Knowledge (XXG)

Hidden attractor

Source đź“ť

445:), for the study of stability and oscillations in complex nonlinear multidimensional systems, numerical methods are often used. In the multi-dimensional case the integration of trajectories with random initial data is unlikely to provide a localization of a hidden attractor, since a basin of attraction may be very small, and the attractor dimension itself may be much less than the dimension of the considered system. Therefore, for the numerical localization of hidden attractors in multi-dimensional space, it is necessary to develop special analytical-numerical computational procedures, which allow one to choose initial data in the attraction domain of the hidden oscillation (which does not contain neighborhoods of equilibria), and then to perform trajectory computation. There are corresponding effective methods based on 328: 462: 344: 356: 132: 74: 33: 384:, for classical parameters, the attractor is self-excited with respect to all existing equilibria, and can be visualized by any trajectory from their vicinities; however, for some other parameter values there are two trivial attractors coexisting with a chaotic attractor, which is a self-excited one with respect to the zero equilibrium only. Classical attractors in 453:: a sequence of similar systems is constructed, such that for the first (starting) system, the initial data for numerical computation of an oscillating solution (starting oscillation) can be obtained analytically, and then the transformation of this starting oscillation in the transition from one system to another is followed numerically. 480:
The classification of attractors as self-exited or hidden ones was a fundamental premise for the emergence of the theory of hidden oscillations, which represents the modern development of Andronov’s theory of oscillations. It is key to determining the exact boundaries of the global stability, parts
440:
In general, the problem with hidden attractors is that there are no general straightforward methods to trace or predict such states for the system’s dynamics (see, e.g.). While for two-dimensional systems, hidden oscillations can be investigated using analytical methods (see, e.g., the results on
371:
For a self-excited attractor, its basin of attraction is connected with an unstable equilibrium and, therefore, the self-excited attractors can be found numerically by a standard computational procedure in which after a transient process, a trajectory, starting in a neighbourhood of an unstable
436:
on the number and mutual disposition of limit cycles in two-dimensional polynomial systems where the nested stable limit cycles are hidden periodic attractors. The notion of a hidden attractor has become a catalyst for the discovery of hidden attractors in many applied dynamical models.
288:
and observe how the system’s state, starting from this initial state, after a transient process, visualizes the attractor. The classification of attractors as being hidden or self-excited reflects the difficulties of revealing basins of attraction and searching for the local
419:
Hidden attractors have basins of attraction which are not connected with equilibria and are “hidden” somewhere in the phase space. For example, the hidden attractors are attractors in the systems without equilibria: e.g. rotating electromechanical dynamical systems with
230:
theory, the birth of a hidden oscillation in a time-invariant control system with bounded states means crossing a boundary, in the domain of the parameters, where local stability of the stationary states implies global stability (see, e.g.
251:
with a unique equilibrium point that is globally attractive, the birth of a hidden attractor corresponds to a qualitative change in behaviour from monostability to bi-stability. In the general case, a dynamical system may turn out to be
323:
for the first time in 2009 year. Similarly, an arbitrary bounded oscillation, not necessarily having an open neighborhood as the basin of attraction in the phase space, is classified as a self-excited or hidden oscillation.
502:
Leonov G.A.; Kuznetsov N.V. (2013). "Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits".
307:
An attractor is called a hidden attractor if its basin of attraction does not intersect with a certain open neighbourhood of equilibrium points; otherwise it is called a self-excited attractor.
481:
of which are classified by N. Kuznetsov as trivial (i.e., determined by local bifurcations) or as hidden (i.e., determined by non-local bifurcations and by the birth of hidden oscillations).
165: 1104:
Afraimovich Award's plenary lecture: N. Kuznetsov The theory of hidden oscillations and stability of dynamical systems. Int. Conference on Nonlinear Dynamics and Complexity, 2021
411:
does not exceed the Lyapunov dimension of one of the unstable equilibria, the unstable manifold of which intersects with the basin of attraction and visualizes the attractor.
580:
Leonov, G.A.; Kuznetsov, N.V.; Mokaev, T.N. (2015). "Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion".
351:. Trajectories with initial data in neighborhoods of two saddle points (blue) tend (red arrow) to infinity or tend (black arrow) to stable zero equilibrium point (orange). 801:
Kuznetsov, N.V.; Leonov, G.A.; Mokaev, T.N.; Prasad, A.; Shrimali, M.D. (2018). "Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system".
84: 951:
Chen, G.; Kuznetsov, N.V.; Leonov, G.A.; Mokaev, T.N. (2015). "Hidden attractors on one path: Glukhovsky-Dolzhansky, Lorenz, and Rabinovich systems".
846:
Kuznetsov N. V.; Leonov G. A. (2014). "Hidden attractors in dynamical systems: systems with no equilibria, multistability and coexisting attractors".
539: 339:. Trajectories with initial data in neighborhoods of two saddle points (blue) and zero equilibrium point (orange) tend (green) to attractor. 359:
Two hidden chaotic attractors and one hidden periodic attractor coexist with two trivial attractors in Chua circuit (from the IJBC cover)
389: 151: 201: 183: 113: 60: 46: 745:
Stankevich N. V.; Kuznetsov N. V.; Leonov G. A.; Chua L. (2017). "Scenario of the birth of hidden attractors in the Chua circuit".
95: 1080:
Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors (Eds.: Pham, Vaidyanathan, Volos et al.), Springer, 2018 (
701: 442: 433: 273: 540:"Algorithms for Finding Hidden Oscillations in Nonlinear Systems. The Aizerman and Kalman Conjectures and Chua's Circuits" 88: 1138: 284:
To identify a local attractor in a physical or numerical experiment, one needs to choose an initial system’s state in
161: 914:"Hidden attractors in dynamical models of phase-locked loop circuits: limitations of simulation in MATLAB and SPICE" 1133: 1118: 147: 142: 94:
Help add sources such as review articles, monographs, or textbooks. Please also establish the relevance for any
659: 425: 327: 432:(1957) on the monostability of nonlinear control systems. One of the first related theoretical problems is 450: 429: 232: 1073:
Chaotic Systems with Multistability and Hidden Attractors (Eds.: Wang, Kuznetsov, Chen), Springer, 2021 (
408: 1128: 52: 997: 1123: 925: 886: 764: 716: 674: 512: 469: 465: 393: 316: 461: 1020: 978: 960: 828: 810: 780: 754: 607: 589: 562: 235:). If a hidden oscillation (or a set of such hidden oscillations filling a compact subset of the 215: 343: 424:(1902), in the systems with only one equilibrium, which is stable: e.g. counterexamples to the 421: 397: 348: 336: 320: 227: 1051: 1012: 970: 933: 894: 855: 820: 772: 724: 682: 638: 599: 554: 520: 373: 248: 240: 355: 873:
Dudkowski D.; Jafari S.; Kapitaniak T.; Kuznetsov N. V.; Leonov G. A.; Prasad A. (2016).
929: 890: 768: 720: 678: 516: 377: 312: 253: 1040:"The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension" 1112: 1024: 859: 643: 627:"Analytical-numerical method for attractor localization of generalized Chua's system" 626: 611: 381: 982: 832: 784: 566: 372:
equilibrium, is attracted to the state of oscillation and then traces it (see, e.g.
686: 311:
The classification of attractors as being hidden or self-excited was introduced by
269: 953:
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
898: 747:
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
603: 505:
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
401: 17: 1074: 937: 728: 385: 294: 265: 236: 219: 131: 1081: 1056: 1039: 1103: 1094: 1016: 974: 824: 776: 558: 524: 301: 913: 874: 290: 285: 261: 257: 1038:
Kuznetsov, N.V.; Mokaev, T.N.; Kuznetsova, O.A.; Kudryashova, E.V. (2020).
98:
cited. Unsourced or poorly sourced material may be challenged and removed.
446: 912:
Kuznetsov, N.V.; Leonov, G.A.; Yuldashev, M.V.; Yuldashev, R.V. (2017).
376:
process). Thus, self-excited attractors, even coexisting in the case of
222:
that is born without loss of stability of stationary set is called a
1097:
The theory of hidden oscillations and stability of dynamical systems
474:
The theory of hidden oscillations and stability of dynamical systems
965: 815: 759: 594: 740: 738: 460: 354: 342: 326: 538:
Bragin V.O.; Vagaitsev V.I.; Kuznetsov N.V.; Leonov G.A. (2011).
264:, can be easily found analytically or numerically, the search of 998:"Theory of hidden oscillations and stability of control systems" 272:
attractors can turn out to be a challenging problem (see, e.g.
125: 67: 26: 1099:, Int. Workshop on Applied Mathematics, Czech Republic, 2021 918:
Communications in Nonlinear Science and Numerical Simulation
380:, can be easily revealed and visualized numerically. In the 280:
Classification of attractors as being hidden or self-excited
848:
IFAC Proceedings Volumes (IFAC World Congress Proceedings)
243:) attracts all nearby oscillations, then it is called a 157: 1005:
Journal of Computer and Systems Sciences International
547:
Journal of Computer and Systems Sciences International
796: 794: 700:
Leonov G.A.; Vagaitsev V.I.; Kuznetsov N.V. (2012).
658:
Leonov G.A.; Vagaitsev V.I.; Kuznetsov N.V. (2011).
625:
Kuznetsov N.V.; Leonov G.A.; Vagaitsev V.I. (2010).
497: 495: 493: 260:in the phase space. While trivial attractors, i.e. 409:the Lyapunov dimension of a self-excited attractor 146:, potentially preventing the article from being 319:in connection with the discovery of the hidden 8: 582:The European Physical Journal Special Topics 347:Chaotic hidden attractor (green domain) in 61:Learn how and when to remove these messages 660:"Localization of hidden Chua's attractors" 166:reliable, independent, third-party sources 1055: 964: 814: 758: 702:"Hidden attractor in smooth Chua systems" 642: 593: 443:the second part of Hilbert's 16th problem 434:the second part of Hilbert's 16th problem 274:the second part of Hilbert's 16th problem 202:Learn how and when to remove this message 184:Learn how and when to remove this message 114:Learn how and when to remove this message 875:"Hidden attractors in dynamical systems" 160:by replacing them with more appropriate 489: 143:too closely associated with the subject 7: 404:dynamical systems are self-excited. 25: 42:This article has multiple issues. 860:10.3182/20140824-6-ZA-1003.02501 644:10.3182/20100826-3-TR-4016.00009 141:may rely excessively on sources 130: 72: 31: 286:attractor’s basin of attraction 50:or discuss these issues on the 687:10.1016/j.physleta.2011.04.037 1: 1095:N.Kuznetsov, Invited lecture 1082:doi:10.1007/978-3-319-71243-7 1075:doi:10.1007/978-3-030-75821-9 899:10.1016/j.physrep.2016.05.002 457:Theory of hidden oscillations 89:secondary or tertiary sources 938:10.1016/j.cnsns.2017.03.010 729:10.1016/j.physd.2012.05.016 604:10.1140/epjst/e2015-02470-3 1155: 1057:10.1007/s11071-020-05856-4 256:and have coexisting local 1017:10.1134/S1064230720050093 975:10.1142/S0218127417501152 825:10.1007/s11071-018-4054-z 777:10.1142/S0218127417300385 559:10.1134/S106423071104006X 525:10.1142/S0218127413300024 262:stable equilibrium points 96:primary research articles 959:(8): art. num. 1750115. 631:IFAC Proceedings Volumes 81:This scientific article 996:Kuznetsov N.V. (2020). 367:Self-excited attractors 477: 451:numerical continuation 360: 352: 340: 333:self-excited attractor 464: 426:Aizerman's conjecture 407:A conjecture is that 358: 346: 330: 390:Beluosov–Zhabotinsky 930:2017CNSNS..51...39K 891:2016PhR...637....1D 769:2017IJBC...2730038S 753:(12): 1730038–188. 721:2012PhyD..241.1482L 679:2011PhLA..375.2230L 517:2013IJBC...2330002L 430:Kalman's conjecture 233:Kalman's conjecture 1139:Hidden oscillation 1044:Nonlinear Dynamics 803:Nonlinear Dynamics 511:(1): 1330002–219. 478: 468:Award granted to 361: 353: 341: 335:(green domain) in 224:hidden oscillation 216:bifurcation theory 18:Hidden oscillation 1134:Nonlinear systems 1119:Dynamical systems 1089:Selected lectures 715:(18): 1482–1486. 673:(23): 2230–2233. 470:N. Kuznetsov 422:Sommerfeld effect 415:Hidden attractors 228:nonlinear control 212: 211: 204: 194: 193: 186: 124: 123: 116: 83:needs additional 65: 16:(Redirected from 1146: 1062: 1061: 1059: 1035: 1029: 1028: 1002: 993: 987: 986: 968: 948: 942: 941: 909: 903: 902: 870: 864: 863: 854:(3): 5445–5454. 843: 837: 836: 818: 798: 789: 788: 762: 742: 733: 732: 706: 697: 691: 690: 664: 655: 649: 648: 646: 622: 616: 615: 597: 588:(8): 1421–1458. 577: 571: 570: 544: 535: 529: 528: 499: 374:self-oscillation 249:dynamical system 245:hidden attractor 241:dynamical system 207: 200: 189: 182: 178: 175: 169: 134: 126: 119: 112: 108: 105: 99: 76: 75: 68: 57: 35: 34: 27: 21: 1154: 1153: 1149: 1148: 1147: 1145: 1144: 1143: 1109: 1108: 1091: 1070: 1065: 1037: 1036: 1032: 1000: 995: 994: 990: 950: 949: 945: 911: 910: 906: 879:Physics Reports 872: 871: 867: 845: 844: 840: 800: 799: 792: 744: 743: 736: 704: 699: 698: 694: 667:Physics Letters 662: 657: 656: 652: 624: 623: 619: 579: 578: 574: 542: 537: 536: 532: 501: 500: 491: 487: 459: 417: 369: 363: 282: 208: 197: 196: 195: 190: 179: 173: 170: 155: 135: 120: 109: 103: 100: 93: 77: 73: 36: 32: 23: 22: 15: 12: 11: 5: 1152: 1150: 1142: 1141: 1136: 1131: 1126: 1121: 1111: 1110: 1107: 1106: 1101: 1090: 1087: 1086: 1085: 1078: 1069: 1066: 1064: 1063: 1050:(2): 713–732. 1030: 1011:(5): 647–668. 988: 943: 904: 865: 838: 809:(2): 267–285. 790: 734: 692: 650: 617: 572: 553:(5): 511–543. 530: 488: 486: 483: 458: 455: 416: 413: 378:multistability 368: 365: 321:Chua attractor 281: 278: 210: 209: 192: 191: 138: 136: 129: 122: 121: 80: 78: 71: 66: 40: 39: 37: 30: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1151: 1140: 1137: 1135: 1132: 1130: 1127: 1125: 1122: 1120: 1117: 1116: 1114: 1105: 1102: 1100: 1098: 1093: 1092: 1088: 1083: 1079: 1076: 1072: 1071: 1067: 1058: 1053: 1049: 1045: 1041: 1034: 1031: 1026: 1022: 1018: 1014: 1010: 1006: 999: 992: 989: 984: 980: 976: 972: 967: 962: 958: 954: 947: 944: 939: 935: 931: 927: 923: 919: 915: 908: 905: 900: 896: 892: 888: 884: 880: 876: 869: 866: 861: 857: 853: 849: 842: 839: 834: 830: 826: 822: 817: 812: 808: 804: 797: 795: 791: 786: 782: 778: 774: 770: 766: 761: 756: 752: 748: 741: 739: 735: 730: 726: 722: 718: 714: 710: 703: 696: 693: 688: 684: 680: 676: 672: 668: 661: 654: 651: 645: 640: 637:(11): 29–33. 636: 632: 628: 621: 618: 613: 609: 605: 601: 596: 591: 587: 583: 576: 573: 568: 564: 560: 556: 552: 548: 541: 534: 531: 526: 522: 518: 514: 510: 506: 498: 496: 494: 490: 484: 482: 475: 471: 467: 463: 456: 454: 452: 448: 444: 438: 435: 431: 427: 423: 414: 412: 410: 405: 403: 399: 395: 391: 387: 383: 382:Lorenz system 379: 375: 366: 364: 357: 350: 349:Chua's system 345: 338: 337:Chua's system 334: 329: 325: 322: 318: 314: 309: 308: 304: 303: 298: 296: 292: 287: 279: 277: 275: 271: 267: 263: 259: 255: 250: 246: 242: 238: 234: 229: 225: 221: 217: 206: 203: 188: 185: 177: 167: 163: 159: 153: 149: 145: 144: 139:This article 137: 133: 128: 127: 118: 115: 107: 97: 91: 90: 86: 79: 70: 69: 64: 62: 55: 54: 49: 48: 43: 38: 29: 28: 19: 1129:Chaos theory 1096: 1047: 1043: 1033: 1008: 1004: 991: 956: 952: 946: 921: 917: 907: 882: 878: 868: 851: 847: 841: 806: 802: 750: 746: 712: 708: 695: 670: 666: 653: 634: 630: 620: 585: 581: 575: 550: 546: 533: 508: 504: 479: 473: 439: 418: 406: 370: 362: 332: 317:N. Kuznetsov 310: 306: 300: 299: 283: 244: 223: 218:, a bounded 213: 198: 180: 171: 156:Please help 140: 110: 101: 82: 58: 51: 45: 44:Please help 41: 1124:Oscillation 466:Afraimovich 428:(1949) and 386:Van der Pol 295:phase space 254:multistable 237:phase space 220:oscillation 1113:Categories 966:1705.06183 816:1504.04723 760:1710.02677 595:1505.04729 485:References 302:Definition 291:attractors 258:attractors 158:improve it 148:verifiable 47:improve it 1025:225304463 924:: 39–49. 709:Physica D 612:119227870 313:G. Leonov 162:citations 85:citations 53:talk page 983:21425647 885:: 1–50. 833:54706479 785:45604334 567:21657305 447:homotopy 331:Chaotic 266:periodic 247:. For a 174:May 2017 104:May 2017 926:Bibcode 887:Bibcode 765:Bibcode 717:Bibcode 675:Bibcode 513:Bibcode 394:Rössler 293:in the 270:chaotic 239:of the 214:In the 152:neutral 1023:  981:  831:  783:  610:  565:  476:(2021) 1068:Books 1021:S2CID 1001:(PDF) 979:S2CID 961:arXiv 829:S2CID 811:arXiv 781:S2CID 755:arXiv 705:(PDF) 663:(PDF) 608:S2CID 590:arXiv 563:S2CID 543:(PDF) 402:HĂ©non 226:. In 472:for 449:and 398:Chua 315:and 268:and 150:and 1052:doi 1048:102 1013:doi 971:doi 934:doi 895:doi 883:637 856:doi 821:doi 773:doi 725:doi 713:241 683:doi 671:375 639:doi 600:doi 586:224 555:doi 521:doi 305:. 276:). 164:to 87:to 1115:: 1046:. 1042:. 1019:. 1009:59 1007:. 1003:. 977:. 969:. 957:27 955:. 932:. 922:51 920:. 916:. 893:. 881:. 877:. 852:47 850:. 827:. 819:. 807:92 805:. 793:^ 779:. 771:. 763:. 751:27 749:. 737:^ 723:. 711:. 707:. 681:. 669:. 665:. 635:43 633:. 629:. 606:. 598:. 584:. 561:. 551:50 549:. 545:. 519:. 509:23 507:. 492:^ 400:, 396:, 392:, 388:, 297:. 56:. 1084:) 1077:) 1060:. 1054:: 1027:. 1015:: 985:. 973:: 963:: 940:. 936:: 928:: 901:. 897:: 889:: 862:. 858:: 835:. 823:: 813:: 787:. 775:: 767:: 757:: 731:. 727:: 719:: 689:. 685:: 677:: 647:. 641:: 614:. 602:: 592:: 569:. 557:: 527:. 523:: 515:: 205:) 199:( 187:) 181:( 176:) 172:( 168:. 154:. 117:) 111:( 106:) 102:( 92:. 63:) 59:( 20:)

Index

Hidden oscillation
improve it
talk page
Learn how and when to remove these messages
citations
secondary or tertiary sources
primary research articles
Learn how and when to remove this message

too closely associated with the subject
verifiable
neutral
improve it
citations
reliable, independent, third-party sources
Learn how and when to remove this message
Learn how and when to remove this message
bifurcation theory
oscillation
nonlinear control
Kalman's conjecture
phase space
dynamical system
dynamical system
multistable
attractors
stable equilibrium points
periodic
chaotic
the second part of Hilbert's 16th problem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑