Knowledge (XXG)

Redfield ratio

Source đź“ť

826:. They also help in determining which nutrients are limiting in a localized system, if there is a limiting nutrient. The ratio can also be used to understand the formation of phytoplankton blooms and subsequently hypoxia by comparing the ratio between different regions, such as a comparison of the Redfield Ratio of the Mississippi River to the ratio of the northern Gulf of Mexico. Controlling N:P could be a means for sustainable reservoir management. It may even be the case that the Redfield Ratio is applicable to terrestrial plants, soils, and soil microbial biomass, which would inform about limiting resources in terrestrial ecosystems. In a study from 2007, soil and microbial biomass were found to have a consistent C:N:P ratios of 186:13:1 and 60:7:1, respectively on average at a global scale. 809:
residence times of these elements are greater than the mixing times of the oceans (~ 1000 years) can result in the ratio of nitrate to phosphate in the ocean interior remaining fairly uniform. It has been shown that phytoplankton play a key role in helping maintain this ratio. As organic matter sinks both nitrate and phosphate are released into the ocean via remineralization. Microorganisms preferentially consume oxygen in nitrate over phosphate leading to deeper oceanic waters having an N:P ratio of less than 16:1. From there, the ocean's currents upwell the nutrients to the surface where phytoplankton will consume the excess Phosphorus and maintain a N:P ratio of 16:1 by consuming N
853:
stoichiometry. Also, when phosphorus is scarce, phytoplankton communities can lower their P content, raising the N:P. Additionally, the accumulation and quantity of dead phytoplankton and detritus can affect the availability of certain food sources which in turn affects the composition of the cell. In some ecosystems, the Redfield ratio has also been shown to vary significantly by the dominant phytoplankton taxa present in an ecosystem, even in systems with abundant nutrients. Consequently, the system-specific Redfield ratio could serve as a proxy for plankton community structure.
62:, and empirically found the ratio to be C:N:P = 106:16:1. While deviations from the canonical 106:16:1 ratio have been found depending on phytoplankton species and the study area, the Redfield ratio has remained an important reference to oceanographers studying nutrient limitation. A 2014 paper summarizing a large data set of nutrient measurements across all major ocean regions spanning from 1970 to 2010 reported the global median C:N:P to be 163:22:1. 87: 664: 935:(cell walls). As a result of this, the Redfield-Brzezinski nutrient ratio was proposed for diatoms and stated to be C:Si:N:P = 106:15:16:1. Extending beyond primary production itself, the oxygen consumed by aerobic respiration of phytoplankton biomass has also been shown to follow a predictable proportion to other elements. The O 789:
one of the mechanisms initially proposed by Redfield). However, subsequent modeling of feedback mechanisms, specifically nitrate-phosphorus coupling fluxes, do support his proposed mechanism of biotic feedback equilibrium, though these results are confounded by limitations in our current understanding of nutrient fluxes.
792:
In the ocean, a large portion of the biomass is found to be nitrogen-rich plankton. Many of these plankton are consumed by other plankton biomass which have similar chemical compositions. This results in a similar N:P ratio, on average, for all the plankton throughout the world’s oceans, empirically
754:
II) An equilibrium between seawater and planktonic nutrient pools is maintained through biotic feedback mechanisms. Redfield proposed a thermostat like scenario in which the activities of nitrogen fixers and denitrifiers keep the nitrate to phosphate ratio in the seawater near the requirements in the
788:
Laboratory experiments under controlled chemical conditions have found that phytoplankton biomass will conform to the Redfield ratio even when environmental nutrient levels exceed them, suggesting that ecological adaptation to oceanic nutrient ratios is not the only governing mechanism (contrary to
843:
of phytoplankton grown under nitrogen or phosphorus limitation shows that this N:P ratio can vary anywhere from 6:1 to 60:1. While understanding this problem, Redfield never attempted to explain it with the exception of noting that the N:P ratio of inorganic nutrients in the ocean interior was an
808:
That the nitrate to phosphate ratio in the interior of all of the major ocean basins is highly similar is possibly due to the residence times of these elements in the ocean relative to the ocean's circulation time, roughly 100 000 years for phosphorus and 2000 years for nitrogen. The fact that the
907:
in the ocean. Since then experimentation has proven that Iron is a limiting factor for primary production. Iron-rich solution was added to 64 km area which led to an increase in phytoplankton primary production. As a result an extended Redfield ratio was developed to include this as part of
847:
Although the Redfield ratio is remarkably stable in the deep ocean, it has been widely shown that phytoplankton may have large variations in the C:N:P composition, and their life strategy plays a role in the C:N:P ratio. This variability has made some researchers speculate that the Redfield ratio
852:
ratio fundamentally present in both prokaryotes and eukaryotes, which contributes to it being the most common composition. There are several possible explanations for the observed variability in C:N:P ratios. The speed at which the cell grows has an influence on cell composition and thereby its
758:
In 1958, almost a quarter century after first discovering the ratios, Redfield leaned toward the latter mechanism in his manuscript, The Biological Control of Chemical Factors in the Environment. Redfield proposed that the ratio of nitrogen to phosphorus in plankton resulted in the global ocean
821:
The research that resulted in this ratio has become a fundamental feature in the understanding of the biogeochemical cycles of the oceans, and one of the key tenets of biogeochemistry. The Redfield ratio is instrumental in estimating carbon and nutrient fluxes in
17: 743:
Redfield’s analysis of the empirical data led to him to discover that across and within the three oceans and Barents Sea, seawater had an N:P atomic ratio near 20:1 (later corrected to 16:1), and was very similar to the average N:P of phytoplankton.
775:
Redfield discovered the remarkable congruence between the chemistry of the deep ocean and the chemistry of living things such as phytoplankton in the surface ocean. Both have N:P ratios of about 16:1 in terms of atoms. When nutrients are not
1834:
Moore, C. M.; Mills, M. M.; Arrigo, K. R.; Berman-Frank, I.; Bopp, L.; Boyd, P. W.; Galbraith, E. D.; Geider, R. J.; Guieu, C.; Jaccard, S. L.; Jickells, T. D.; La Roche, J.; Lenton, T. M.; Mahowald, N. M.; Marañón, E. (September 2013).
912:
states that the ratio should be 106 C:16 N:1 P:0.1-0.001 Fe. The large variation for Fe is a result of the significant obstacle of ships and scientific equipment contaminating any samples collected at sea with excess Fe. It was this
750:
I) The N:P in plankton tends towards the N:P composition of seawater. Specifically, phytoplankton species with different N and P requirements compete within the same medium and come to reflect the nutrient composition of the seawater.
755:
protoplasm. Considering that at the time little was known about the composition of “protoplasm", or the bulk composition of phytoplankton, Redfield did not attempt to explain why its N:P ratio should be approximately 16:1.
834:
The Redfield ratio was initially derived empirically from measurements of the elemental composition of plankton in addition to the nitrate and phosphate content of seawater collected from a few stations in the
784:
elemental ratio C:N:P in most phytoplankton is 106:16:1. Redfield thought it wasn't purely coincidental that the vast oceans would have a chemistry perfectly suited to the requirements of living organisms.
813:
via nitrogen fixation. While such arguments can potentially explain why the ratios are fairly constant, they do not address the question why the N:P ratio is nearly 16 and not some other number.
1386:
Levich, A. P. (1 February 1996). "The role of nitrogen-phosphorus ratio in selecting for dominance of phytoplankton by cyanobacteria or green algae and its application to reservoir management".
1699:
Arrigo, Kevin R.; Dunbar, Robert B.; Lizotte, Michael P.; Robinson, D. H. (2002). "Taxon-specific differences in C/P and N/P drawdown for phytoplankton in the Ross Sea, Antarctica".
848:
perhaps is a general average in the modern ocean rather than a fundamental feature of phytoplankton, though it has also been argued that it is related to a homeostatic protein-to-
860:
such as marine phytoplankton in an oceanic region do not conform to the canonical Redfield ratio, the fundamental concept of this ratio remains valid and useful.
58:
who in 1934 first described the relatively consistent ratio of nutrients in marine biomass samples collected across several voyages on board the research vessel
174: 20:
Relationship of phosphate to nitrate uptake for photosynthesis in various regions of the ocean. Note that nitrate is more often limiting than phosphate
459: 132: 1359:
Dodds, Walter (2006). "Nutrients and the "dead zone" : the link between nutrient ratios and dissolved oxygens in the Northern Gulf of Mexico".
1257: 632: 1530:
Loladze, Irakli; Elser, James J. (2011). "The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio".
159: 1750:
Benner, R; Pakulski, JD; McCarthy, M; Hedges, JI; Hatcher, PG (1992). "Bulk chemical characteristics of dissolved organic matter in the ocean".
695: 513: 1644:
Martiny, Adam C.; Pham, Chau T. A.; Primeau, Francois W.; Vrugt, Jasper A.; Moore, J. Keith; Levin, Simon A.; Lomas, Michael W. (2013-03-17).
1572:
Klausmeier, C., Litchman, E., Daufresne, T. et al. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429, 171–174 (2004).
839:. This was later supported by hundreds of independent measurements of dissolved nitrate and phosphate. However, the composition of individual 1917:
Brzezinski, Mark A. (1985). "THE Si:C:N RATIO OF MARINE DIATOMS: INTERSPECIFIC VARIABILITY AND THE EFFECT OF SOME ENVIRONMENTAL VARIABLES1".
637: 981: 793:
found to average approximately 16:1. When these organisms sink into the ocean interior, their biomass is consumed by bacteria that, in
102: 917:
that resulted in early evidence suggesting that iron concentrations were high and not a limiting factor in marine primary production.
1901: 740:, analyzing data for C, N, and P content in marine plankton, and referenced data collected by other researchers as early as 1898. 1965: 562: 1977: 567: 552: 232: 622: 520: 226: 220: 767:(16:1). He considered how the cycles of not just N and P but also C and O could interact to result in this match. 627: 247: 1372: 688: 948: 602: 530: 525: 508: 353: 214: 112: 896: 612: 127: 982:"On the proportions of organic derivatives in sea water and their relation to the composition of plankton" 432: 208: 169: 137: 681: 668: 617: 348: 1261: 1012:"Concentrations and ratios of particulate organic carbon, nitrogen, and phosphorus in the global ocean" 1848: 1759: 1708: 1657: 1598: 1488: 1309: 1221: 1169: 1120: 953: 909: 823: 544: 446: 202: 107: 781: 493: 309: 164: 1942: 1872: 1783: 1732: 1681: 1512: 1461: 1411: 1341: 1081: 904: 572: 340: 324: 319: 242: 55: 747:
To explain this phenomenon, Redfield initially proposed two mutually non-exclusive mechanisms:
1934: 1897: 1864: 1775: 1724: 1673: 1626: 1587:"A simple nutrient-dependence mechanism for predicting the stoichiometry of marine ecosystems" 1555: 1547: 1504: 1453: 1403: 1333: 1325: 1239: 1187: 1138: 1089: 1073: 1043: 503: 282: 117: 1064:
REDFIELD, ALFRED C. (1958). "The Biological Control of Chemical Factors in the Environment".
2010: 1926: 1856: 1814: 1767: 1716: 1665: 1616: 1606: 1539: 1496: 1445: 1395: 1368: 1317: 1229: 1177: 1128: 1033: 1023: 794: 469: 363: 358: 1646:"Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter" 86: 2015: 928: 900: 889: 597: 464: 397: 385: 314: 188: 1852: 1763: 1712: 1661: 1602: 1492: 1313: 1225: 1173: 1124: 1819: 1802: 1621: 1586: 1038: 1011: 836: 802: 717: 607: 557: 498: 412: 295: 290: 151: 2004: 1930: 1736: 1543: 1434:"C:N:P stoichiometry in soil: is there a "Redfield ratio" for the microbial biomass?" 914: 725: 52: 45: 1946: 1787: 1516: 1465: 1415: 1282: 1685: 1345: 924: 733: 721: 390: 304: 258: 196: 78: 1876: 1771: 1210:"Redfield revisited: 1. Regulation of nitrate, phosphate, and oxygen in the ocean" 16: 1891: 737: 729: 454: 427: 422: 417: 407: 377: 263: 122: 59: 1449: 1182: 1157: 402: 41: 1989: 1938: 1868: 1728: 1677: 1551: 1457: 1407: 1329: 1243: 1191: 1142: 1077: 1611: 1433: 1158:"On phytoplankton growth rates and particulate C: N: P ratios at low light1" 932: 869: 857: 764: 713: 1779: 1630: 1559: 1508: 1337: 1093: 1047: 1836: 1028: 1720: 1297: 1234: 1209: 1010:
Martiny, Adam C.; Vrugt, Jasper A.; Lomas, Michael W. (9 December 2014).
777: 37: 1971:. University of Hawaii School of Ocean and Earth Science and Technology. 1500: 1321: 1085: 736:, Redfield participated in several voyages on board the research vessel 1479:
Arrigo, KR (2005). "Marine microorganisms and global nutrient cycles".
1399: 920: 840: 798: 760: 709: 485: 268: 1645: 1573: 1133: 1108: 1860: 1669: 1298:"The polar ocean and glacial cycles in atmospheric CO2 concentration" 895:
In particular, iron (Fe) was considered of great importance as early
881: 873: 647: 33: 1803:"Marine bacteria and biogeochemical cycling of iron in the oceans" 642: 15: 1296:
Sigman, Daniel M.; Hain, Mathis P.; Haug, Gerald H. (July 2010).
1109:"Global patterns of marine nitrogen fixation and denitrification" 801:
the organic matter to form dissolved inorganic nutrients, mainly
885: 877: 849: 1373:
10.1890/1540-9295(2006)004[0211:NATDZT]2.0.CO;2
1801:
Tortell, PD; Maldonado, MT; Granger, J; Price, NM (1999).
1837:"Processes and patterns of oceanic nutrient limitation" 844:
average with small scale variability to be expected.
1432:Cleveland, Cory C.; Liptzin, Daniel (2007-09-01). 856:Despite reports that the elemental composition of 1427: 1425: 868:Some feel that there are other elements, such as 1591:Proceedings of the National Academy of Sciences 1059: 1057: 975: 973: 971: 969: 759:having a remarkably similar ratio of dissolved 1208:Lenton, Timothy M.; Watson, Andrew J. (2000). 1585:Galbraith, Eric D.; Martiny, Adam C. (2015). 1203: 1201: 1107:Gruber, Nicolas; Sarmiento, Jorge L. (1997). 708:For his 1934 paper, Alfred Redfield analyzed 689: 8: 1990:"MARINE BIOGEOCHEMISTRY: ON REDFIELD RATIOS" 830:Deviations from the canonical Redfield ratio 1983:. LSU School of the Coast and Environment. 1978:"Nutrient Stoichiometry - Redfield Ratios" 696: 682: 69: 1896:. Lamont-Doherty Geological Observatory. 1818: 1620: 1610: 1233: 1181: 1132: 1037: 1027: 1361:Frontiers in Ecology and the Environment 1890:Broecker, WS; Peng, T; Beng, Z (1982). 965: 939::C ratio has been measured at 138:106. 633:Territorialisation of carbon governance 77: 899:hypothesized that iron may also be a 638:Total Carbon Column Observing Network 7: 1258:"Green Ocean Project Nitrogen cycle" 1988:P.G. Falkowski; C.S. Davis (2004). 1574:https://doi.org/10.1038/nature02454 1388:Journal of Aquatic Ecosystem Health 1820:10.1111/j.1574-6941.1999.tb00593.x 32:is the consistent atomic ratio of 14: 1931:10.1111/j.0022-3646.1985.00347.x 1544:10.1111/j.1461-0248.2010.01577.x 888:which are also important in the 663: 662: 85: 48:and throughout the deep oceans. 989:James Johnstone Memorial Volume 51:The term is named for American 598:Climate reconstruction proxies 1: 1772:10.1126/science.255.5051.1561 923:need, among other nutrients, 1701:Geophysical Research Letters 1214:Global Biogeochemical Cycles 1113:Global Biogeochemical Cycles 568:Carbonate compensation depth 233:Particulate inorganic carbon 2032: 1162:Limnology and Oceanography 805:, nitrate, and phosphate. 623:Carbon capture and storage 227:Particulate organic carbon 221:Dissolved inorganic carbon 1450:10.1007/s10533-007-9132-0 1183:10.4319/lo.1986.31.6.1358 1156:Goldman, Joel C. (1986). 897:biological oceanographers 824:global circulation models 628:Carbon cycle re-balancing 1976:Lentz, Jennifer (2010). 949:Ecological stoichiometry 908:this balance. This new 603:Carbon-to-nitrogen ratio 563:Carbonate–silicate cycle 531:Carbon dioxide clathrate 526:Clathrate gun hypothesis 354:Net ecosystem production 215:Dissolved organic carbon 1612:10.1073/pnas.1423917112 1283:"Chemical Sensor Group" 864:Extended Redfield ratio 613:Deep Carbon Observatory 73:Part of a series on the 433:Continental shelf pump 209:Total inorganic carbon 175:Satellite measurements 30:Redfield stoichiometry 21: 1029:10.1038/sdata.2014.48 980:Redfield, AC (1934). 618:Global Carbon Project 349:Ecosystem respiration 19: 1966:"Biogeochemistry IV" 1919:Journal of Phycology 1807:Microbiology Ecology 1721:10.1029/2002GL015277 1235:10.1029/1999GB900065 1072:(3): 205–221, 230A. 954:Biogeochemical cycle 910:stoichiometric ratio 447:Carbon sequestration 203:Total organic carbon 1994:ScienceWeek. Nature 1853:2013NatGe...6..701M 1764:1992Sci...255.1561B 1713:2002GeoRL..29.1938A 1662:2013NatGe...6..279M 1603:2015PNAS..112.8199G 1501:10.1038/nature04159 1493:2005Natur.437..349A 1322:10.1038/nature09149 1314:2010Natur.466...47S 1226:2000GBioC..14..225L 1174:1986LimOc..31.1358G 1125:1997GBioC..11..235G 494:Atmospheric methane 460:Soil carbon storage 310:Reverse Krebs cycle 165:Ocean acidification 1964:Johnson, Zackary. 1893:Tracers in the Sea 1400:10.1007/BF00691729 1066:American Scientist 905:primary production 573:Great Calcite Belt 521:Aerobic production 341:Carbon respiration 283:Metabolic pathways 243:Primary production 56:Alfred C. Redfield 22: 1841:Nature Geoscience 1707:(19): 44–1–44-4. 1650:Nature Geoscience 1597:(27): 8199–8204. 1134:10.1029/97GB00077 706: 705: 504:Methane emissions 160:In the atmosphere 2023: 1997: 1984: 1982: 1972: 1970: 1951: 1950: 1914: 1908: 1907: 1887: 1881: 1880: 1861:10.1038/ngeo1765 1831: 1825: 1824: 1822: 1798: 1792: 1791: 1758:(5051): 1561–4. 1747: 1741: 1740: 1696: 1690: 1689: 1670:10.1038/ngeo1757 1641: 1635: 1634: 1624: 1614: 1582: 1576: 1570: 1564: 1563: 1527: 1521: 1520: 1487:(7057): 349–55. 1476: 1470: 1469: 1429: 1420: 1419: 1383: 1377: 1376: 1356: 1350: 1349: 1293: 1287: 1286: 1279: 1273: 1272: 1270: 1269: 1260:. Archived from 1254: 1248: 1247: 1237: 1205: 1196: 1195: 1185: 1168:(6): 1358–1363. 1153: 1147: 1146: 1136: 1104: 1098: 1097: 1061: 1052: 1051: 1041: 1031: 1007: 1001: 1000: 998: 996: 986: 977: 698: 691: 684: 671: 666: 665: 470:pelagic sediment 364:Soil respiration 359:Photorespiration 89: 70: 44:found in marine 2031: 2030: 2026: 2025: 2024: 2022: 2021: 2020: 2001: 2000: 1987: 1980: 1975: 1968: 1963: 1960: 1955: 1954: 1916: 1915: 1911: 1904: 1889: 1888: 1884: 1833: 1832: 1828: 1800: 1799: 1795: 1749: 1748: 1744: 1698: 1697: 1693: 1643: 1642: 1638: 1584: 1583: 1579: 1571: 1567: 1532:Ecology Letters 1529: 1528: 1524: 1478: 1477: 1473: 1438:Biogeochemistry 1431: 1430: 1423: 1385: 1384: 1380: 1358: 1357: 1353: 1308:(7302): 47–55. 1295: 1294: 1290: 1281: 1280: 1276: 1267: 1265: 1256: 1255: 1251: 1207: 1206: 1199: 1155: 1154: 1150: 1106: 1105: 1101: 1063: 1062: 1055: 1016:Scientific Data 1009: 1008: 1004: 994: 992: 984: 979: 978: 967: 962: 945: 938: 929:biogenic silica 901:limiting factor 890:ocean chemistry 866: 832: 819: 812: 773: 732:. As a Harvard 702: 661: 654: 653: 652: 592: 584: 583: 582: 547: 537: 536: 535: 488: 478: 477: 476: 465:Marine sediment 449: 439: 438: 437: 398:Solubility pump 386:Biological pump 380: 370: 369: 368: 343: 333: 332: 331: 315:Carbon fixation 300: 285: 275: 274: 273: 254: 238: 191: 189:Forms of carbon 181: 180: 179: 154: 144: 143: 142: 97: 68: 12: 11: 5: 2029: 2027: 2019: 2018: 2013: 2003: 2002: 1999: 1998: 1985: 1973: 1959: 1958:External links 1956: 1953: 1952: 1925:(3): 347–357. 1909: 1902: 1882: 1847:(9): 701–710. 1826: 1793: 1742: 1691: 1656:(4): 279–283. 1636: 1577: 1565: 1538:(3): 244–250. 1522: 1471: 1444:(3): 235–252. 1421: 1378: 1367:(4): 211–217. 1351: 1288: 1274: 1249: 1220:(1): 225–248. 1197: 1148: 1119:(2): 235–266. 1099: 1053: 1002: 964: 963: 961: 958: 957: 956: 951: 944: 941: 936: 865: 862: 837:Atlantic Ocean 831: 828: 818: 815: 810: 803:carbon dioxide 772: 769: 704: 703: 701: 700: 693: 686: 678: 675: 674: 673: 672: 656: 655: 651: 650: 645: 640: 635: 630: 625: 620: 615: 610: 608:Deep biosphere 605: 600: 594: 593: 590: 589: 586: 585: 581: 580: 578:Redfield ratio 575: 570: 565: 560: 558:Nutrient cycle 555: 549: 548: 545:Biogeochemical 543: 542: 539: 538: 534: 533: 528: 523: 518: 517: 516: 511: 501: 499:Methanogenesis 496: 490: 489: 484: 483: 480: 479: 475: 474: 473: 472: 462: 457: 451: 450: 445: 444: 441: 440: 436: 435: 430: 425: 420: 415: 413:Microbial loop 410: 405: 400: 395: 394: 393: 382: 381: 376: 375: 372: 371: 367: 366: 361: 356: 351: 345: 344: 339: 338: 335: 334: 330: 329: 328: 327: 322: 312: 307: 301: 299: 298: 296:Chemosynthesis 293: 291:Photosynthesis 287: 286: 281: 280: 277: 276: 272: 271: 266: 261: 255: 253: 252: 251: 250: 239: 237: 236: 230: 224: 218: 212: 206: 200: 193: 192: 187: 186: 183: 182: 178: 177: 172: 167: 162: 156: 155: 152:Carbon dioxide 150: 149: 146: 145: 141: 140: 135: 130: 125: 120: 115: 110: 105: 99: 98: 95: 94: 91: 90: 82: 81: 75: 74: 67: 64: 26:Redfield ratio 13: 10: 9: 6: 4: 3: 2: 2028: 2017: 2014: 2012: 2009: 2008: 2006: 1995: 1991: 1986: 1979: 1974: 1967: 1962: 1961: 1957: 1948: 1944: 1940: 1936: 1932: 1928: 1924: 1920: 1913: 1910: 1905: 1903:9780961751104 1899: 1895: 1894: 1886: 1883: 1878: 1874: 1870: 1866: 1862: 1858: 1854: 1850: 1846: 1842: 1838: 1830: 1827: 1821: 1816: 1812: 1808: 1804: 1797: 1794: 1789: 1785: 1781: 1777: 1773: 1769: 1765: 1761: 1757: 1753: 1746: 1743: 1738: 1734: 1730: 1726: 1722: 1718: 1714: 1710: 1706: 1702: 1695: 1692: 1687: 1683: 1679: 1675: 1671: 1667: 1663: 1659: 1655: 1651: 1647: 1640: 1637: 1632: 1628: 1623: 1618: 1613: 1608: 1604: 1600: 1596: 1592: 1588: 1581: 1578: 1575: 1569: 1566: 1561: 1557: 1553: 1549: 1545: 1541: 1537: 1533: 1526: 1523: 1518: 1514: 1510: 1506: 1502: 1498: 1494: 1490: 1486: 1482: 1475: 1472: 1467: 1463: 1459: 1455: 1451: 1447: 1443: 1439: 1435: 1428: 1426: 1422: 1417: 1413: 1409: 1405: 1401: 1397: 1393: 1389: 1382: 1379: 1374: 1370: 1366: 1362: 1355: 1352: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1319: 1315: 1311: 1307: 1303: 1299: 1292: 1289: 1285:. 2015-08-20. 1284: 1278: 1275: 1264:on 2015-04-02 1263: 1259: 1253: 1250: 1245: 1241: 1236: 1231: 1227: 1223: 1219: 1215: 1211: 1204: 1202: 1198: 1193: 1189: 1184: 1179: 1175: 1171: 1167: 1163: 1159: 1152: 1149: 1144: 1140: 1135: 1130: 1126: 1122: 1118: 1114: 1110: 1103: 1100: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1067: 1060: 1058: 1054: 1049: 1045: 1040: 1035: 1030: 1025: 1022:(1): 140048. 1021: 1017: 1013: 1006: 1003: 990: 983: 976: 974: 972: 970: 966: 959: 955: 952: 950: 947: 946: 942: 940: 934: 930: 926: 922: 918: 916: 915:contamination 911: 906: 902: 898: 893: 891: 887: 883: 879: 875: 871: 863: 861: 859: 854: 851: 845: 842: 838: 829: 827: 825: 816: 814: 806: 804: 800: 796: 790: 786: 783: 779: 770: 768: 766: 762: 756: 752: 748: 745: 741: 739: 735: 731: 727: 723: 719: 716:data for the 715: 711: 699: 694: 692: 687: 685: 680: 679: 677: 676: 670: 660: 659: 658: 657: 649: 646: 644: 641: 639: 636: 634: 631: 629: 626: 624: 621: 619: 616: 614: 611: 609: 606: 604: 601: 599: 596: 595: 588: 587: 579: 576: 574: 571: 569: 566: 564: 561: 559: 556: 554: 553:Marine cycles 551: 550: 546: 541: 540: 532: 529: 527: 524: 522: 519: 515: 512: 510: 507: 506: 505: 502: 500: 497: 495: 492: 491: 487: 482: 481: 471: 468: 467: 466: 463: 461: 458: 456: 453: 452: 448: 443: 442: 434: 431: 429: 426: 424: 421: 419: 416: 414: 411: 409: 406: 404: 401: 399: 396: 392: 389: 388: 387: 384: 383: 379: 374: 373: 365: 362: 360: 357: 355: 352: 350: 347: 346: 342: 337: 336: 326: 323: 321: 318: 317: 316: 313: 311: 308: 306: 303: 302: 297: 294: 292: 289: 288: 284: 279: 278: 270: 267: 265: 262: 260: 257: 256: 249: 246: 245: 244: 241: 240: 234: 231: 228: 225: 222: 219: 216: 213: 210: 207: 204: 201: 198: 195: 194: 190: 185: 184: 176: 173: 171: 168: 166: 163: 161: 158: 157: 153: 148: 147: 139: 136: 134: 133:Boreal forest 131: 129: 126: 124: 121: 119: 116: 114: 111: 109: 106: 104: 101: 100: 93: 92: 88: 84: 83: 80: 76: 72: 71: 65: 63: 61: 57: 54: 53:oceanographer 49: 47: 46:phytoplankton 43: 39: 35: 31: 27: 18: 1993: 1922: 1918: 1912: 1892: 1885: 1844: 1840: 1829: 1810: 1806: 1796: 1755: 1751: 1745: 1704: 1700: 1694: 1653: 1649: 1639: 1594: 1590: 1580: 1568: 1535: 1531: 1525: 1484: 1480: 1474: 1441: 1437: 1394:(1): 55–61. 1391: 1387: 1381: 1364: 1360: 1354: 1305: 1301: 1291: 1277: 1266:. Retrieved 1262:the original 1252: 1217: 1213: 1165: 1161: 1151: 1116: 1112: 1102: 1069: 1065: 1019: 1015: 1005: 993:. Retrieved 988: 925:silicic acid 919: 894: 867: 855: 846: 833: 820: 807: 797:conditions, 791: 787: 774: 757: 753: 749: 746: 742: 734:physiologist 707: 577: 391:Martin curve 378:Carbon pumps 305:Calvin cycle 259:Black carbon 197:Total carbon 138:Geochemistry 79:Carbon cycle 50: 29: 25: 23: 771:Explanation 730:Barents Sea 728:oceans and 455:Carbon sink 418:Viral shunt 408:Marine snow 264:Blue carbon 118:Deep carbon 113:Atmospheric 103:Terrestrial 2005:Categories 1268:2015-03-27 960:References 931:for their 927:to create 428:Whale pump 423:Jelly pump 403:Lipid pump 128:Permafrost 96:By regions 42:phosphorus 1939:1529-8817 1869:1752-0894 1737:129704137 1729:1944-8007 1678:1752-0894 1552:1461-0248 1458:1573-515X 1408:1573-5141 1330:0028-0836 1244:1944-9224 1192:1939-5590 1143:1944-9224 1078:0003-0996 933:frustules 870:potassium 858:organisms 765:phosphate 714:phosphate 66:Discovery 1947:86568341 1813:(1): 1. 1788:28604425 1780:17820170 1631:26056296 1560:21244593 1517:62781480 1509:16163345 1466:51898417 1416:84469052 1338:20596012 1094:24545739 1086:27827150 1048:25977799 995:March 1, 943:See also 778:limiting 738:Atlantis 718:Atlantic 669:Category 60:Atlantis 38:nitrogen 2011:Ecology 1849:Bibcode 1760:Bibcode 1752:Science 1709:Bibcode 1686:5677709 1658:Bibcode 1622:4500256 1599:Bibcode 1489:Bibcode 1346:4424883 1310:Bibcode 1222:Bibcode 1170:Bibcode 1121:Bibcode 1039:4421931 921:Diatoms 841:species 799:oxidize 795:aerobic 761:nitrate 726:Pacific 710:nitrate 514:Wetland 486:Methane 269:Kerogen 170:Removal 2016:Ratios 1945:  1937:  1900:  1877:249514 1875:  1867:  1786:  1778:  1735:  1727:  1684:  1676:  1629:  1619:  1558:  1550:  1515:  1507:  1481:Nature 1464:  1456:  1414:  1406:  1344:  1336:  1328:  1302:Nature 1242:  1190:  1141:  1092:  1084:  1076:  1046:  1036:  884:, and 882:copper 874:sulfur 780:, the 722:Indian 667:  648:CO2SYS 509:Arctic 248:marine 108:Marine 34:carbon 1981:(PDF) 1969:(PDF) 1943:S2CID 1873:S2CID 1784:S2CID 1733:S2CID 1682:S2CID 1513:S2CID 1462:S2CID 1412:S2CID 1342:S2CID 1082:JSTOR 991:: 176 985:(PDF) 782:molar 643:C4MIP 591:Other 235:(PIC) 229:(POC) 223:(DIC) 217:(DOC) 211:(TIC) 205:(TOC) 1935:ISSN 1898:ISBN 1865:ISSN 1776:PMID 1725:ISSN 1674:ISSN 1627:PMID 1556:PMID 1548:ISSN 1505:PMID 1454:ISSN 1404:ISSN 1334:PMID 1326:ISSN 1240:ISSN 1188:ISSN 1139:ISSN 1090:PMID 1074:ISSN 1044:PMID 997:2019 903:for 886:iron 878:zinc 850:rRNA 817:Uses 712:and 199:(TC) 123:Soil 40:and 24:The 1927:doi 1857:doi 1815:doi 1768:doi 1756:255 1717:doi 1666:doi 1617:PMC 1607:doi 1595:112 1540:doi 1497:doi 1485:437 1446:doi 1396:doi 1369:doi 1318:doi 1306:466 1230:doi 1178:doi 1129:doi 1034:PMC 1024:doi 763:to 28:or 2007:: 1992:. 1941:. 1933:. 1923:21 1921:. 1871:. 1863:. 1855:. 1843:. 1839:. 1811:29 1809:. 1805:. 1782:. 1774:. 1766:. 1754:. 1731:. 1723:. 1715:. 1705:29 1703:. 1680:. 1672:. 1664:. 1652:. 1648:. 1625:. 1615:. 1605:. 1593:. 1589:. 1554:. 1546:. 1536:14 1534:. 1511:. 1503:. 1495:. 1483:. 1460:. 1452:. 1442:85 1440:. 1436:. 1424:^ 1410:. 1402:. 1390:. 1363:. 1340:. 1332:. 1324:. 1316:. 1304:. 1300:. 1238:. 1228:. 1218:14 1216:. 1212:. 1200:^ 1186:. 1176:. 1166:31 1164:. 1160:. 1137:. 1127:. 1117:11 1115:. 1111:. 1088:. 1080:. 1070:46 1068:. 1056:^ 1042:. 1032:. 1018:. 1014:. 987:. 968:^ 892:. 880:, 876:, 872:, 724:, 720:, 325:C4 320:C3 36:, 1996:. 1949:. 1929:: 1906:. 1879:. 1859:: 1851:: 1845:6 1823:. 1817:: 1790:. 1770:: 1762:: 1739:. 1719:: 1711:: 1688:. 1668:: 1660:: 1654:6 1633:. 1609:: 1601:: 1562:. 1542:: 1519:. 1499:: 1491:: 1468:. 1448:: 1418:. 1398:: 1392:5 1375:. 1371:: 1365:4 1348:. 1320:: 1312:: 1271:. 1246:. 1232:: 1224:: 1194:. 1180:: 1172:: 1145:. 1131:: 1123:: 1096:. 1050:. 1026:: 1020:1 999:. 937:2 811:2 697:e 690:t 683:v

Index


carbon
nitrogen
phosphorus
phytoplankton
oceanographer
Alfred C. Redfield
Atlantis
Carbon cycle

Terrestrial
Marine
Atmospheric
Deep carbon
Soil
Permafrost
Boreal forest
Geochemistry
Carbon dioxide
In the atmosphere
Ocean acidification
Removal
Satellite measurements
Forms of carbon
Total carbon
Total organic carbon
Total inorganic carbon
Dissolved organic carbon
Dissolved inorganic carbon
Particulate organic carbon

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑