Knowledge

High Temperature Proton Exchange Membrane fuel cell

Source 📝

66: 74:
hydrogen concentration of about 50 to 75 %. In contrast to LT-PEM fuel cell, which is sensitive to carbon monoxide concentration of several parts per million, HT-PEM fuel cells are operated at carbon monoxide concentrations up to about 3 Vol-%. Usually HT-PEM fuel cells are operated at cell temperature of 150 to 180 °C.
92:
As the steam reforming of methanol is more simple and efficient (catalyst bed temperature below 280°C) compared to reforming of other fuels and because of the low cost and high purity of conventional methanol and renewable methanol (e.g. made from waste or renewable power) as well as because of the
177:
More cells needed compared to LT-PEM fuel cell for reaching high power output or same efficiency as for hydrogen LT-PEM fuel cell because of inferior characteristic curve of HT-PEM fuel cell: Higher stack costs, stack volume and stack weight compared to LT-PEM fuel cell. Technologies for reaching
53:
HT-PEM fuel cell was developed in 1995 for operation at higher cell temperatures aiming at lower sensitivity of PEM fuel cells regarding impurities. Thus HT-PEM fuel cell technology is one of the youngest fuel cell types and HT-PEM fuel cell systems are produced since the 21st century by several
73:
Whereas the common PEM fuel cell, also called Low Temperature Proton Exchange Membrane fuel cell (LT-PEM), must usually be operated with hydrogen with high purity of more than 99.9 % the HT-PEM fuel cell is less sensitive to impurities and thus is typically operated with reformate gas with
77:
The low sensitity to impurities allows the use of fuels like methanol, ethanol, natural gas, LPG, DME, etc. which are reformed in a reformer to hydrogen rich reformate gas whereat the fuel cell system design is simple without the need of purification steps for purifying the reformate gas.
57:
The membrane consists of an acid and temperature resistant polymer which has the ability to uptake acid which acts as electrolyte. Commonly polybenzimidazole (PBI) is used as membrane and Phosphoric acid is used as electrolyte. The HT-PEM fuel cell technology is similar to
88:
The balance-of-plant system efficiency for methanol fueled HT-PEM fuel cell systems is typically between 35 and 45 % and can reach up to about 55 % depending on system design and operating conditions. Regarding cell efficiency up to 63 % can be reached.
23:
which can be operated at temperatures between 120 and 200°C. HT-PEM fuel cells are used for both stationary and portable applications. The HT-PEM fuel cell is usually supplied with hydrogen-rich gas like reformate gas formed by reforming of
281:
High temperature PEM fuel cells - degradation & durability : dissertation submitted to the Faculty of Engineering and Science at Aalborg University in partial fulfillment of the requirements for the degree of Doctor of
188:
When organic fuels are used carbon dioxide and perhaps traces of carbon monoxide are emitted (concentration depending on system design, typically CO concentration by far lower than emitted from combustion
192:
Some system components must be able to resist higher temperatures than in LT-PEM fuel cell and DMFC which limits the choice of applicable materials (e.g. polymers with resistance up to 120 - 180 °C).
113:(130 to 180 °C) can be used making combined heat and power (CHP) possible for further usage of the heat in contrast to LT-PEM fuel cell which has too low waste heat temperature below 80 °C. 171:
Longer start-up time compared to LT-PEM fuel cell (time for heating of stack and reformer). So hybridization with larger battery than for LT-PEM fuel cell systems is sometimes necessary.
140:
Higher system efficiency of methanol fueled HT-PEM fuel cell systems (35 to 45 %) compared to Direct Methanol Fuel Cell, DMFC (20 to 30 %). Low methanol fuel consumption.
570: 85:
which is used for HT-PEM fuel cell can also be used for hydrogen separation to separate ultrapure hydrogen efficiently from diluted or impure hydrogen containing gases.
315: 201:
HT-PEM fuel cell systems are used for stationary and portable applications. For example methanol fueled HT-PEM fuel cells are used as replacement of generators (e.g.
337:
Araya, Samuel Simon; Zhou, Fan; Liso, Vincenzo; Sahlin, Simon Lennart; Vang, Jakob Rabjerg; Thomas, Sobi; Gao, Xin; Jeppesen, Christian; Kær, Søren Knudsen (2016).
958: 158:
Hydrogen with low purity can be used as fuel. Hydrogen with low purity is cheaper than high purity hydrogen which has to be usually used for LT-PEM fuel cell.
161:
The use of fuels like methanol makes cheaper fuel costs per kWh possible compared with hydrogen (e.g. LT-PEM fuel cells) or diesel (e.g. gensets) as fuel.
221:). Typically the HT-PEM fuel cell system is used in hybrid operation with a battery. HT-PEM fuel cell systems fueled with natural gas are also used for 19:
High Temperature Proton Exchange Membrane fuel cells (HT-PEMFC), also known as High Temperature Polymer Electrolyte Membrane fuel cells, are a type of
918: 93:
simple storage of methanol, most HT-PEM fuel cells are operated with methanol. The methanol fueled HT-PEM fuel cell is the mostly used type of
846: 698: 290: 62:(PAFC), but mainly differs in the membrane which is used in HT-PEM fuel cell and makes portable applications possible for HT-PEM fuel cells. 116:
Simple cooling of stack is possible because of higher stack temperature compared to LT-PEM fuel cell (heat exchange surface, cooling power).
980: 836: 20: 323: 185:: Platinum recycling to be considered. Development of platinum free electrodes for HT-PEM fuel cells is in basic research state. 124: 724:"Comparatative analysis on various reformers supplied with different fuels and integrated with high temperature PEM fuel cells" 862:
Haider, Rizwan; Wen, Yichan; Ma, Zi-Feng; Wilkinson, David P.; Zhang, Lei; Yuan, Xianxia; Song, Shuqin; Zhang, Jiujun (2021).
917:
Neophytides, Stylianos; Daletou, Maria K.; Athanasopoulos, Nikolaos; Gourdoupi, Nora; Castro, Emory De; Schautz, Max (2017).
155:
Cold storage temperatures below 0 °C are no problem for the fuel cell membrane in contrast to DMFC and LT-PEM fuel cell.
248: 182: 119:
Various fuels which can be reformed in a reformer to hydrogen rich gas can be used (e.g. methanol, ethanol, propanol,
94: 82: 59: 37: 864:"High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies" 594:"The effect of flow field design on the degradation mechanisms and long term stability of HT-PEM fuel cell" 174:
A system component for stack heating during start-up is necessary in contrast to LT-PEM fuel cell and DMFC.
629: 522: 210: 134:
Simple system design is possible as no purification step for methanol fueled HT-PEM fuel cells is needed.
601: 723: 630:"Long-term performance analysis of an HT-PEM fuel cell based micro-CHP system: Operational strategies" 137:
Use of plastic components and elastomer seals in the stack is possible in contrast to SOFC fuel cells.
735: 523:"The influence of impurities in high temperature polymer electrolyte membrane fuel cells performance" 214: 863: 771:"Bioalcohol Reforming: An Overview of the Recent Advances for the Enhancement of Catalyst Stability" 81:
Because of the low sensitivity to impurities and because of proton conductivity of the membrane the
1004: 984: 966: 206: 143:
No need for high methanol fuel purity for methanol fueled HT-PEM fuel cell system compared to DMFC.
899: 704: 503: 444: 416: 397: 338: 838:
Operational strategies for longer durability of HT-PEM fuel cells operating on reformed methanol
804:"System Design and Modeling of a High Temperature PEM Fuel Cell Operated with Ammonia as a Fuel" 940: 891: 883: 842: 751: 694: 659: 552: 495: 436: 389: 296: 286: 258: 106:
No water management for humidification of the membrane is needed compared to LT-PEM fuel cell.
959:"Blue World Technologies partners with Alfa Laval on methanol fuel-cell system for shipping" 930: 875: 815: 782: 743: 686: 649: 641: 542: 534: 485: 475: 428: 381: 350: 218: 146:
Higher lifetime of methanol fueled HT-PEM fuel cell system than for DMFC system is possible.
1009: 722:
Ellamla, Harikishan R.; Bujlo, Piotr; Sita, Cordellia; Pasupathi, Sivakumar (2016-11-02).
614: 253: 181:
Higher platinum content (ca. 8 - 14 g Pt per kW) than in LT-PEM fuel cells is used in the
110: 464:"Correlating Electrolyte Inventory and Lifetime of HT-PEFC by Accelerated Stress Testing" 739: 683:
2014 Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER)
149:
Pure fuels or water-fuel mixtures are applicable (depending on fuel cell system design).
998: 903: 507: 401: 802:
Cinti, Giovanni; Liso, Vincenzo; Sahlin, Simon Lennart; Araya, Samuel Simon (2020).
708: 448: 679:"Thermal management of fuel cell-driven vehicles using HT-PEM and hydrogen storage" 645: 538: 354: 222: 120: 65: 935: 33: 678: 593: 490: 370:"Durability and Degradation in High-Temperature Polymer Electrolyte Fuel Cells" 747: 690: 944: 887: 755: 663: 556: 499: 440: 393: 300: 895: 432: 228:
Manufacturers of fuel cell systems containing HT-PEM fuel cell technology:
787: 770: 769:
Palma, Vincenzo; Ruocco, Concetta; Cortese, Marta; Martino, Marco (2020).
279: 16:
Type of electrochemical capable of generating fuel through proton exchange
480: 202: 25: 654: 547: 879: 820: 803: 463: 128: 29: 981:"Methanol fuel cell company Blue World acquiring Danish Power Systems" 385: 339:"A comprehensive review of PBI-based high temperature PEM fuel cells" 316:"US hydrogen technology company and DoE to work on HT-PEM fuel cells" 462:
Eberhardt, S. H.; Lochner, T.; Büchi, F. N.; Schmidt, T. J. (2015).
369: 178:
better characteristic curve properties are in basic research state.
64: 285:. Aalborg: Aalborg University, Department of Energy Technology. 217:) and for range extension of electric vehicles (e.g. sports car 919:"High Temperature PEM Fuel Cell Stacks with Advent TPS Meas" 417:"Durability Studies of PBI-based High Temperature PEMFCs" 69:
Phosphoric acid doped PBI membrane for HT-PEM fuel cell
983:. Green Car Congress. 14 January 2021. Archived from 123:, bio-glycerol, methane, ethane, propane, butane, 8: 415:Yu, S.; Xiao, L.; Benicewicz, B. C. (2008). 934: 819: 786: 653: 546: 489: 479: 527:International Journal of Hydrogen Energy 343:International Journal of Hydrogen Energy 677:Nasri, Mounir; Dickinson, Dave (2014). 270: 610: 599: 468:Journal of the Electrochemical Society 7: 685:. Monte-Carlo: IEEE. pp. 1–6. 152:Use of renewable fuels is possible. 249:Reformed Methanol Fuel Cell (RMFC) 14: 592:Bandlamudi, Vamsikrishna (2018). 235:Blue World Technologies (Denmark) 225:(CHP) applications in buildings. 965:. 20 April 2021. Archived from 841:. Aalborg Universitetsforlag. 646:10.1016/j.apenergy.2015.03.043 539:10.1016/j.ijhydene.2016.06.201 355:10.1016/j.ijhydene.2016.09.024 314:Mandel, Ethan (2 March 2021). 1: 728:Chemical Engineering Science 571:"Proton-Conductive Membrane" 278:Araya, Samuel Simon (2012). 936:10.1051/e3sconf/20171610002 368:Schmidt, Thomas J. (2019). 183:Membrane Electrode Assembly 95:Reformed Methanol fuel cell 83:Membrane electrode assembly 1026: 521:Boaventura, Marta (2016). 748:10.1016/j.ces.2016.06.065 691:10.1109/EVER.2014.6844107 232:Advent Technologies (USA) 60:Phosphoric Acid Fuel Cell 868:Chemical Society Reviews 628:Najafi, Behzad (2015). 223:combined heat and power 923:E3S Web of Conferences 609:Cite journal requires 433:10.1002/fuce.200800024 211:emergency-power supply 70: 835:Thomas, Sobi (2017). 788:10.3390/catal10060665 68: 481:10.1149/2.0591512jes 215:auxiliary power unit 740:2016ChEnS.154...90E 533:(43): 19771–19780. 491:20.500.11850/104873 474:(12): F1367–F1372. 349:(46): 21310–21344. 963:Green Car Congress 880:10.1039/D0CS00296H 821:10.3390/en13184689 109:Waste heat of the 71: 848:978-87-7210-119-4 700:978-1-4799-3787-5 386:10.1149/1.2214541 292:978-87-92846-14-3 259:Methanol reformer 1017: 989: 988: 977: 971: 970: 955: 949: 948: 938: 914: 908: 907: 874:(2): 1138–1187. 859: 853: 852: 832: 826: 825: 823: 799: 793: 792: 790: 766: 760: 759: 719: 713: 712: 674: 668: 667: 657: 625: 619: 618: 612: 607: 605: 597: 589: 583: 582: 580: 578: 567: 561: 560: 550: 518: 512: 511: 493: 483: 459: 453: 452: 427:(3–4): 165–174. 412: 406: 405: 374:ECS Transactions 365: 359: 358: 334: 328: 327: 322:. Archived from 311: 305: 304: 275: 238:Siqens (Germany) 219:Gumpert Nathalie 1025: 1024: 1020: 1019: 1018: 1016: 1015: 1014: 995: 994: 993: 992: 987:on 8 July 2021. 979: 978: 974: 969:on 8 July 2021. 957: 956: 952: 916: 915: 911: 861: 860: 856: 849: 834: 833: 829: 801: 800: 796: 768: 767: 763: 721: 720: 716: 701: 676: 675: 671: 627: 626: 622: 608: 598: 591: 590: 586: 576: 574: 569: 568: 564: 520: 519: 515: 461: 460: 456: 414: 413: 409: 367: 366: 362: 336: 335: 331: 326:on 8 July 2021. 313: 312: 308: 293: 277: 276: 272: 267: 254:Steam reforming 245: 199: 168: 103: 51: 46: 17: 12: 11: 5: 1023: 1021: 1013: 1012: 1007: 997: 996: 991: 990: 972: 950: 909: 854: 847: 827: 794: 761: 714: 699: 669: 634:Applied Energy 620: 611:|journal= 584: 562: 513: 454: 407: 360: 329: 306: 291: 269: 268: 266: 263: 262: 261: 256: 251: 244: 241: 240: 239: 236: 233: 205:applications, 198: 195: 194: 193: 190: 186: 179: 175: 172: 167: 164: 163: 162: 159: 156: 153: 150: 147: 144: 141: 138: 135: 132: 117: 114: 107: 102: 99: 50: 47: 45: 42: 21:PEM fuel cells 15: 13: 10: 9: 6: 4: 3: 2: 1022: 1011: 1008: 1006: 1003: 1002: 1000: 986: 982: 976: 973: 968: 964: 960: 954: 951: 946: 942: 937: 932: 928: 924: 920: 913: 910: 905: 901: 897: 893: 889: 885: 881: 877: 873: 869: 865: 858: 855: 850: 844: 840: 839: 831: 828: 822: 817: 813: 809: 805: 798: 795: 789: 784: 780: 776: 772: 765: 762: 757: 753: 749: 745: 741: 737: 733: 729: 725: 718: 715: 710: 706: 702: 696: 692: 688: 684: 680: 673: 670: 665: 661: 656: 651: 647: 643: 639: 635: 631: 624: 621: 616: 603: 595: 588: 585: 572: 566: 563: 558: 554: 549: 544: 540: 536: 532: 528: 524: 517: 514: 509: 505: 501: 497: 492: 487: 482: 477: 473: 469: 465: 458: 455: 450: 446: 442: 438: 434: 430: 426: 422: 418: 411: 408: 403: 399: 395: 391: 387: 383: 379: 375: 371: 364: 361: 356: 352: 348: 344: 340: 333: 330: 325: 321: 317: 310: 307: 302: 298: 294: 288: 284: 283: 274: 271: 264: 260: 257: 255: 252: 250: 247: 246: 242: 237: 234: 231: 230: 229: 226: 224: 220: 216: 212: 208: 204: 196: 191: 187: 184: 180: 176: 173: 170: 169: 165: 160: 157: 154: 151: 148: 145: 142: 139: 136: 133: 130: 126: 122: 118: 115: 112: 108: 105: 104: 100: 98: 96: 90: 86: 84: 79: 75: 67: 63: 61: 55: 48: 43: 41: 39: 35: 31: 27: 22: 985:the original 975: 967:the original 962: 953: 926: 922: 912: 871: 867: 857: 837: 830: 814:(18): 4689. 811: 807: 797: 778: 774: 764: 731: 727: 717: 682: 672: 655:11311/928955 637: 633: 623: 602:cite journal 587: 575:. Retrieved 565: 548:10216/103265 530: 526: 516: 471: 467: 457: 424: 420: 410: 380:(8): 19–31. 377: 373: 363: 346: 342: 332: 324:the original 319: 309: 280: 273: 227: 207:backup power 200: 197:Applications 127:, gasoline, 91: 87: 80: 76: 72: 56: 52: 18: 640:: 582–592. 320:H2 Bulletin 121:bio-butanol 54:companies. 34:natural gas 1005:Fuel cells 999:Categories 781:(6): 665. 421:Fuel Cells 282:Philosophy 265:References 166:Weaknesses 945:2267-1242 929:: 10002. 904:227191893 888:1460-4744 775:Catalysts 756:0009-2509 734:: 90–99. 664:0306-2619 557:0360-3199 508:100661952 500:0013-4651 441:1615-6854 402:138922384 394:1938-6737 301:857436369 189:engines). 101:Strengths 896:33245736 808:Energies 709:33849240 449:97141602 243:See also 203:off-grid 97:(RMFC). 49:Overview 26:methanol 736:Bibcode 129:ammonia 44:Science 30:ethanol 1010:Proton 943:  902:  894:  886:  845:  754:  707:  697:  662:  577:9 July 573:. BASF 555:  506:  498:  447:  439:  400:  392:  299:  289:  900:S2CID 705:S2CID 504:S2CID 445:S2CID 398:S2CID 111:stack 941:ISSN 892:PMID 884:ISSN 843:ISBN 752:ISSN 695:ISBN 660:ISSN 615:help 579:2021 553:ISSN 496:ISSN 437:ISSN 390:ISSN 297:OCLC 287:ISBN 931:doi 876:doi 816:doi 783:doi 744:doi 732:154 687:doi 650:hdl 642:doi 638:147 543:hdl 535:doi 486:hdl 476:doi 472:162 429:doi 382:doi 351:doi 125:OME 40:. 38:LPG 36:or 1001:: 961:. 939:. 927:16 925:. 921:. 898:. 890:. 882:. 872:50 870:. 866:. 812:13 810:. 806:. 779:10 777:. 773:. 750:. 742:. 730:. 726:. 703:. 693:. 681:. 658:. 648:. 636:. 632:. 606:: 604:}} 600:{{ 551:. 541:. 531:41 529:. 525:. 502:. 494:. 484:. 470:. 466:. 443:. 435:. 423:. 419:. 396:. 388:. 376:. 372:. 347:41 345:. 341:. 318:. 295:. 213:, 209:, 131:). 32:, 28:, 947:. 933:: 906:. 878:: 851:. 824:. 818:: 791:. 785:: 758:. 746:: 738:: 711:. 689:: 666:. 652:: 644:: 617:) 613:( 596:. 581:. 559:. 545:: 537:: 510:. 488:: 478:: 451:. 431:: 425:8 404:. 384:: 378:1 357:. 353:: 303:.

Index

PEM fuel cells
methanol
ethanol
natural gas
LPG
Phosphoric Acid Fuel Cell

Membrane electrode assembly
Reformed Methanol fuel cell
stack
bio-butanol
OME
ammonia
Membrane Electrode Assembly
off-grid
backup power
emergency-power supply
auxiliary power unit
Gumpert Nathalie
combined heat and power
Reformed Methanol Fuel Cell (RMFC)
Steam reforming
Methanol reformer
High temperature PEM fuel cells - degradation & durability : dissertation submitted to the Faculty of Engineering and Science at Aalborg University in partial fulfillment of the requirements for the degree of Doctor of Philosophy
ISBN
978-87-92846-14-3
OCLC
857436369
"US hydrogen technology company and DoE to work on HT-PEM fuel cells"
the original

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.