Knowledge

Regenerative amplification

Source đź“ť

155:
will be transmitted by the polarizer. If a voltage is applied to the Pockels cell, a double pass through it will change the polarization of the pulse to vertical, so the pulse will be reflected off the polarizer and will exit the cavity. If no voltage is applied, then a double pass through the Pockels cell will not change the polarization and the pulse will get trapped inside the cavity of the resonator. The pulse can stay in the cavity until it reaches saturation or until it extracts most of the energy stored in the gain medium. When the pulse will achieve a high amplification, a second voltage can be applied to the Pockels cell in order to release the pulse from the resonator.
596: 29: 620: 154:
When a pulse with vertical polarization is reflected off the polarizer, after a double pass through the Pockels cell it will become horizontally polarized and will be transmitted by the polarizer. After a double pass through the amplification medium, having the same horizontal polarization, the pulse
163:
Regenerative amplifier can also operate at Radio Frequency, using the feedback between the transistor's source and gate to transform a capacitive impedance on the transistor's source to a negative resistance on its gate. Compared to voltage-gated amplifiers, this "negative resistance amplifier" will
137:
light. It is based on a pulse trapped in a laser resonator, which stays in there until it extracts all of the energy stored in the amplification medium. Pulse trapping and dumping is done using a polarizer and a
46: 556: 661: 93: 65: 112: 72: 295: 465: 50: 79: 61: 521: 173: 325: 654: 39: 680: 495: 315: 383: 685: 86: 219:"Sensitivity Enhancement of an Inductively Coupled Local Detector Using a HEMT-based Current Amplifier" 647: 490: 373: 361: 288: 17: 541: 460: 400: 320: 198: 143: 561: 435: 410: 248: 188: 571: 536: 516: 485: 238: 230: 599: 480: 470: 281: 268: 631: 576: 566: 526: 475: 393: 346: 330: 243: 218: 178: 674: 531: 511: 452: 378: 126: 551: 420: 415: 356: 139: 581: 442: 425: 405: 193: 183: 28: 430: 546: 388: 368: 351: 252: 619: 234: 627: 304: 134: 217:
Qian, C; Duan, Q; Dodd, S; Koretsky, A; Murphy-Boesch, J (2016).
277: 22: 164:
only require a tiny amount of power to achieve high gain.
273: 133:
is a process used to generate short but strong pulses of
635: 504: 451: 339: 53:. Unsourced material may be challenged and removed. 655: 289: 8: 662: 648: 296: 282: 274: 242: 113:Learn how and when to remove this message 557:Multiple-prism grating laser oscillator 209: 7: 616: 614: 51:adding citations to reliable sources 14: 269:RP Photonics encyclopedia article 618: 595: 594: 27: 38:needs additional citations for 466:Amplified spontaneous emission 223:Magnetic Resonance in Medicine 1: 634:. You can help Knowledge by 62:"Regenerative amplification" 522:Chirped pulse amplification 174:Chirped pulse amplification 702: 613: 326:List of laser applications 131:regenerative amplification 15: 590: 311: 159:Radio frequency operation 16:Not to be confused with 630:-related article is a 316:List of laser articles 491:Population inversion 142:, which acts like a 47:improve this article 18:regenerative circuit 542:Laser beam profiler 461:Active laser medium 401:Free-electron laser 321:List of laser types 199:Raman amplification 150:Operating principle 144:quarter wave-plate 643: 642: 608: 607: 562:Optical amplifier 411:Solid-state laser 235:10.1002/mrm.25850 189:Optical amplifier 123: 122: 115: 97: 693: 664: 657: 650: 622: 615: 598: 597: 572:Optical isolator 537:Injection seeder 517:Beam homogenizer 496:Ultrashort pulse 486:Lasing threshold 298: 291: 284: 275: 257: 256: 246: 229:(6): 2573–2578. 214: 118: 111: 107: 104: 98: 96: 55: 31: 23: 701: 700: 696: 695: 694: 692: 691: 690: 671: 670: 669: 668: 611: 609: 604: 586: 500: 481:Laser linewidth 471:Continuous wave 447: 340:Types of lasers 335: 307: 302: 265: 260: 216: 215: 211: 207: 170: 161: 152: 119: 108: 102: 99: 56: 54: 44: 32: 21: 12: 11: 5: 699: 697: 689: 688: 683: 673: 672: 667: 666: 659: 652: 644: 641: 640: 623: 606: 605: 603: 602: 591: 588: 587: 585: 584: 579: 577:Output coupler 574: 569: 567:Optical cavity 564: 559: 554: 549: 544: 539: 534: 529: 527:Gain-switching 524: 519: 514: 508: 506: 502: 501: 499: 498: 493: 488: 483: 478: 476:Laser ablation 473: 468: 463: 457: 455: 449: 448: 446: 445: 440: 439: 438: 433: 428: 423: 418: 408: 403: 398: 397: 396: 391: 386: 381: 376: 374:Carbon dioxide 366: 365: 364: 362:Liquid-crystal 359: 349: 347:Chemical laser 343: 341: 337: 336: 334: 333: 331:Laser acronyms 328: 323: 318: 312: 309: 308: 303: 301: 300: 293: 286: 278: 272: 271: 264: 263:External links 261: 259: 258: 208: 206: 203: 202: 201: 196: 191: 186: 181: 179:Gain-switching 176: 169: 166: 160: 157: 151: 148: 121: 120: 35: 33: 26: 13: 10: 9: 6: 4: 3: 2: 698: 687: 684: 682: 681:Laser science 679: 678: 676: 665: 660: 658: 653: 651: 646: 645: 639: 637: 633: 629: 624: 621: 617: 612: 601: 593: 592: 589: 583: 580: 578: 575: 573: 570: 568: 565: 563: 560: 558: 555: 553: 550: 548: 545: 543: 540: 538: 535: 533: 532:Gaussian beam 530: 528: 525: 523: 520: 518: 515: 513: 512:Beam expander 510: 509: 507: 503: 497: 494: 492: 489: 487: 484: 482: 479: 477: 474: 472: 469: 467: 464: 462: 459: 458: 456: 454: 453:Laser physics 450: 444: 441: 437: 434: 432: 429: 427: 424: 422: 419: 417: 414: 413: 412: 409: 407: 404: 402: 399: 395: 392: 390: 387: 385: 382: 380: 377: 375: 372: 371: 370: 367: 363: 360: 358: 355: 354: 353: 350: 348: 345: 344: 342: 338: 332: 329: 327: 324: 322: 319: 317: 314: 313: 310: 306: 299: 294: 292: 287: 285: 280: 279: 276: 270: 267: 266: 262: 254: 250: 245: 240: 236: 232: 228: 224: 220: 213: 210: 204: 200: 197: 195: 192: 190: 187: 185: 182: 180: 177: 175: 172: 171: 167: 165: 158: 156: 149: 147: 145: 141: 136: 132: 128: 127:laser science 117: 114: 106: 95: 92: 88: 85: 81: 78: 74: 71: 67: 64: â€“  63: 59: 58:Find sources: 52: 48: 42: 41: 36:This article 34: 30: 25: 24: 19: 686:Optics stubs 636:expanding it 625: 610: 552:Mode locking 505:Laser optics 226: 222: 212: 162: 153: 140:Pockels cell 130: 124: 109: 100: 90: 83: 76: 69: 57: 45:Please help 40:verification 37: 582:Q-switching 443:X-ray laser 436:Ti-sapphire 406:Laser diode 384:Helium–neon 194:Q-switching 184:Modelocking 675:Categories 205:References 103:April 2016 73:newspapers 547:M squared 369:Gas laser 352:Dye laser 600:Category 394:Nitrogen 253:26192998 168:See also 379:Excimer 244:4720591 87:scholar 628:optics 421:Nd:YAG 416:Er:YAG 357:Bubble 305:Lasers 251:  241:  89:  82:  75:  68:  60:  626:This 426:Raman 135:laser 94:JSTOR 80:books 632:stub 431:Ruby 249:PMID 66:news 389:Ion 239:PMC 231:doi 125:In 49:by 677:: 247:. 237:. 227:75 225:. 221:. 146:. 129:, 663:e 656:t 649:v 638:. 297:e 290:t 283:v 255:. 233:: 116:) 110:( 105:) 101:( 91:· 84:· 77:· 70:· 43:. 20:.

Index

regenerative circuit

verification
improve this article
adding citations to reliable sources
"Regenerative amplification"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
laser science
laser
Pockels cell
quarter wave-plate
Chirped pulse amplification
Gain-switching
Modelocking
Optical amplifier
Q-switching
Raman amplification
"Sensitivity Enhancement of an Inductively Coupled Local Detector Using a HEMT-based Current Amplifier"
doi
10.1002/mrm.25850
PMC
4720591
PMID
26192998
RP Photonics encyclopedia article

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑