Knowledge (XXG)

Ridged mirror

Source 📝

71: 216: 812:
Ridged mirrors are not yet commercialized, although certain achievements can be mentioned. The reflectivity of a ridged atomic mirror can be orders of magnitude better than that of a flat surface. The use of a ridged mirror as an atomic
649: 828:; however, for light waves, the performance is not better than that of a flat surface. An ellipsoidal ridged mirror is proposed as the focusing element for an atomic optical system with submicrometre resolution ( 684: 300: 494: 754: 347: 395: 531: 246: 137: 1196: 782: 714: 451: 421: 272: 125: 802: 559: 579: 1090:
D.Kouznetsov; H. Oberst; K. Shimizu; A. Neumann; Y. Kuznetsova; J.-F. Bisson; K. Ueda; S. R. J. Brueck (2006). "Ridged atomic mirrors and atomic nanoscope".
883: 56: 62:. In order to reduce the mean attraction of particles to the surface and increase the reflectivity, this surface has narrow ridges. 804:. The width of the ridges cannot be smaller than the size of an atom; this sets the limit of performance of the ridged mirrors. 764:
For efficient ridged mirrors, both estimates above should predict high reflectivity. This implies reduction of both, width,
656: 303: 59: 817:
has been demonstrated. In Shimizu's and Fujita's work, atom holography is achieved via electrodes implanted into SiN
423:
from a flat surface at the normal incidence. Such estimate predicts the enhancement of the reflectivity at the
661: 277: 1147: 989: 456: 1109: 881:
F. Shimizu; J. Fujita (2002). "Giant Quantum Reflection of Neon Atoms from a Ridged Silicon Surface".
1156: 1101: 1092: 1053: 998: 954: 902: 1114: 719: 562: 309: 128: 44: 352: 131:
attraction of atoms to the surface. Such interpretation leads to the estimate of the reflectivity
1127: 1069: 981: 918: 892: 846: 497: 98: 78: 1042:
D.Kouznetsov; H.Oberst (2005). "Reflection of Waves from a Ridged Surface and the Zeno Effect".
561:, the ridges just blocks the part of the wavefront. Then, it can be interpreted in terms of the 211:{\displaystyle \displaystyle r\approx r_{0}\!\left({\frac {\ell }{L}}C,\!~K\sin(\theta )\right)} 1172: 1024: 945: 70: 21: 503: 225: 1164: 1119: 1061: 1014: 1006: 962: 910: 851: 829: 48: 767: 16:"Fresnel mirror" redirects here. For the optical mirror technology which is analogous to a 566: 86: 693: 644:{\displaystyle ~\displaystyle r\approx \exp \!\left(-{\sqrt {8\!~K\!~L}}~\theta \right)~} 430: 400: 251: 104: 1160: 1105: 1057: 1002: 958: 937: 906: 1044: 787: 686:
is supposed to be small. This estimate predicts enhancement of the reflectivity at the
544: 1190: 1123: 841: 825: 40: 1131: 1073: 922: 17: 1168: 1010: 861: 856: 570: 966: 1065: 1176: 1028: 814: 897: 1019: 85:
were discussed in the literature. All the estimates explicitly use the
914: 1145:
F.Shimizu; J.Fujita (2002). "Reflection-Type Hologram for Atoms".
821:
film over an atomic mirror, or maybe as the atomic mirror itself.
52: 980:
H.Oberst; D.Kouznetsov; K.Shimizu; J.Fujita; F. Shimizu (2005).
573:; such interpretation leads to the estimate the reflectivity 69: 397:
is coefficient of reflection of atoms with wavenumber
790: 770: 722: 696: 665: 664: 586: 582: 547: 506: 459: 433: 403: 355: 312: 281: 280: 254: 228: 141: 140: 107: 796: 776: 748: 708: 678: 643: 553: 525: 488: 445: 415: 389: 341: 294: 266: 240: 210: 119: 101:from the surface, reducing the effective constant 617: 610: 596: 466: 180: 158: 982:"Fresnel Diffraction Mirror for an Atomic Wave" 8: 500:for the approximation (fit) of the function 1085: 1083: 89:about wave properties of reflected atoms. 1113: 1018: 896: 789: 769: 729: 721: 695: 663: 605: 581: 546: 514: 505: 474: 458: 432: 402: 363: 354: 328: 311: 279: 253: 227: 164: 152: 139: 106: 884:Journal of the Physical Society of Japan 77:Various estimates for the efficiency of 938:"Scattering of waves at ridged mirrors" 873: 679:{\displaystyle \displaystyle ~\theta ~} 333: 295:{\displaystyle \displaystyle ~\theta ~} 1197:Atomic, molecular, and optical physics 489:{\displaystyle KL\!~\theta ^{2}\ll 1} 66:Reflectivity of ridged atomic mirrors 7: 541:For narrow ridges with large period 93:Scaling of the van der Waals force 14: 824:Ridged mirrors can also reflect 936:D.Kouznetsov; H.Oberst (2005). 808:Applications of ridged mirrors 784:of the ridges and the period, 749:{\displaystyle ~\ell /L\ll 1~} 716:. This estimate requires that 381: 369: 199: 193: 1: 1169:10.1103/PhysRevLett.88.123201 1011:10.1103/PhysRevLett.94.013203 537:Interpretation as Zeno effect 342:{\displaystyle ~K=mV/\hbar ~} 453:; this estimate is valid at 390:{\displaystyle ~r_{0}(C,k)~} 274:is distance between ridges, 1213: 1124:10.1088/0953-4075/39/7/005 967:10.1103/PhysRevA.72.013617 37:Fresnel diffraction mirror 15: 1066:10.1007/s10043-005-0363-9 248:is width of the ridges, 1148:Physical Review Letters 990:Physical Review Letters 526:{\displaystyle ~r_{0}~} 241:{\displaystyle ~\ell ~} 97:The ridges enhance the 798: 778: 750: 710: 680: 645: 555: 527: 490: 447: 417: 391: 343: 296: 268: 242: 212: 121: 74: 799: 779: 777:{\displaystyle \ell } 751: 711: 681: 646: 556: 528: 491: 448: 418: 392: 344: 297: 269: 243: 213: 122: 73: 27:In atomic physics, a 1093:Journal of Physics B 788: 768: 720: 694: 662: 580: 545: 504: 457: 431: 401: 353: 310: 278: 252: 226: 138: 105: 33:ridged atomic mirror 1161:2002PhRvL..88l3201S 1106:2006JPhB...39.1605K 1058:2005OptRv..12..363K 1003:2005PhRvL..94a3203O 959:2005PhRvA..72a3617K 907:2002JPSJ...71....5S 709:{\displaystyle ~L~} 563:Fresnel diffraction 446:{\displaystyle ~L~} 416:{\displaystyle ~k~} 267:{\displaystyle ~L~} 120:{\displaystyle ~C~} 45:specular reflection 43:, designed for the 847:Quantum reflection 794: 774: 746: 706: 676: 675: 641: 640: 551: 523: 498:quantum reflection 486: 443: 413: 387: 349:is wavenumber and 339: 292: 291: 264: 238: 208: 207: 117: 99:quantum reflection 79:quantum reflection 75: 946:Physical Review A 915:10.1143/JPSJ.71.5 797:{\displaystyle L} 760:Fundamental limit 745: 725: 705: 699: 674: 668: 639: 628: 624: 620: 613: 585: 554:{\displaystyle L} 522: 509: 469: 442: 436: 412: 406: 386: 358: 338: 315: 290: 284: 263: 257: 237: 231: 183: 172: 116: 110: 87:de Broglie theory 49:neutral particles 22:Fresnel reflector 1204: 1181: 1180: 1142: 1136: 1135: 1117: 1100:(7): 1605–1623. 1087: 1078: 1077: 1052:(5): 1605–1623. 1039: 1033: 1032: 1022: 986: 977: 971: 970: 942: 933: 927: 926: 900: 878: 852:Atomic nanoscope 830:atomic nanoscope 803: 801: 800: 795: 783: 781: 780: 775: 755: 753: 752: 747: 743: 733: 723: 715: 713: 712: 707: 703: 697: 685: 683: 682: 677: 672: 666: 650: 648: 647: 642: 637: 636: 632: 626: 625: 618: 611: 606: 583: 560: 558: 557: 552: 532: 530: 529: 524: 520: 519: 518: 507: 495: 493: 492: 487: 479: 478: 467: 452: 450: 449: 444: 440: 434: 422: 420: 419: 414: 410: 404: 396: 394: 393: 388: 384: 368: 367: 356: 348: 346: 345: 340: 336: 332: 313: 301: 299: 298: 293: 288: 282: 273: 271: 270: 265: 261: 255: 247: 245: 244: 239: 235: 229: 217: 215: 214: 209: 206: 202: 181: 173: 165: 157: 156: 126: 124: 123: 118: 114: 108: 1212: 1211: 1207: 1206: 1205: 1203: 1202: 1201: 1187: 1186: 1185: 1184: 1144: 1143: 1139: 1115:10.1.1.172.7872 1089: 1088: 1081: 1041: 1040: 1036: 984: 979: 978: 974: 940: 935: 934: 930: 898:physics/0111115 880: 879: 875: 870: 838: 820: 810: 786: 785: 766: 765: 762: 718: 717: 692: 691: 660: 659: 601: 597: 578: 577: 567:de Broglie wave 543: 542: 539: 510: 502: 501: 470: 455: 454: 429: 428: 399: 398: 359: 351: 350: 308: 307: 276: 275: 250: 249: 224: 223: 163: 159: 148: 136: 135: 103: 102: 95: 68: 60:incidence angle 39:) is a kind of 25: 12: 11: 5: 1210: 1208: 1200: 1199: 1189: 1188: 1183: 1182: 1155:(12): 123201. 1137: 1079: 1045:Optical Review 1034: 972: 928: 872: 871: 869: 866: 865: 864: 859: 854: 849: 844: 837: 834: 818: 809: 806: 793: 773: 761: 758: 742: 739: 736: 732: 728: 702: 671: 653: 652: 635: 631: 623: 616: 609: 604: 600: 595: 592: 589: 550: 538: 535: 517: 513: 485: 482: 477: 473: 465: 462: 439: 409: 383: 380: 377: 374: 371: 366: 362: 335: 331: 327: 324: 321: 318: 287: 260: 234: 220: 219: 205: 201: 198: 195: 192: 189: 186: 179: 176: 171: 168: 162: 155: 151: 147: 144: 113: 94: 91: 81:of waves from 67: 64: 55:) coming at a 13: 10: 9: 6: 4: 3: 2: 1209: 1198: 1195: 1194: 1192: 1178: 1174: 1170: 1166: 1162: 1158: 1154: 1150: 1149: 1141: 1138: 1133: 1129: 1125: 1121: 1116: 1111: 1107: 1103: 1099: 1095: 1094: 1086: 1084: 1080: 1075: 1071: 1067: 1063: 1059: 1055: 1051: 1047: 1046: 1038: 1035: 1030: 1026: 1021: 1016: 1012: 1008: 1004: 1000: 997:(1): 013203. 996: 992: 991: 983: 976: 973: 968: 964: 960: 956: 953:(1): 013617. 952: 948: 947: 939: 932: 929: 924: 920: 916: 912: 908: 904: 899: 894: 890: 886: 885: 877: 874: 867: 863: 860: 858: 855: 853: 850: 848: 845: 843: 842:Atomic mirror 840: 839: 835: 833: 831: 827: 826:visible light 822: 816: 807: 805: 791: 771: 759: 757: 740: 737: 734: 730: 726: 700: 689: 669: 658: 657:grazing angle 633: 629: 621: 614: 607: 602: 598: 593: 590: 587: 576: 575: 574: 572: 568: 564: 548: 536: 534: 515: 511: 499: 483: 480: 475: 471: 463: 460: 437: 426: 407: 378: 375: 372: 364: 360: 329: 325: 322: 319: 316: 305: 304:grazing angle 285: 258: 232: 203: 196: 190: 187: 184: 177: 174: 169: 166: 160: 153: 149: 145: 142: 134: 133: 132: 130: 129:van der Waals 111: 100: 92: 90: 88: 84: 83:ridged mirror 80: 72: 65: 63: 61: 58: 54: 50: 46: 42: 41:atomic mirror 38: 34: 30: 29:ridged mirror 23: 19: 1152: 1146: 1140: 1097: 1091: 1049: 1043: 1037: 994: 988: 975: 950: 944: 931: 888: 882: 876: 823: 811: 763: 687: 654: 540: 424: 221: 96: 82: 76: 36: 32: 28: 26: 18:Fresnel lens 1020:2241/104208 862:Matter wave 857:Zeno effect 571:Zeno effect 891:(1): 5–8. 868:References 690:of period 655:where the 427:of period 1110:CiteSeerX 772:ℓ 738:≪ 727:ℓ 688:reduction 670:θ 630:θ 603:− 591:≈ 569:, or the 481:≪ 472:θ 334:ℏ 286:θ 233:ℓ 197:θ 191:⁡ 167:ℓ 146:≈ 1191:Category 1177:11909457 1132:16653364 1074:55565166 1029:15698079 923:19013515 836:See also 815:hologram 425:increase 1157:Bibcode 1102:Bibcode 1054:Bibcode 999:Bibcode 955:Bibcode 903:Bibcode 565:of the 127:of the 57:grazing 1175:  1130:  1112:  1072:  1027:  921:  744:  724:  704:  698:  673:  667:  638:  627:  619:  612:  584:  521:  508:  496:. See 468:  441:  435:  411:  405:  385:  357:  337:  314:  306:, and 289:  283:  262:  256:  236:  230:  222:where 182:  115:  109:  20:, see 1128:S2CID 1070:S2CID 985:(PDF) 941:(PDF) 919:S2CID 893:arXiv 53:atoms 35:, or 1173:PMID 1025:PMID 31:(or 1165:doi 1120:doi 1062:doi 1015:hdl 1007:doi 963:doi 911:doi 832:). 594:exp 302:is 188:sin 47:of 1193:: 1171:. 1163:. 1153:88 1151:. 1126:. 1118:. 1108:. 1098:39 1096:. 1082:^ 1068:. 1060:. 1050:12 1048:. 1023:. 1013:. 1005:. 995:94 993:. 987:. 961:. 951:72 949:. 943:. 917:. 909:. 901:. 889:71 887:. 756:. 533:. 1179:. 1167:: 1159:: 1134:. 1122:: 1104:: 1076:. 1064:: 1056:: 1031:. 1017:: 1009:: 1001:: 969:. 965:: 957:: 925:. 913:: 905:: 895:: 819:4 792:L 741:1 735:L 731:/ 701:L 651:, 634:) 622:L 615:K 608:8 599:( 588:r 549:L 516:0 512:r 484:1 476:2 464:L 461:K 438:L 408:k 382:) 379:k 376:, 373:C 370:( 365:0 361:r 330:/ 326:V 323:m 320:= 317:K 259:L 218:, 204:) 200:) 194:( 185:K 178:, 175:C 170:L 161:( 154:0 150:r 143:r 112:C 51:( 24:.

Index

Fresnel lens
Fresnel reflector
atomic mirror
specular reflection
neutral particles
atoms
grazing
incidence angle

quantum reflection
de Broglie theory
quantum reflection
van der Waals
grazing angle
quantum reflection
Fresnel diffraction
de Broglie wave
Zeno effect
grazing angle
hologram
visible light
atomic nanoscope
Atomic mirror
Quantum reflection
Atomic nanoscope
Zeno effect
Matter wave
Journal of the Physical Society of Japan
arXiv
physics/0111115

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.