
417: 858:
over the metal–semiconductor potential barrier. Thus, the appropriate name for the metal–semiconductor diode should be the Bethe diode, instead of the
1311: 1153:
Nishimura, T.; Kita, K.; Toriumi, A. (2007). "Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface".
528:
exists, to be locked (pinned) to the Fermi level. This made the Schottky barrier height almost completely insensitive to the metal's work function:
913:
semiconductor-metal emitter. It was one of the first metal-base transistors. Atalla continued research on Schottky diodes with Robert J. Archer at
2029: 1115: 207: 534: 513: 508:
This model is derived based on the thought experiment of bringing together the two materials in vacuum, and is closely related in logic to
1903: 330:Φ matches the silver's. The bands retain their bending upon contact. This model predicts silver to have a very low Schottky barrier to 790:
range. A World War II program to manufacture high-purity silicon as the crystal base for the point-contact rectifier was suggested by
1603: 2056: 1911: 1878: 1817: 1715: 985: 750:. They consisted of pointed tungsten wire (in the shape of a cat's whisker) whose tip or point was pressed against the surface of a 1981:, Kerwin, Robert E.; Klein, Donald L. & Sarace, John C., "Method for making mis structures", issued 1969-10-28 302:
In practice, the Schottky barrier height is not precisely constant across the interface, and varies over the interfacial surface.
939: 165:
Whether a given metal-semiconductor junction is an ohmic contact or a Schottky barrier depends on the Schottky barrier height, Φ
1737: 1509: 795: 317: 82:. (In contrast, a rectifying semiconductor–semiconductor junction, the most common semiconductor device today, is known as a 1707: 1358: 833:
assumed by Mott to a linearly decaying electric field. This semiconductor space-charge layer under the metal is known as the
759: 801:
The first theory that predicted the correct direction of rectification of the metal–semiconductor junction was given by
340: 688: 1751:
Atalla, M.; Kahng, D. (November 1962). "A new "Hot electron" triode structure with semiconductor-metal emitter".
924: 810: 743: 682: 817:
through the semiconductor surface space charge layer which has been known since about 1948 as the Mott barrier.
767: 630: 382: 351: 47: 862:, since the Schottky theory does not predict the modern metal–semiconductor diode characteristics correctly. 728: 720: 1090: 894: 67: 1556: 1333:, "Detector for electrical disturbances", published September 30, 1901, issued March 29, 1904 1837: 1330: 719:
many metals on many semiconductors. The use of the metal–semiconductor diode rectifier was proposed by
1998: 1307: 128:
for metal-semiconductor junction at zero bias (equilibrium). Shown is the graphical definition of the
1936: 1760: 1615: 1568: 1521: 1474: 1427: 1373:
S. Arscott and M. Gaudet "Electrowetting at a liquid metal-semiconductor junction" Appl. Phys. Lett.
1326: 1281: 1243: 1201: 1162: 1059: 1024: 998: 874: 59: 685:
applied for a US patent for a metal-semiconductor diode in 1901. This patent was awarded in 1904.
89:
Metal–semiconductor junctions are crucial to the operation of all semiconductor devices. Usually an
943: 935: 851: 802: 771: 696: 106: 31: 850:
Radiation Laboratory Report dated November 23, 1942. In Bethe's theory, the current is limited by
1960: 1803: 1784: 1316: "Method and apparatus for controlling electric current" first filed in Canada on 22.10.1925. 1133: 818: 754:(lead sulfide) crystal. The first large area rectifier appeared around 1926 which consisted of a 392: 509: 1731: 326:: As the materials are brought together, the bands in the silicon bend such that the silicon's 2035: 2025: 1952: 1907: 1895: 1874: 1864: 1813: 1776: 1711: 1701: 1631: 1584: 1537: 1490: 1443: 1354: 1231: 1121: 1111: 981: 918: 870: 814: 670: 654: 525: 408: 404: 185:. For lower Schottky barrier heights, the semiconductor is not depleted and instead forms an 93:
is desired, so that electrical charge can be conducted easily between the active region of a
83: 1944: 1927:
Archer, R. J.; Atalla, M. M. (January 1963). "Metals Contacts on Cleaved Silicon Surfaces".
1768: 1662: 1623: 1576: 1529: 1482: 1435: 1398: 1378: 1289: 1251: 1209: 1170: 1067: 1032: 958: 882: 834: 747: 732: 704: 182: 178: 121: 98: 71: 1227: 1015:
Bardeen, J. (1947). "Surface States and Rectification at a Metal Semi-Conductor Contact".
914: 791: 755: 708: 666: 141: 1270:"Crystal Rectifiers for Electric Currents and Electric Oscillations. Part I. Carborundum" 893:
can be observed, where the droplet spreads out with increasing voltage. Depending on the
829:
is spatially constant through the semiconductor surface layer. This changed the constant
1940: 1764: 1619: 1572: 1525: 1478: 1431: 1285: 1247: 1205: 1166: 1063: 1028: 1948: 1650: 890: 886: 859: 830: 674: 355: 102: 75: 1050:
Tung, R. (2001). "Formation of an electric dipole at metal-semiconductor interfaces".
2050: 1703:
To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology
1580: 1461:
Fuller, C. S.; Struthers, J. D.; Ditzenberger, J. A.; Wolfstirn, K. B. (1954-03-15).
866: 634: 400: 327: 186: 90: 79: 55: 1964: 1788: 1462: 678: 625: 520: 498:{\displaystyle \Phi _{\rm {B}}^{(n)}\approx \Phi _{\rm {metal}}-\chi _{\rm {semi}}} 364: 125: 17: 1978: 1415: 1293: 906: 739: 396: 152: 1839:
NASA Technical Paper 2287: Topics in the Optimization of Millimeter-Wave Mixers
1071: 169:, of the junction. For a sufficiently large Schottky barrier height, that is, Φ 1557:"Diffusion, solubility, and electrical behavior of copper in gallium arsenide" 928: 921: 843: 783: 716: 516:. Different semiconductors respect the Schottky–Mott rule to varying degrees. 94: 63: 2039: 1956: 1780: 1635: 1588: 1541: 1494: 1447: 1255: 1125: 665:
The rectification property of metal–semiconductor contacts was discovered by
1809: 1772: 1486: 855: 806: 646: 1439: 1036: 1870: 775: 763: 614: 296: 723:
in 1926 in the first of his three transistor patents as the gate of the
1402: 932: 878: 838: 826: 794:
in 1942 and successfully undertaken by the Experimental Station of the
779: 700: 278:{\displaystyle \Phi _{\rm {B}}^{(n)}+\Phi _{\rm {B}}^{(p)}=E_{\rm {g}}} 1666: 1651:"Surface Protection and Selective Masking during Diffusion in Silicon" 1627: 1533: 1382: 1213: 1174: 596:{\displaystyle \Phi _{\rm {B}}\approx {\frac {1}{2}}E_{\rm {bandgap}}} 519:
Although the Schottky–Mott model correctly predicted the existence of
1900:
Metal-Semiconductor Schottky Barrier Junctions and Their Applications
1105: 847: 751: 692: 201:-type Schottky barrier heights are ideally related to each other by: 1269: 371:-doped silicon. In practice this Schottky barrier is approximately Φ 1189: 712: 120: 51: 770:
onto large metal substrates to form the rectifying diodes. These
1846: 1733:
The Industrial Reorganization Act: The communications industry
822: 787: 140:-type semiconductor as the difference between the interfacial 1836:
Siegel, Peter H.; Kerr, Anthony R.; Hwang, Wei (March 1984).
633:) or be already present in the semiconductor–vacuum surface ( 1393:
S. Arscott "Electrowetting and semiconductors" RSC Advances
1188:
Lieten, R. R.; Degroote, S.; Kuijk, M.; Borghs, G. (2008).
399:, predicts the Schottky barrier height based on the vacuum 946:
and made it possible to build practical Schottky diodes.
865:
If a metal-semiconductor junction is formed by placing a
354:: The bands in the silicon already start out bent due to 1866:
Infrared and Millimeter Waves V6: Systems and Components
1234:[On current conduction through metal sulfides], 782:
crystal base, were fabricated in laboratories to detect
821:
and Spenke extended Mott's theory by including a donor
367:
for models of formation of junction between silver and
70:. The rectifying metal–semiconductor junction forms a 1510:"Diffusion of Donor and Acceptor Elements in Silicon" 537: 420: 210: 1463:"Diffusivity and Solubility of Copper in Germanium" 97:and the external circuitry. Occasionally however a 2020:Streetman, Ben G.; Banerjee, Sanjay Kumar (2016). 595: 497: 334:-doped silicon, making an excellent ohmic contact. 277: 1604:"Diffusion of Aluminum in Single Crystal Silicon" 1508:Fuller, C. S.; Ditzenberger, J. A. (1956-05-01). 1416:"Diffusion of Lithium into Germanium and Silicon" 1414:Fuller, C. S.; Ditzenberger, J. A. (1953-07-01). 731:using a metal/semiconductor gate was advanced by 78:, while the non-rectifying junction is called an 173:is significantly higher than the thermal energy 978:Semiconductor Devices: Modelling and Technology 117:The critical parameter: Schottky barrier height 1232:"Ueber die Stromleitung durch Schwefelmetalle" 1091:"Barrier Height Correlations and Systematics" 8: 1678: 1676: 1138:: CS1 maint: multiple names: authors list ( 980:, Nandita Dasgupta, Amitava Dasgupta.(2004) 805:in 1939. He found the solution for both the 725:metal–semiconductor field effect transistors 111:metal–semiconductor field effect transistors 1555:Fuller, C. S.; Whelan, J. M. (1958-08-01). 742:application occurred around 1900, when the 738:The earliest metal–semiconductor diodes in 1929:Annals of the New York Academy of Sciences 1561:Journal of Physics and Chemistry of Solids 758:semiconductor thermally grown on a copper 306:Schottky–Mott rule and Fermi level pinning 1858: 1856: 1831: 1829: 1085: 1083: 1081: 1010: 1008: 568: 567: 553: 543: 542: 536: 479: 478: 452: 451: 432: 426: 425: 419: 391:of Schottky barrier formation, named for 268: 267: 248: 242: 241: 222: 216: 215: 209: 1602:Miller, R. C.; Savage, A. (1956-12-01). 837:. A similar theory was also proposed by 1686:was invoked but never defined (see the 1351:Fundamentals of Solid-State Electronics 970: 1655:Journal of The Electrochemical Society 1190:"Ohmic contact formation on n-type Ge" 1131: 58:material. It is the oldest practical 1904:Springer Science & Business Media 621:predicted by the Schottky-Mott rule. 514:semiconductor-semiconductor junctions 7: 2024:. Boston: Pearson. p. 251-257. 1753:IRE Transactions on Electron Devices 711:showing rectification properties of 403:of the metal relative to the vacuum 1999:"Fiction in the Integrated Circuit" 1896:"Microwave Schottky Barrier Diodes" 1681: 1949:10.1111/j.1749-6632.1963.tb54926.x 927:technology, and fabricated stable 587: 584: 581: 578: 575: 572: 569: 544: 539: 489: 486: 483: 480: 465: 462: 459: 456: 453: 448: 427: 422: 269: 243: 238: 217: 212: 25: 1649:Frosch, C. J.; Derick, L (1957). 1682:Cite error: The named reference 1107:Physics of semiconductor devices 999:"Inhomogeneous Schottky Barrier" 339: 316: 181:near the metal and behaves as a 1738:U.S. Government Printing Office 1104:Sze, S. M. Ng, Kwok K. (2007). 877:did, onto a semiconductor, e.g. 796:E. I du Pont de Nemours Company 62:. M–S junctions can either be 2022:Solid state electronic devices 1805:Silicon-Molecular Beam Epitaxy 1708:Johns Hopkins University Press 439: 433: 255: 249: 229: 223: 54:comes in close contact with a 1: 1236:Annalen der Physik und Chemie 778:metal wire in contact with a 74:, making a device known as a 1581:10.1016/0022-3697(58)90091-X 1294:10.1103/PhysRevSeriesI.25.31 1863:Button, Kenneth J. (1982). 1700:Bassett, Ross Knox (2007). 27:Type of electrical junction 2073: 1997:Stein, Eric (2018-01-01). 1608:Journal of Applied Physics 1514:Journal of Applied Physics 1072:10.1103/PhysRevB.64.205310 380: 1110:. John Wiley & Sons. 846:and reported by him in a 683:Sir Jagadish Chandra Bose 375: = 0.8 eV. 2057:Semiconductor structures 1256:10.1002/andp.18752291207 744:cat's whisker rectifiers 649:and an ohmic contact to 631:metal-induced gap states 624:It was noted in 1947 by 411:) of the semiconductor: 383:Metal-induced gap states 352:metal-induced gap states 2003:TWU Master's Thesis 1773:10.1109/T-ED.1962.15048 1487:10.1103/PhysRev.93.1182 1349:Sah, Chih-Tang (1991). 1194:Applied Physics Letters 1155:Applied Physics Letters 729:field-effect transistor 697:point-contact rectifier 295:is the semiconductor's 177:, the semiconductor is 130:Schottky barrier height 1440:10.1103/PhysRev.91.193 1268:Pierce, G. W. (1907). 1037:10.1103/PhysRev.71.717 917:. They developed high 617:in the semiconductor. 597: 499: 279: 162: 1740:. 1973. p. 1475. 1331:Bose, Jagadis Chunder 942:problems inherent in 707:published a paper in 673:metal contacted with 598: 500: 280: 124: 1353:. World Scientific. 944:point-contact diodes 727:. The theory of the 535: 418: 208: 107:Schottky transistors 60:semiconductor device 1941:1963NYASA.101..697A 1802:Kasper, E. (2018). 1765:1962ITED....9..507A 1620:1956JAP....27.1430M 1573:1958JPCS....6..173F 1526:1956JAP....27..544F 1479:1954PhRv...93.1182F 1432:1953PhRv...91..193F 1286:1907PhRvI..25...31P 1248:1875AnP...229..556B 1206:2008ApPhL..92b2106L 1167:2007ApPhL..91l3123N 1064:2001PhRvB..64t5310T 1029:1947PhRv...71..717B 889:electrical setup – 852:thermionic emission 772:selenium rectifiers 443: 348:Fermi level pinning 259: 233: 48:electrical junction 36:metal–semiconductor 32:solid-state physics 18:Fermi level pinning 1894:Anand, Y. (2013). 1403:10.1039/C4RA04187A 819:Walter H. Schottky 593: 495: 421: 393:Walter H. Schottky 389:Schottky–Mott rule 324:Schottky–Mott rule 275: 237: 211: 163: 2031:978-1-292-06055-2 1849:. pp. 12–13. 1667:10.1149/1.2428650 1628:10.1063/1.1722283 1614:(12): 1430–1432. 1534:10.1063/1.1722419 1383:10.1063/1.4818715 1377:, 074104 (2013). 1214:10.1063/1.2831918 1175:10.1063/1.2789701 1117:978-0-471-14323-9 1052:Physical Review B 815:majority carriers 655:germanium nitride 561: 409:ionization energy 405:electron affinity 101:is useful, as in 16:(Redirected from 2064: 2043: 2007: 2006: 1994: 1988: 1987: 1986: 1982: 1975: 1969: 1968: 1924: 1918: 1917: 1891: 1885: 1884: 1860: 1851: 1850: 1844: 1833: 1824: 1823: 1799: 1793: 1792: 1748: 1742: 1741: 1728: 1722: 1721: 1697: 1691: 1685: 1680: 1671: 1670: 1646: 1640: 1639: 1599: 1593: 1592: 1552: 1546: 1545: 1505: 1499: 1498: 1473:(6): 1182–1189. 1458: 1452: 1451: 1411: 1405: 1397:, 29223 (2014). 1391: 1385: 1371: 1365: 1364: 1346: 1340: 1339: 1338: 1334: 1323: 1317: 1315: 1314: 1310: 1304: 1298: 1297: 1265: 1259: 1258: 1224: 1218: 1217: 1185: 1179: 1178: 1150: 1144: 1143: 1137: 1129: 1101: 1095: 1094: 1087: 1076: 1075: 1047: 1041: 1040: 1012: 1003: 1002: 995: 989: 975: 959:Schottky barrier 883:Schottky barrier 835:Schottky barrier 813:currents of the 762:. Subsequently, 733:William Shockley 705:George W. Pierce 681:semiconductors. 602: 600: 599: 594: 592: 591: 590: 562: 554: 549: 548: 547: 504: 502: 501: 496: 494: 493: 492: 470: 469: 468: 442: 431: 430: 346:Picture showing 343: 320: 284: 282: 281: 276: 274: 273: 272: 258: 247: 246: 232: 221: 220: 183:Schottky barrier 99:Schottky barrier 72:Schottky barrier 21: 2072: 2071: 2067: 2066: 2065: 2063: 2062: 2061: 2047: 2046: 2032: 2019: 2016: 2014:Further reading 2011: 2010: 1996: 1995: 1991: 1984: 1977: 1976: 1972: 1926: 1925: 1921: 1914: 1906:. p. 220. 1893: 1892: 1888: 1881: 1873:. p. 214. 1862: 1861: 1854: 1842: 1835: 1834: 1827: 1820: 1801: 1800: 1796: 1750: 1749: 1745: 1730: 1729: 1725: 1718: 1710:. p. 328. 1699: 1698: 1694: 1683: 1674: 1648: 1647: 1643: 1601: 1600: 1596: 1554: 1553: 1549: 1507: 1506: 1502: 1467:Physical Review 1460: 1459: 1455: 1420:Physical Review 1413: 1412: 1408: 1392: 1388: 1372: 1368: 1361: 1348: 1347: 1343: 1336: 1325: 1324: 1320: 1312: 1306: 1305: 1301: 1274:Physical Review 1267: 1266: 1262: 1226: 1225: 1221: 1187: 1186: 1182: 1152: 1151: 1147: 1130: 1118: 1103: 1102: 1098: 1089: 1088: 1079: 1049: 1048: 1044: 1023:(10): 717–727. 1017:Physical Review 1014: 1013: 1006: 997: 996: 992: 976: 972: 967: 955: 792:Frederick Seitz 756:copper(I) oxide 709:Physical Review 667:Ferdinand Braun 663: 657:has been used) 613:is the size of 612: 563: 538: 533: 532: 510:Anderson's rule 474: 447: 416: 415: 385: 379: 378: 377: 376: 374: 361: 360: 359: 344: 336: 335: 321: 308: 294: 263: 206: 205: 172: 168: 160: 150: 142:conduction band 135: 119: 103:Schottky diodes 28: 23: 22: 15: 12: 11: 5: 2070: 2068: 2060: 2059: 2049: 2048: 2045: 2044: 2030: 2015: 2012: 2009: 2008: 1989: 1970: 1935:(3): 697–708. 1919: 1912: 1886: 1879: 1852: 1825: 1818: 1794: 1759:(6): 507–508. 1743: 1723: 1716: 1692: 1672: 1641: 1594: 1567:(2): 173–177. 1547: 1520:(5): 544–553. 1500: 1453: 1406: 1386: 1366: 1359: 1341: 1318: 1299: 1260: 1242:(4): 556–563, 1219: 1180: 1161:(12): 123123. 1145: 1116: 1096: 1077: 1058:(20): 205310. 1042: 1004: 990: 969: 968: 966: 963: 962: 961: 954: 951: 891:electrowetting 887:Schottky diode 860:Schottky diode 831:electric field 675:copper sulfide 669:in 1874 using 662: 659: 635:surface states 610: 604: 603: 589: 586: 583: 580: 577: 574: 571: 566: 560: 557: 552: 546: 541: 506: 505: 491: 488: 485: 482: 477: 473: 467: 464: 461: 458: 455: 450: 446: 441: 438: 435: 429: 424: 372: 363: 362: 356:surface states 345: 338: 337: 322: 315: 314: 313: 312: 311: 307: 304: 292: 286: 285: 271: 266: 262: 257: 254: 251: 245: 240: 236: 231: 228: 225: 219: 214: 189:to the metal. 170: 166: 158: 148: 133: 118: 115: 76:Schottky diode 68:non-rectifying 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2069: 2058: 2055: 2054: 2052: 2041: 2037: 2033: 2027: 2023: 2018: 2017: 2013: 2004: 2000: 1993: 1990: 1980: 1974: 1971: 1966: 1962: 1958: 1954: 1950: 1946: 1942: 1938: 1934: 1930: 1923: 1920: 1915: 1913:9781468446555 1909: 1905: 1901: 1897: 1890: 1887: 1882: 1880:9780323150590 1876: 1872: 1868: 1867: 1859: 1857: 1853: 1848: 1841: 1840: 1832: 1830: 1826: 1821: 1819:9781351093514 1815: 1811: 1807: 1806: 1798: 1795: 1790: 1786: 1782: 1778: 1774: 1770: 1766: 1762: 1758: 1754: 1747: 1744: 1739: 1735: 1734: 1727: 1724: 1719: 1717:9780801886393 1713: 1709: 1705: 1704: 1696: 1693: 1689: 1679: 1677: 1673: 1668: 1664: 1660: 1656: 1652: 1645: 1642: 1637: 1633: 1629: 1625: 1621: 1617: 1613: 1609: 1605: 1598: 1595: 1590: 1586: 1582: 1578: 1574: 1570: 1566: 1562: 1558: 1551: 1548: 1543: 1539: 1535: 1531: 1527: 1523: 1519: 1515: 1511: 1504: 1501: 1496: 1492: 1488: 1484: 1480: 1476: 1472: 1468: 1464: 1457: 1454: 1449: 1445: 1441: 1437: 1433: 1429: 1425: 1421: 1417: 1410: 1407: 1404: 1400: 1396: 1390: 1387: 1384: 1380: 1376: 1370: 1367: 1362: 1356: 1352: 1345: 1342: 1332: 1328: 1322: 1319: 1309: 1303: 1300: 1295: 1291: 1287: 1283: 1279: 1275: 1271: 1264: 1261: 1257: 1253: 1249: 1245: 1241: 1238:(in German), 1237: 1233: 1229: 1223: 1220: 1215: 1211: 1207: 1203: 1200:(2): 022106. 1199: 1195: 1191: 1184: 1181: 1176: 1172: 1168: 1164: 1160: 1156: 1149: 1146: 1141: 1135: 1127: 1123: 1119: 1113: 1109: 1108: 1100: 1097: 1092: 1086: 1084: 1082: 1078: 1073: 1069: 1065: 1061: 1057: 1053: 1046: 1043: 1038: 1034: 1030: 1026: 1022: 1018: 1011: 1009: 1005: 1000: 994: 991: 987: 986:81-203-2398-X 983: 979: 974: 971: 964: 960: 957: 956: 952: 950: 947: 945: 941: 937: 934: 930: 926: 923: 920: 916: 915:HP Associates 910: 908: 902: 899: 896: 892: 888: 884: 880: 876: 872: 868: 863: 861: 857: 853: 849: 845: 842:developed by 840: 836: 832: 828: 824: 820: 816: 812: 808: 804: 799: 797: 793: 789: 785: 781: 777: 773: 769: 765: 761: 757: 753: 749: 746:were used in 745: 741: 736: 734: 730: 726: 722: 718: 714: 710: 706: 702: 698: 695:in 1906 on a 694: 690: 686: 684: 680: 676: 672: 668: 660: 658: 656: 652: 648: 644: 638: 636: 632: 627: 622: 618: 616: 609: 564: 558: 555: 550: 531: 530: 529: 527: 522: 517: 515: 511: 475: 471: 444: 436: 414: 413: 412: 410: 406: 402: 401:work function 398: 394: 390: 384: 370: 366: 365:Band diagrams 357: 353: 349: 342: 333: 329: 328:work function 325: 319: 310: 305: 303: 300: 298: 291: 264: 260: 252: 234: 226: 204: 203: 202: 200: 196: 190: 188: 187:ohmic contact 184: 180: 176: 157: 154: 147: 143: 139: 131: 127: 123: 116: 114: 112: 108: 104: 100: 96: 92: 91:ohmic contact 87: 85: 81: 80:ohmic contact 77: 73: 69: 65: 61: 57: 56:semiconductor 53: 49: 46:is a type of 45: 41: 37: 33: 19: 2021: 2002: 1992: 1973: 1932: 1928: 1922: 1899: 1889: 1865: 1838: 1804: 1797: 1756: 1752: 1746: 1732: 1726: 1702: 1695: 1658: 1654: 1644: 1611: 1607: 1597: 1564: 1560: 1550: 1517: 1513: 1503: 1470: 1466: 1456: 1423: 1419: 1409: 1394: 1389: 1374: 1369: 1350: 1344: 1321: 1302: 1280:(1): 31–60. 1277: 1276:. Series I. 1273: 1263: 1239: 1235: 1222: 1197: 1193: 1183: 1158: 1154: 1148: 1106: 1099: 1055: 1051: 1045: 1020: 1016: 993: 977: 973: 948: 911: 907:Baker clamps 903: 900: 881:, to form a 864: 800: 737: 689:G.W. Pickard 687: 679:iron sulfide 664: 650: 642: 639: 626:John Bardeen 623: 619: 607: 605: 521:band bending 518: 507: 388: 386: 368: 350:effect from 347: 331: 323: 309: 301: 289: 287: 198: 194: 191: 174: 164: 155: 145: 137: 129: 126:Band diagram 88: 84:p–n junction 43: 39: 35: 29: 940:fabrication 803:Nevill Mott 766:films were 740:electronics 703:. In 1907, 691:received a 407:(or vacuum 397:Nevill Mott 153:Fermi level 50:in which a 1979:US3475234A 1661:(9): 547. 1426:(1): 193. 1360:9810206372 1308:US 1745175 965:References 929:evaporated 925:deposition 922:metal film 844:Hans Bethe 784:microwaves 768:evaporated 721:Lilienfeld 717:sputtering 381:See also: 197:-type and 95:transistor 64:rectifying 2040:908999844 1957:1749-6632 1810:CRC Press 1781:0096-2430 1688:help page 1684:Baker1956 1636:0021-8979 1589:0022-3697 1542:0021-8979 1495:0031-899X 1448:0031-899X 1327:US 755840 1228:Braun, F. 1134:cite book 1126:488586029 933:sputtered 856:electrons 807:diffusion 760:substrate 748:receivers 735:in 1939. 647:germanium 551:≈ 540:Φ 476:χ 472:− 449:Φ 445:≈ 423:Φ 239:Φ 213:Φ 136:, for an 2051:Category 1965:84306885 1871:Elsevier 1789:51637380 1230:(1874), 953:See also 936:contacts 776:tungsten 764:selenium 715:made by 615:band gap 297:band gap 179:depleted 44:junction 1937:Bibcode 1761:Bibcode 1616:Bibcode 1569:Bibcode 1522:Bibcode 1475:Bibcode 1428:Bibcode 1282:Bibcode 1244:Bibcode 1202:Bibcode 1163:Bibcode 1060:Bibcode 1025:Bibcode 879:silicon 871:mercury 867:droplet 839:Davydov 827:density 786:in the 780:silicon 701:silicon 671:mercury 661:History 611:bandgap 2038:  2028:  1985:  1963:  1955:  1910:  1877:  1816:  1787:  1779:  1714:  1634:  1587:  1540:  1493:  1446:  1357:  1337:  1329:, 1313:  1124:  1114:  984:  919:vacuum 895:doping 848:M.I.T. 825:whose 752:galena 713:diodes 699:using 693:patent 645:-type 606:where 288:where 109:, and 2005:: 58. 1961:S2CID 1843:(PDF) 1785:S2CID 885:in a 875:Braun 873:, as 811:drift 144:edge 52:metal 2036:OCLC 2026:ISBN 1953:ISSN 1908:ISBN 1875:ISBN 1847:NASA 1814:ISBN 1777:ISSN 1712:ISBN 1632:ISSN 1585:ISSN 1538:ISSN 1491:ISSN 1444:ISSN 1355:ISBN 1140:link 1122:OCLC 1112:ISBN 982:ISBN 809:and 677:and 512:for 395:and 387:The 151:and 34:, a 1945:doi 1933:101 1769:doi 1663:doi 1659:104 1624:doi 1577:doi 1530:doi 1483:doi 1436:doi 1399:doi 1379:doi 1375:103 1290:doi 1252:doi 1240:153 1210:doi 1171:doi 1068:doi 1033:doi 869:of 854:of 823:ion 788:UHF 526:DOS 132:, Φ 86:.) 66:or 40:M–S 30:In 2053:: 2034:. 2001:. 1959:. 1951:. 1943:. 1931:. 1902:. 1898:. 1869:. 1855:^ 1845:. 1828:^ 1812:. 1808:. 1783:. 1775:. 1767:. 1755:. 1736:. 1706:. 1690:). 1675:^ 1657:. 1653:. 1630:. 1622:. 1612:27 1610:. 1606:. 1583:. 1575:. 1563:. 1559:. 1536:. 1528:. 1518:27 1516:. 1512:. 1489:. 1481:. 1471:93 1469:. 1465:. 1442:. 1434:. 1424:91 1422:. 1418:. 1288:. 1278:25 1272:. 1250:, 1208:. 1198:92 1196:. 1192:. 1169:. 1159:91 1157:. 1136:}} 1132:{{ 1120:. 1080:^ 1066:. 1056:64 1054:. 1031:. 1021:71 1019:. 1007:^ 798:. 299:. 175:kT 113:. 105:, 42:) 2042:. 1967:. 1947:: 1939:: 1916:. 1883:. 1822:. 1791:. 1771:: 1763:: 1757:9 1720:. 1669:. 1665:: 1638:. 1626:: 1618:: 1591:. 1579:: 1571:: 1565:6 1544:. 1532:: 1524:: 1497:. 1485:: 1477:: 1450:. 1438:: 1430:: 1401:: 1395:4 1381:: 1363:. 1296:. 1292:: 1284:: 1254:: 1246:: 1216:. 1212:: 1204:: 1177:. 1173:: 1165:: 1142:) 1128:. 1093:. 1074:. 1070:: 1062:: 1039:. 1035:: 1027:: 1001:. 988:. 931:/ 651:p 643:n 629:( 608:E 588:p 585:a 582:g 579:d 576:n 573:a 570:b 565:E 559:2 556:1 545:B 490:i 487:m 484:e 481:s 466:l 463:a 460:t 457:e 454:m 440:) 437:n 434:( 428:B 373:B 369:n 332:n 293:g 290:E 270:g 265:E 261:= 256:) 253:p 250:( 244:B 235:+ 230:) 227:n 224:( 218:B 199:p 195:n 171:B 167:B 161:. 159:F 156:E 149:C 146:E 138:n 134:B 38:( 20:)

Index

Fermi level pinning
solid-state physics
electrical junction
metal
semiconductor
semiconductor device
rectifying
non-rectifying
Schottky barrier
Schottky diode
ohmic contact
p–n junction
ohmic contact
transistor
Schottky barrier
Schottky diodes
Schottky transistors
metal–semiconductor field effect transistors

Band diagram
conduction band
Fermi level
depleted
Schottky barrier
ohmic contact
band gap

work function

metal-induced gap states

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.