Knowledge (XXG)

Standard addition

Source 📝

107:
spiked. This leads to a linear relationship between the analyte signal and the amount of analyte added, allowing for the determination of the unknown's concentration by extrapolating the zero analyte signal. One disadvantage of this approach is that it requires sufficient amount of the unknown. When working with limiting amount of sample, an analyst might need to make a single addition, but it is generally considered a best practice to make at least two additions whenever possible.
156: 1266: 1290: 71:, the standard addition method involves creating two samples – one sample without any spikes, and another one with spikes. By comparing the current measured from two samples, the amount of analyte in the unknown is determined. This approach was the first reported use of standard addition, and was introduced by a German mining chemist, Hans Hohn, in 1937. In his polarography practical book, titled 1302: 1278: 106:
To apply this method, analysts prepare multiple solutions containing equal amounts of unknown and spike them with varying concentrations of the analyte. The amount of unknown and the total volume are the same across the standards and the only difference between the standards is the amount of analyte
171:
For standard additions, equal volumes of the sample solutions are taken, and all are separately spiked with varying amounts of the analyte – 0, 1, 2, 3, 4, 5 mL, where 0 mL addition is a pure test sample solution. All solutions are then diluted to the same volume of 25 mL, by using the same solvent
193:
matrix effects. These effects are caused by other substances present in the unknown sample that are often independent of the analyte concentration. They are commonly referred to as 'background' and can impact the intercept of the regression line without affecting the slope. This results in bias
159:
Spreadsheet for standard addition example on determining the silver concentration of photographic film waste. Please refer to the Limitation and Uncertainty of Standard Addition section for more information on how to calculate for the Error Analysis portion. The silver concentration in the test
172:
as the one used to prepare the spiking solutions. Each prepared solution is then analyzed using an atomic absorption spectrometer. The resulting signals and corresponding spiked silver concentrations are plotted, with concentration on the x-axis and the signal on the y-axis. A
152:, and use the calibration graph to determine the amount of silver present in the waste samples. This method, however, assumes the pure aqueous solution of silver and a photographic waste sample have the same matrix and therefore the waste samples are free of matrix effect. 433: 180:
analysis and the x-intercept of the line is determined by the ratio of the y-intercept and the slope of the regression line. This x-intercept represents the silver concentration of the test sample where there is no standard solution added.      
86:
Modern polarography typically involves using three solutions: the standard solution, the unknown solution, and a mixture of the standard and unknown solution. By measuring any two of these solutions, the unknown concentration is calculated.
59:. By increasing the number of spikes, the analyst can extrapolate for the analyte concentration in the unknown that has not been spiked. There are multiple approaches to the standard addition. The following section summarize each approach. 46:
method, the standard addition method has the advantage of the matrices of the unknown and standards being nearly identical. This minimizes the potential bias arising from the matrix effect when determining the concentration.
102:
was the next earliest reference book to mention standard addition. Harvey's approach, which involves the successive addition of standards, closely resembles the most commonly used method of standard addition today.
555: 284: 121:, background signal cannot be resolved by standard addition. Thus, background signal must be subtracted from the unknown and standard intensities prior to extrapolating for the zero signal. 90:
As polarographic standard addition involves using only one solution with the standard added – the two-level design, polarographers always refer to the method as singular, standard addition.
712: 652: 681: 467: 276: 249: 222: 984: 621: 599: 577: 165: 1213: 189:
While the standard addition method is effective in reducing the interference of most matrix effects on the analyte signal, it cannot correct for the
1236: 1024: 160:
sample is the x-intercept of the plot. The dilution factor is multiplied by this initial concentration to determine the original concentration.
808: 194:
towards the unknown concentration. In other words, standard addition will not correct for these backgrounds or other spectral interferences.
471: 977: 1306: 873: 168:, which have a reputation for being relatively free from interferences. As such, analyst would use standard additions in this case. 197:
Analysts also needs to evaluate the precision of the determined unknown concentration by calculating for the standard deviation,
428:{\displaystyle s_{x}={\frac {s_{y}}{|m|}}{\sqrt {{\frac {1}{n}}+{\frac {{\bar {y}}^{2}}{m^{2}\sum {(x_{i}-{\bar {x}})^{2}}}}}}} 1333: 1282: 1243: 1009: 141: 111: 1328: 1270: 970: 118: 1014: 1187: 79:, which translates to "calibration addition" in English. Later in the German literature, this method was called as 1090: 1080: 1161: 1121: 1250: 1131: 1039: 38:, quantifies the analyte present in an unknown. This method is useful for analyzing complex samples where a 1229: 1029: 124:
As this approach involves varying amount of standards added, it is often referred in the plural form as
891:"A standard addition method to quantify serum lithium by inductively coupled plasma mass spectrometry" 1085: 1049: 1001: 993: 35: 55:
Standard addition involves adding known amounts of analyte to an unknown sample, a process known as
1126: 1289: 1156: 1151: 1146: 1019: 688: 628: 1222: 1192: 1182: 1095: 1054: 1034: 949: 910: 869: 804: 778: 733: 173: 137: 136:
Suppose an analyst is determining the concentration of silver in samples of waste solution in
43: 1294: 1202: 941: 902: 770: 728: 149: 659: 445: 254: 227: 200: 155: 17: 1075: 723: 606: 584: 562: 1322: 1141: 177: 39: 1177: 1100: 145: 68: 758: 1070: 1136: 1044: 906: 889:
Fan, Xiaoyu; Li, Qing; Lin, Ping; Jin, Zhonggan; Chen, Meizi; Yi, Zu (2022).
782: 759:"A systematic approach to standard addition methods in instrumental analysis" 1105: 929: 890: 953: 914: 114:, for example, standard additions are often used with solid as the sample. 864:
Robinson, James W.; Skelly Frame, Eileen M.; Frame II, George M. (2005).
962: 774: 945: 144:. Using the calibration curve method, the analyst can calibrate the 94:
Successive addition of standards in constant sample and total volume
803:(6th ed.). Boston, MA, USA: Cengage Learning. pp. 13–14. 550:{\displaystyle ={\sqrt {\frac {\sum {(y_{i}-mx_{i}-b)}^{2}}{n-2}}}} 799:
Skoog, Douglas A.; Holler, James F.; Crouch, Stanley R. (2016).
966: 251:
indicates greater precision of the measurements. The value of
868:(6th ed.). New York: Marcel Dekker. pp. 84–87. 42:
interferes with the analyte signal. In comparison to the
848:(1st ed.). Glendale: Applied Research Laboratories. 438:
where the calculation involves the following variables:
559:
absolute value of the slope of the least-squares line,
691: 662: 631: 609: 587: 565: 474: 448: 287: 257: 230: 203: 110:
Note that this is not limited to liquid samples. In
1211: 1170: 1114: 1063: 1000: 706: 675: 646: 615: 593: 571: 549: 461: 427: 270: 243: 216: 98:Outside the field of polarography, Harvey's book 928:Ellison, Stephen L.; Thompson, Michael (2008). 164:Matrix effects occur even with methods such as 828:. Berlin, Germany: SpringerVerlag. p. 51. 978: 63:Single standard addition used in polarography 8: 985: 971: 963: 83:, meaning "standard addition" in English. 693: 692: 690: 667: 661: 633: 632: 630: 608: 586: 564: 526: 510: 494: 486: 478: 473: 453: 447: 413: 398: 397: 388: 380: 371: 360: 349: 348: 345: 332: 330: 322: 314: 307: 301: 292: 286: 262: 256: 235: 229: 208: 202: 826:Chemische Analysen mit dem Polarographen 685:average concentration of the standards, 154: 73:Chemische Analysen mit dem Polargraphen, 744: 1237:Analytical and Bioanalytical Chemistry 930:"Standard additions: myth and reality" 625:average measurement of the standards, 1025:High-performance liquid chromatograph 442:standard deviation of the residuals, 7: 1277: 859: 857: 855: 839: 837: 835: 794: 792: 752: 750: 748: 1301: 801:Principles of Instrumental Analysis 25: 656:concentrations of the standards, 581:y-intercept of the linear curve, 1300: 1288: 1276: 1265: 1264: 1010:Atomic absorption spectrometer 698: 638: 522: 487: 410: 403: 381: 354: 323: 315: 142:atomic absorption spectroscopy 112:atomic absorption spectroscopy 27:Method in analytical chemistry 1: 763:Journal of Chemical Education 75:Hohn referred this method as 866:Introduction to Spectroscopy 119:atomic emission spectroscopy 1015:Flame emission spectrometer 844:Harvey, Charles E. (1950). 1350: 846:Spectrochemical Procedures 707:{\displaystyle {\bar {x}}} 647:{\displaystyle {\bar {y}}} 100:Spectrochemical Procedures 1260: 1091:Ion mobility spectrometry 1081:Electroanalytical methods 907:10.1177/00045632211054745 18:Standard addition method 1251:Analytical Biochemistry 1040:Melting point apparatus 1230:Analytica Chimica Acta 757:Bader, Morris (1980). 708: 677: 648: 617: 595: 573: 551: 463: 429: 272: 245: 218: 176:is calculated through 161: 34:method, often used in 1334:Laboratory techniques 1122:Coning and quartering 1030:Infrared spectrometer 709: 678: 676:{\displaystyle x_{i}} 649: 618: 603:number of standards, 596: 574: 552: 464: 462:{\displaystyle s_{y}} 430: 273: 271:{\displaystyle s_{x}} 246: 244:{\displaystyle s_{x}} 219: 217:{\displaystyle s_{x}} 158: 1329:Analytical chemistry 1244:Analytical Chemistry 1086:Gravimetric analysis 1050:Optical spectrometer 994:Analytical chemistry 689: 660: 629: 607: 585: 563: 472: 446: 285: 255: 228: 201: 36:analytical chemistry 824:Hohn, Hans (1937). 166:plasma spectrometry 148:with a pure silver 1157:Separation process 1152:Sample preparation 704: 673: 644: 613: 591: 569: 547: 459: 425: 268: 241: 214: 162: 126:standard additions 1316: 1315: 1198:Standard addition 1193:Internal standard 1183:Calibration curve 1096:Mass spectrometry 1055:Spectrophotometer 1035:Mass spectrometer 1020:Gas chromatograph 810:978-1-305-57721-3 775:10.1021/ed057p703 734:Internal standard 701: 641: 616:{\displaystyle n} 594:{\displaystyle b} 572:{\displaystyle m} 545: 544: 423: 421: 406: 357: 340: 328: 150:aqueous solutions 138:photographic film 44:calibration curve 32:Standard addition 16:(Redirected from 1341: 1304: 1303: 1292: 1280: 1279: 1268: 1267: 1203:Isotope dilution 987: 980: 973: 964: 958: 957: 946:10.1039/b717660k 925: 919: 918: 895:Ann Clin Biochem 886: 880: 879: 861: 850: 849: 841: 830: 829: 821: 815: 814: 796: 787: 786: 754: 729:Isotope dilution 713: 711: 710: 705: 703: 702: 694: 682: 680: 679: 674: 672: 671: 653: 651: 650: 645: 643: 642: 634: 622: 620: 619: 614: 600: 598: 597: 592: 578: 576: 575: 570: 556: 554: 553: 548: 546: 543: 532: 531: 530: 525: 515: 514: 499: 498: 480: 479: 468: 466: 465: 460: 458: 457: 434: 432: 431: 426: 424: 422: 420: 419: 418: 417: 408: 407: 399: 393: 392: 376: 375: 365: 364: 359: 358: 350: 346: 341: 333: 331: 329: 327: 326: 318: 312: 311: 302: 297: 296: 277: 275: 274: 269: 267: 266: 250: 248: 247: 242: 240: 239: 223: 221: 220: 215: 213: 212: 21: 1349: 1348: 1344: 1343: 1342: 1340: 1339: 1338: 1319: 1318: 1317: 1312: 1256: 1207: 1166: 1110: 1059: 1002:Instrumentation 996: 991: 961: 927: 926: 922: 888: 887: 883: 876: 863: 862: 853: 843: 842: 833: 823: 822: 818: 811: 798: 797: 790: 756: 755: 746: 742: 720: 687: 686: 663: 658: 657: 627: 626: 605: 604: 583: 582: 561: 560: 533: 506: 490: 485: 481: 470: 469: 449: 444: 443: 409: 384: 367: 366: 347: 313: 303: 288: 283: 282: 258: 253: 252: 231: 226: 225: 204: 199: 198: 187: 174:regression line 134: 96: 65: 53: 28: 23: 22: 15: 12: 11: 5: 1347: 1345: 1337: 1336: 1331: 1321: 1320: 1314: 1313: 1311: 1310: 1298: 1286: 1274: 1261: 1258: 1257: 1255: 1254: 1247: 1240: 1233: 1226: 1218: 1216: 1209: 1208: 1206: 1205: 1200: 1195: 1190: 1185: 1180: 1174: 1172: 1168: 1167: 1165: 1164: 1159: 1154: 1149: 1144: 1139: 1134: 1129: 1124: 1118: 1116: 1112: 1111: 1109: 1108: 1103: 1098: 1093: 1088: 1083: 1078: 1076:Chromatography 1073: 1067: 1065: 1061: 1060: 1058: 1057: 1052: 1047: 1042: 1037: 1032: 1027: 1022: 1017: 1012: 1006: 1004: 998: 997: 992: 990: 989: 982: 975: 967: 960: 959: 920: 901:(3): 166–170. 881: 874: 851: 831: 816: 809: 788: 743: 741: 738: 737: 736: 731: 726: 724:Standard curve 719: 716: 715: 714: 700: 697: 683: 670: 666: 654: 640: 637: 623: 612: 601: 590: 579: 568: 557: 542: 539: 536: 529: 524: 521: 518: 513: 509: 505: 502: 497: 493: 489: 484: 477: 456: 452: 436: 435: 416: 412: 405: 402: 396: 391: 387: 383: 379: 374: 370: 363: 356: 353: 344: 339: 336: 325: 321: 317: 310: 306: 300: 295: 291: 265: 261: 238: 234: 211: 207: 186: 183: 133: 130: 95: 92: 81:Standardzugabe 64: 61: 52: 49: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1346: 1335: 1332: 1330: 1327: 1326: 1324: 1309: 1308: 1299: 1297: 1296: 1291: 1287: 1285: 1284: 1275: 1273: 1272: 1263: 1262: 1259: 1253: 1252: 1248: 1246: 1245: 1241: 1239: 1238: 1234: 1232: 1231: 1227: 1225: 1224: 1220: 1219: 1217: 1215: 1210: 1204: 1201: 1199: 1196: 1194: 1191: 1189: 1188:Matrix effect 1186: 1184: 1181: 1179: 1176: 1175: 1173: 1169: 1163: 1160: 1158: 1155: 1153: 1150: 1148: 1147:Pulverization 1145: 1143: 1140: 1138: 1135: 1133: 1130: 1128: 1125: 1123: 1120: 1119: 1117: 1113: 1107: 1104: 1102: 1099: 1097: 1094: 1092: 1089: 1087: 1084: 1082: 1079: 1077: 1074: 1072: 1069: 1068: 1066: 1062: 1056: 1053: 1051: 1048: 1046: 1043: 1041: 1038: 1036: 1033: 1031: 1028: 1026: 1023: 1021: 1018: 1016: 1013: 1011: 1008: 1007: 1005: 1003: 999: 995: 988: 983: 981: 976: 974: 969: 968: 965: 955: 951: 947: 943: 939: 935: 931: 924: 921: 916: 912: 908: 904: 900: 896: 892: 885: 882: 877: 875:0-203-99730-1 871: 867: 860: 858: 856: 852: 847: 840: 838: 836: 832: 827: 820: 817: 812: 806: 802: 795: 793: 789: 784: 780: 776: 772: 768: 764: 760: 753: 751: 749: 745: 739: 735: 732: 730: 727: 725: 722: 721: 717: 695: 684: 668: 664: 655: 635: 624: 610: 602: 588: 580: 566: 558: 540: 537: 534: 527: 519: 516: 511: 507: 503: 500: 495: 491: 482: 475: 454: 450: 441: 440: 439: 414: 400: 394: 389: 385: 377: 372: 368: 361: 351: 342: 337: 334: 319: 308: 304: 298: 293: 289: 281: 280: 279: 278:is given by 263: 259: 236: 232: 209: 205: 195: 192: 191:translational 184: 182: 179: 178:least squares 175: 169: 167: 157: 153: 151: 147: 143: 139: 131: 129: 127: 122: 120: 115: 113: 108: 104: 101: 93: 91: 88: 84: 82: 78: 74: 70: 62: 60: 58: 50: 48: 45: 41: 40:matrix effect 37: 33: 19: 1305: 1293: 1281: 1269: 1249: 1242: 1235: 1228: 1221: 1214:publications 1197: 1178:Chemometrics 1162:Sub-sampling 1101:Spectroscopy 940:(8): 992–7. 937: 933: 923: 898: 894: 884: 865: 845: 825: 819: 800: 766: 762: 437: 196: 190: 188: 170: 163: 146:spectrometer 135: 125: 123: 116: 109: 105: 99: 97: 89: 85: 80: 76: 72: 69:polarography 66: 56: 54: 31: 29: 1307:WikiProject 1171:Calibration 1132:Dissolution 1071:Calorimetry 934:The Analyst 769:(10): 703. 77:Eizhusatzes 67:In classic 1323:Categories 1212:Prominent 1137:Filtration 1064:Techniques 1045:Microscope 740:References 51:Variations 1106:Titration 783:0021-9584 699:¯ 639:¯ 538:− 517:− 501:− 483:∑ 404:¯ 395:− 378:∑ 355:¯ 1271:Category 1127:Dilution 1115:Sampling 954:18645637 915:34719967 718:See also 224:. Lower 1283:Commons 1223:Analyst 1142:Masking 132:Example 57:spiking 1295:Portal 952:  913:  872:  807:  781:  185:Error 950:PMID 911:PMID 870:ISBN 805:ISBN 779:ISSN 30:The 942:doi 938:133 903:doi 771:doi 140:by 117:In 1325:: 948:. 936:. 932:. 909:. 899:59 897:. 893:. 854:^ 834:^ 791:^ 777:. 767:57 765:. 761:. 747:^ 128:. 986:e 979:t 972:v 956:. 944:: 917:. 905:: 878:. 813:. 785:. 773:: 696:x 669:i 665:x 636:y 611:n 589:b 567:m 541:2 535:n 528:2 523:) 520:b 512:i 508:x 504:m 496:i 492:y 488:( 476:= 455:y 451:s 415:2 411:) 401:x 390:i 386:x 382:( 373:2 369:m 362:2 352:y 343:+ 338:n 335:1 324:| 320:m 316:| 309:y 305:s 299:= 294:x 290:s 264:x 260:s 237:x 233:s 210:x 206:s 20:)

Index

Standard addition method
analytical chemistry
matrix effect
calibration curve
polarography
atomic absorption spectroscopy
atomic emission spectroscopy
photographic film
atomic absorption spectroscopy
spectrometer
aqueous solutions

plasma spectrometry
regression line
least squares
Standard curve
Isotope dilution
Internal standard



"A systematic approach to standard addition methods in instrumental analysis"
doi
10.1021/ed057p703
ISSN
0021-9584


ISBN
978-1-305-57721-3

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.