Knowledge (XXG)

Superstripes

Source 📝

229:. The spin–orbit coupling is achieved by selecting 2 spin states from the manifold of hyperfine states to couple with a two photon process. For weak coupling, the resulting Hamiltonian has a spectrum with a double degenerate ground state in the first band. In this regime, the single particle dispersion relation can host a BEC in each minima. The result is that the BEC has 2 momentum components which can interfere in real space. The interference pattern will appear as fringes in the density of the BEC. The periodicity of the fringes is a result of the Raman coupling beam wavelength modified by the coupling strength and by interactions within the BEC. Spin orbit coupling breaks the gauge symmetry of the system and the time reversal symmetry. The formation of the stripes breaks a continuous translational symmetry. 213: 105:
experimental investigation on local lattice fluctuations have driven the community to the conclusion that it is a problem of quantum physics in complex matter. A growing paradigm for high-temperature superconductivity in superstripes is that a key term is the quantum interference effect between pairing channels, i.e., a resonance in the exchange-like, Josephson-like pair transfer term between different condensates. The quantum configuration interaction between different pairing channels is a particular case of
138: 235:
In 2017, two research groups from ETH Zurich and from MIT reported on the first creation of a supersolid with ultracold quantum gases. The MIT group exposed a Bose-Einstein condensate in a double-well potential to light beams that created an effective spin-orbit coupling. The interference between the
57:
The superstripes show multigap superconductivity near a 2.5 Lifshitz transition where the renormalization of chemical potential at the metal-to-superconductor transition is not negligeable and the self-consistent solution of the gaps equation is required. The superstripes lattice scenario is made of
82:
Superconductivity" held in Rome to describe the particular phase of matter where a broken symmetry appearing at a transition from a phase with higher dimensionality N (3D or 2D) to a phase with lower dimensionality N-1 (2D or 1D) favors the superconducting or superfluid phase and it could increase
177:
In these materials the joint effect of (a) increasing the lattice misfit strain to a critical value, and (b) tuning the chemical potential near a Lifshitz transition in presence of electron-electron interactions induce a lattice instability with formation of the network of superconducting striped
104:
transition temperatures is rightly considered to be one of the most difficult problems in theoretical physics. The problem remained elusive for many years since these materials have generally a very complex structure making unuseful theoretical modelling for a homogeneous system. The advances in
113:
in atomic and nuclear physics. The critical temperature shows a suppression, due to a Fano antiresonance, when the chemical potential is tuned at a band edge where a new Fermi surface spot appears i.e., an "electronic topological transition" (ETT) or 2.5 Lifshitz transition or, a metal-to-metal
216:
Dispersion relations of a spin–orbit coupled system for different coupling strengths. Box A has no coupling. The dispersion relation shows 2 shifted free space dispersion relations. Box B shows how the gap at k=0 opens for weak coupling. Box C shows the strong coupling limit where the double
91:
was introduced to make the key difference with the stripes scenario where the phase transition from a phase with higher dimensionality N (like a 2D electron gas) to the phase with broken symmetry and lower dimensionality (like a quasi 1D striped fluid) competes and suppresses the transition
128:
can be obtained by changing: the charge density and/or the superlattice structural parameters, and/or the superlattice misfit strain and/or the disorder. Direct evidence for shape resonances in superstripes matter is provided by the anomalous variation of the isotope effect on the critical
123:
is further amplified at the shape resonance if in this range the Fermi surface of the appearing fermi surface spot changes its dimensionality (for example the Lifshitz transition for opening a neck in a tubular Fermi surface). The tuning of the chemical potential at the
1147:
Caivano, R.; Fratini, M.; Poccia, N.; Ricci, A.; Puri, A.; Ren, Z. A.; Dong, X. L.; Yang, J.; Lu, W.; Zhao, Z. X.; Barba, L.; Bianconi, A. (2009). "Feshbach resonance and mesoscopic phase separation near a quantum critical point in multiband Fe
1532:
Li, Jun-Ru; Lee, Jeongwon; Huang, Wujie; Burchesky, Sean; Shteynas, Boris; Top, Furkan Çağrı; Jamison, Alan O.; Ketterle, Wolfgang (1 March 2017). "A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates".
157:
It was known that the high-temperature cuprate superconductors have a complex lattice structure. In 1993 it was proposed that these materials belong to a particular class of materials called heterostructures at atomic limit made of a
169:
All new high-temperature superconducting materials discovered in the years 2001–2013 are heterostructures at atomic limit made of the active atomic layers: honeycomb boron layer in diborides, graphene in intercalated graphite,
437:
Innocenti, D.; Poccia, N.; Ricci, A.; Valletta, A.; Caprara, S.; Perali, A.; Bianconi, A. (2010). "Resonant and crossover phenomena in a multiband superconductor: Tuning the chemical potential near a band edge".
92:
temperature to the superfluid phase and favors modulated striped magnetic ordering. In the broken symmetry of superstripes phase the structural modulation coexists and favors high-temperature superconductivity.
118:
amplification is switched on when the chemical potential is tuned above the band edge in an energy region away from the band edge of the order of 1 or 2 times the energy cut off of the pairing interaction. The
491:
Perali, A.; Innocenti, D.; Valletta, A.; Bianconi, A. (2012). "Anomalous isotope effect near a 2.5 Lifshitz transition in a multi-band multi-condensate superconductor made of a superlattice of stripes".
181:
This complex scenario has been called "superstripes scenario" where the 2D atomic layers show functional lattice inhomogeneities: "ripples puddles" of local lattice distortion have been observed in La
1317:
Poccia, N.; Fratini, M.; Ricci, A.; Campi, G.; Barba, L.; Vittorini-Orgeas, A.; Bianconi, G.; Aeppli, G.; Bianconi, A. (2011). "Evolution and control of oxygen order in a cuprate superconductor".
1205:
Ricci, A.; Poccia, N.; Campi, G.; Joseph, B.; Arrighetti, G.; Barba, L.; Reynolds, M.; Burghammer, M.; Takeya, H.; Mizuguchi, Y.; Takano, Y.; Colapietro, M.; Saini, N. L.; Bianconi, A. (2011).
42:
have been found to favor superconductivity. Before a broken spatial symmetry was expected to compete and suppress the superconducting order. The driving mechanism for the amplification of the
928:
Poccia, N.; Ricci, A.; Campi, G.; Fratini, M.; Puri, A.; Gioacchino, D. D.; Marcelli, A.; Reynolds, M.; Burghammer, M.; Saini, N. L.; Aeppli, G.; Bianconi, A. (2012).
1963: 345:
Perali, A.; Bianconi, A.; Lanzara, A.; Saini, N. L. (1996). "The gap amplification at a shape resonance in a superlattice of quantum stripes: A mechanism for high T
1696: 1633: 678:
Raveau, B. (2007). "The perovskite history: More than 60 years of research from the discovery of ferroelectricity to colossal magnetoresistance via high T
232:
Recent efforts have attempted to observe the stripe phase in a Rubidium-87 BEC, however the stripes were too small and too low contrast to be detected.
1445:
Li, Yun; Pitaevskii, Lev P.; Stringari, Sandro (2012). "Quantum Tricriticality and Phase Transitions in Spin-Orbit Coupled Bose-Einstein Condensates".
2086: 58:
puddles of multigap superstripes matter forming a superconducting network where different gaps are not only different in different portions of the
236:
atoms on the two spin-orbit coupled lattice sites gave rise to a density modulation that establishes a stripe phase with supersolid properties.
809: 662: 321: 1671: 825:
Bianconi, A. (1994). "On the possibility of new high Tc superconductors by producing metal heterostructures as in the cuprate perovskites".
2055: 1793: 545:
Hosono, H.; Tanabe, K.; Takayama-Muromachi, E.; Kageyama, H.; Yamanaka, S.; Kumakura, H.; Nohara, M.; Hiramatsu, H.; Fujitsu, S. (2015).
1903: 101: 84: 1991: 784: 759: 629: 197:
and in YBaCuO The network of superconducting striped puddles has been found also in MFeAs pnictides and recently in KFeSe selenides
547:"Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides" 1712: 174:
atomic bbc monolayers in cobaltates, FeAs atomic fluorite monolayers in pnictides, FeSe atomic fluorite monolayers in selenides.
1908: 1626: 110: 1691: 1661: 2032: 1884: 1828: 1803: 1597: 402:
Bianconi, A.; Valletta, A.; Perali, A.; Saini, N. L. (1998). "Superconductivity of a striped phase at the atomic limit".
222: 1934: 1863: 1879: 1798: 1666: 1602: 879: 1986: 1981: 1619: 1078:
Campi, G.; Ricci, A.; Poccia, N.; Barba, L.; Arrighetti, G.; Burghammer, M.; Caporale, A. S.; Bianconi, A. (2013).
1686: 1939: 163: 1722: 1773: 226: 212: 2091: 2065: 1924: 1856: 1976: 1949: 1929: 1851: 1846: 1506: 2050: 189:
in Bi222; striped puddles of ordered dopants in the spacer layers have been seen in superoxygenated La
39: 2006: 1552: 1464: 1400: 1336: 1291: 1240: 1171: 1113: 1036: 959: 902: 844: 722: 568: 511: 457: 411: 368: 264: 1080:"Scanning micro-x-ray diffraction unveils the distribution of oxygen chain nanoscale puddles in YBa 35: 2037: 1788: 1748: 1576: 1542: 1488: 1454: 1424: 1390: 1360: 1326: 1256: 1230: 1187: 1161: 1129: 1103: 1060: 1026: 949: 860: 834: 558: 527: 501: 473: 447: 384: 358: 327: 299: 201: 63: 1005:
Fratini, M.; Poccia, N.; Ricci, A.; Campi, G.; Burghammer, M.; Aeppli, G.; Bianconi, A. (2010).
1813: 1642: 1568: 1480: 1416: 1352: 1052: 987: 805: 780: 755: 658: 625: 594: 317: 291: 43: 2022: 1996: 1768: 1743: 1676: 1560: 1472: 1408: 1344: 1299: 1248: 1179: 1121: 1044: 977: 967: 910: 852: 730: 691: 650: 617: 584: 576: 519: 465: 419: 376: 309: 272: 59: 2045: 62:
but also in different portions of the real space with a complex scale free distribution of
1778: 695: 125: 106: 47: 31: 23: 1381:
Galitski, Victor; Spielman, Ian B. (2013-02-07). "Spin-orbit coupling in quantum gases".
735: 710: 645:
MĂŒller, K. A. (2005). "Essential Heterogeneities in Hole-Doped Cuprate Superconductors".
523: 1556: 1468: 1404: 1340: 1295: 1244: 1183: 1175: 1117: 1040: 963: 906: 848: 726: 580: 572: 515: 461: 415: 372: 268: 1783: 1727: 1717: 1681: 982: 929: 589: 546: 51: 1303: 423: 2080: 1275: 1260: 1206: 1133: 1079: 864: 856: 531: 477: 380: 331: 1492: 1364: 1191: 1006: 388: 83:
the normal to superconducting transition temperature with the possible emergence of
22:
is a generic name for a phase with spatial broken symmetry that favors the onset of
1808: 1763: 1758: 1580: 1476: 1064: 159: 1428: 1944: 1753: 137: 30:
quantum order. This scenario emerged in the 1990s when non-homogeneous metallic
1252: 1125: 469: 1656: 1607: 914: 276: 27: 313: 78:
was introduced in 2000 at the international conference on "Stripes and High T
972: 621: 296:
Phase Transitions and Self-Organization in Electronic and Molecular Networks
217:
degenerate minima in the first band merge into a single ground state at k=0.
1572: 1484: 1420: 1356: 1056: 991: 598: 16:
Broken symmetry phase favoring onset of superconducting or superfluid order
1280:
lattice: The second variable for the phase diagram of cuprate perovskites"
1971: 1564: 1412: 1048: 46:
critical temperature in superstripes matter has been proposed to be the
1348: 1207:"Nanoscale phase separation in the iron chalcogenide superconductor K 1611: 654: 1547: 616:. Selected Topics in Superconductivity. Vol. 8. pp. 1–8. 563: 2027: 2001: 1459: 1395: 1331: 1235: 1166: 1108: 1031: 954: 839: 506: 452: 363: 304: 211: 136: 1007:"Scale-free structural organization of oxygen interstitials in La 141:
Crystal structure of the tetragonal (superconductive) phase of La
2060: 1274:
Agrestini, S.; Saini, N. L.; Bianconi, G.; Bianconi, A. (2003).
1615: 777:
Symmetry and heterogeneity in high temperature superconductors
649:. Vol. 114. Berlin/Heidelberg: Springer. pp. 1–11. 647:
Superconductivity in Complex Systems Structure and Bonding
612:
MĂŒller, K. A. (2002). "From Phase Separation to Stripes".
200:
Self-organization of lattice defects can be controlled by
930:"Optimum inhomogeneity of local lattice distortions in La 221:
Superstripes (also called stripe phase) can also form in
711:"HTC oxides: A collusion of spin, charge and lattice" 878:
Di Castro, D.; Colapietro, M.; Bianconi, G. (2000).
2015: 1962: 1917: 1893: 1872: 1836: 1827: 1736: 1705: 1649: 1219:
as seen via scanning nanofocused x-ray diffraction"
50:in the energy gap parameters ∆n that is a type of 178:puddles in an insulating or metallic background. 166:by a different material with the role of spacer. 942:Proceedings of the National Academy of Sciences 754:. New York: Kluwer Academic/Plenum Publishers. 298:. Fundamental Materials Research. p. 375. 250: 248: 1284:Journal of Physics A: Mathematical and General 129:temperature by tuning the chemical potential. 1627: 8: 551:Science and Technology of Advanced Materials 1507:"MIT researchers create new form of matter" 290:Bianconi, A.; Di Castro, D.; Saini, N. L.; 1833: 1634: 1620: 1612: 1546: 1458: 1394: 1330: 1234: 1165: 1107: 1030: 981: 971: 953: 895:International Journal of Modern Physics B 838: 734: 588: 562: 505: 451: 362: 303: 257:International Journal of Modern Physics B 244: 1440: 1438: 1376: 1374: 1154:Superconductor Science and Technology 779:. Dordrecht Great Britain: Springer. 715:Journal of Physics: Conference Series 696:10.1016/j.progsolidstchem.2007.04.001 494:Superconductor Science and Technology 255:Bianconi, A. (2000). "Superstripes". 7: 880:"Metallic stripes in oxygen doped La 802:Superconductivity in complex systems 102:high-temperature superconductivity 85:high-temperature superconductivity 14: 684:Progress in Solid State Chemistry 162:of superconducting atomic layers 2087:High-temperature superconductors 96:Heterostructures at atomic limit 1477:10.1103/physrevlett.108.225301 736:10.1088/1742-6596/108/1/012027 524:10.1088/0953-2048/25/12/124002 149:: top view (top-right) and CuO 1: 1184:10.1088/0953-2048/22/1/014004 804:. Berlin New York: Springer. 752:Stripes and related phenomena 614:Stripes and Related Phenomena 581:10.1088/1468-6996/16/3/033503 424:10.1016/S0921-4534(97)01825-X 114:topological transition. The T 857:10.1016/0038-1098(94)90354-9 404:Physica C: Superconductivity 381:10.1016/0038-1098(96)00373-0 204:. and photoinduced effects. 54:for coexisting condensates. 1304:10.1088/0305-4470/36/35/302 2108: 1964:Technological applications 1253:10.1103/physrevb.84.060511 1126:10.1103/physrevb.87.014517 827:Solid State Communications 470:10.1103/physrevb.82.184528 351:Solid State Communications 153:octahedron (bottom-right). 109:belonging to the group of 1706:Characteristic parameters 1152:-based superconductors". 915:10.1142/S0217979200003927 277:10.1142/S0217979200003769 223:Bose–Einstein condensates 208:Bose–Einstein condensates 1723:London penetration depth 314:10.1007/0-306-47113-2_24 294:(2002). "Superstripes". 111:Fano Feshbach resonances 2016:List of superconductors 1894:By critical temperature 1447:Physical Review Letters 973:10.1073/pnas.1208492109 622:10.1007/0-306-47100-0_1 1606:Superstripes web page 800:MĂŒller, K. A. (2005). 709:Bishop, A. R. (2008). 218: 154: 1662:Bean's critical state 215: 140: 89:superstripes scenario 1837:By magnetic response 775:Bianconi, A (2006). 750:Bianconi, A (2000). 682:superconductivity". 263:(29n31): 3289–3297. 1789:persistent currents 1774:Little–Parks effect 1565:10.1038/nature21431 1557:2017Natur.543...91L 1469:2012PhRvL.108v5301L 1413:10.1038/nature11841 1405:2013Natur.494...49G 1341:2011NatMa..10..733P 1296:2003JPhA...36.9133A 1245:2011PhRvB..84f0511R 1176:2009SuScT..22a4004C 1118:2013PhRvB..87a4517C 1049:10.1038/nature09260 1041:2010Natur.466..841F 964:2012PNAS..10915685P 948:(39): 15685–15690. 907:2000IJMPB..14.3438D 849:1994SSCom..89..933B 727:2008JPhCS.108a2027B 573:2015STAdM..16c3503H 516:2012SuScT..25l4002P 462:2010PhRvB..82r4528I 416:1998PhyC..296..269B 373:1996SSCom.100..181P 269:2000IJMPB..14.3289B 227:spin–orbit coupling 64:Josephson junctions 1749:Andreev reflection 1744:Abrikosov vortices 1601:Superstripes 2010 1596:Superstripes 2008 1276:"The strain of CuO 219: 202:strain engineering 155: 100:The prediction of 2074: 2073: 1992:quantum computing 1958: 1957: 1814:superdiamagnetism 1643:Superconductivity 1223:Physical Review B 1096:Physical Review B 811:978-3-540-23124-0 664:978-3-540-31499-8 440:Physical Review B 323:978-0-306-46568-0 44:superconductivity 2099: 2023:bilayer graphene 1997:Rutherford cable 1909:room temperature 1904:high temperature 1834: 1794:proximity effect 1769:Josephson effect 1713:coherence length 1636: 1629: 1622: 1613: 1585: 1584: 1550: 1529: 1523: 1522: 1520: 1518: 1503: 1497: 1496: 1462: 1442: 1433: 1432: 1398: 1378: 1369: 1368: 1349:10.1038/nmat3088 1334: 1319:Nature Materials 1314: 1308: 1307: 1271: 1265: 1264: 1238: 1202: 1196: 1195: 1169: 1144: 1138: 1137: 1111: 1075: 1069: 1068: 1034: 1002: 996: 995: 985: 975: 957: 925: 919: 918: 892: 875: 869: 868: 842: 822: 816: 815: 797: 791: 790: 772: 766: 765: 747: 741: 740: 738: 706: 700: 699: 690:(2–4): 171–173. 675: 669: 668: 642: 636: 635: 609: 603: 602: 592: 566: 542: 536: 535: 509: 488: 482: 481: 455: 434: 428: 427: 399: 393: 392: 366: 342: 336: 335: 307: 287: 281: 280: 252: 40:spatial symmetry 32:heterostructures 2107: 2106: 2102: 2101: 2100: 2098: 2097: 2096: 2077: 2076: 2075: 2070: 2041: 2011: 1954: 1913: 1900:low temperature 1889: 1868: 1823: 1779:Meissner effect 1732: 1728:Silsbee current 1701: 1667:Ginzburg–Landau 1645: 1640: 1593: 1588: 1541:(7643): 91–94. 1531: 1530: 1526: 1516: 1514: 1505: 1504: 1500: 1444: 1443: 1436: 1389:(7435): 49–54. 1380: 1379: 1372: 1316: 1315: 1311: 1279: 1273: 1272: 1268: 1218: 1214: 1210: 1204: 1203: 1199: 1146: 1145: 1141: 1091: 1087: 1083: 1077: 1076: 1072: 1025:(7308): 841–4. 1014: 1010: 1004: 1003: 999: 937: 933: 927: 926: 922: 901:(29n31): 3438. 890: 887: 883: 877: 876: 872: 833:(11): 933–936. 824: 823: 819: 812: 799: 798: 794: 787: 774: 773: 769: 762: 749: 748: 744: 708: 707: 703: 681: 677: 676: 672: 665: 655:10.1007/b101015 644: 643: 639: 632: 611: 610: 606: 544: 543: 539: 490: 489: 485: 436: 435: 431: 401: 400: 396: 348: 344: 343: 339: 324: 289: 288: 284: 254: 253: 246: 242: 210: 196: 192: 188: 184: 173: 152: 148: 144: 135: 126:shape resonance 122: 117: 107:shape resonance 98: 81: 72: 48:shape resonance 24:superconducting 17: 12: 11: 5: 2105: 2103: 2095: 2094: 2092:Quantum phases 2089: 2079: 2078: 2072: 2071: 2069: 2068: 2063: 2058: 2053: 2048: 2043: 2039: 2035: 2030: 2025: 2019: 2017: 2013: 2012: 2010: 2009: 2004: 1999: 1994: 1989: 1984: 1979: 1977:electromagnets 1974: 1968: 1966: 1960: 1959: 1956: 1955: 1953: 1952: 1947: 1942: 1937: 1932: 1927: 1921: 1919: 1918:By composition 1915: 1914: 1912: 1911: 1906: 1901: 1897: 1895: 1891: 1890: 1888: 1887: 1885:unconventional 1882: 1876: 1874: 1873:By explanation 1870: 1869: 1867: 1866: 1861: 1860: 1859: 1854: 1849: 1840: 1838: 1831: 1829:Classification 1825: 1824: 1822: 1821: 1816: 1811: 1806: 1801: 1796: 1791: 1786: 1781: 1776: 1771: 1766: 1761: 1756: 1751: 1746: 1740: 1738: 1734: 1733: 1731: 1730: 1725: 1720: 1718:critical field 1715: 1709: 1707: 1703: 1702: 1700: 1699: 1694: 1689: 1687:Mattis–Bardeen 1684: 1679: 1674: 1672:Kohn–Luttinger 1669: 1664: 1659: 1653: 1651: 1647: 1646: 1641: 1639: 1638: 1631: 1624: 1616: 1610: 1609: 1604: 1599: 1592: 1591:External links 1589: 1587: 1586: 1524: 1513:. 2 March 2017 1498: 1453:(22): 225301. 1434: 1370: 1309: 1277: 1266: 1216: 1212: 1208: 1197: 1139: 1089: 1085: 1081: 1070: 1012: 1008: 997: 935: 931: 920: 885: 881: 870: 817: 810: 792: 785: 767: 760: 742: 701: 679: 670: 663: 637: 630: 604: 537: 500:(12): 124002. 483: 446:(18): 184528. 429: 394: 357:(3): 181–186. 346: 337: 322: 282: 243: 241: 238: 209: 206: 194: 190: 186: 182: 171: 150: 146: 142: 134: 131: 120: 115: 97: 94: 79: 71: 68: 52:Fano resonance 38:with a broken 15: 13: 10: 9: 6: 4: 3: 2: 2104: 2093: 2090: 2088: 2085: 2084: 2082: 2067: 2064: 2062: 2059: 2057: 2054: 2052: 2049: 2047: 2044: 2042: 2036: 2034: 2031: 2029: 2026: 2024: 2021: 2020: 2018: 2014: 2008: 2005: 2003: 2000: 1998: 1995: 1993: 1990: 1988: 1985: 1983: 1980: 1978: 1975: 1973: 1970: 1969: 1967: 1965: 1961: 1951: 1948: 1946: 1943: 1941: 1938: 1936: 1935:heavy fermion 1933: 1931: 1928: 1926: 1923: 1922: 1920: 1916: 1910: 1907: 1905: 1902: 1899: 1898: 1896: 1892: 1886: 1883: 1881: 1878: 1877: 1875: 1871: 1865: 1864:ferromagnetic 1862: 1858: 1855: 1853: 1850: 1848: 1845: 1844: 1842: 1841: 1839: 1835: 1832: 1830: 1826: 1820: 1817: 1815: 1812: 1810: 1809:supercurrents 1807: 1805: 1802: 1800: 1797: 1795: 1792: 1790: 1787: 1785: 1782: 1780: 1777: 1775: 1772: 1770: 1767: 1765: 1762: 1760: 1757: 1755: 1752: 1750: 1747: 1745: 1742: 1741: 1739: 1735: 1729: 1726: 1724: 1721: 1719: 1716: 1714: 1711: 1710: 1708: 1704: 1698: 1695: 1693: 1690: 1688: 1685: 1683: 1680: 1678: 1675: 1673: 1670: 1668: 1665: 1663: 1660: 1658: 1655: 1654: 1652: 1648: 1644: 1637: 1632: 1630: 1625: 1623: 1618: 1617: 1614: 1608: 1605: 1603: 1600: 1598: 1595: 1594: 1590: 1582: 1578: 1574: 1570: 1566: 1562: 1558: 1554: 1549: 1544: 1540: 1536: 1528: 1525: 1512: 1508: 1502: 1499: 1494: 1490: 1486: 1482: 1478: 1474: 1470: 1466: 1461: 1456: 1452: 1448: 1441: 1439: 1435: 1430: 1426: 1422: 1418: 1414: 1410: 1406: 1402: 1397: 1392: 1388: 1384: 1377: 1375: 1371: 1366: 1362: 1358: 1354: 1350: 1346: 1342: 1338: 1333: 1328: 1325:(10): 733–6. 1324: 1320: 1313: 1310: 1305: 1301: 1297: 1293: 1289: 1285: 1281: 1270: 1267: 1262: 1258: 1254: 1250: 1246: 1242: 1237: 1232: 1229:(6): 060511. 1228: 1224: 1220: 1201: 1198: 1193: 1189: 1185: 1181: 1177: 1173: 1168: 1163: 1160:(1): 014004. 1159: 1155: 1151: 1143: 1140: 1135: 1131: 1127: 1123: 1119: 1115: 1110: 1105: 1102:(1): 014517. 1101: 1097: 1093: 1074: 1071: 1066: 1062: 1058: 1054: 1050: 1046: 1042: 1038: 1033: 1028: 1024: 1020: 1016: 1001: 998: 993: 989: 984: 979: 974: 969: 965: 961: 956: 951: 947: 943: 939: 924: 921: 916: 912: 908: 904: 900: 896: 889: 874: 871: 866: 862: 858: 854: 850: 846: 841: 836: 832: 828: 821: 818: 813: 807: 803: 796: 793: 788: 786:9781402039881 782: 778: 771: 768: 763: 761:0-306-46419-5 757: 753: 746: 743: 737: 732: 728: 724: 721:(1): 012027. 720: 716: 712: 705: 702: 697: 693: 689: 685: 674: 671: 666: 660: 656: 652: 648: 641: 638: 633: 631:0-306-46419-5 627: 623: 619: 615: 608: 605: 600: 596: 591: 586: 582: 578: 574: 570: 565: 560: 557:(3): 033503. 556: 552: 548: 541: 538: 533: 529: 525: 521: 517: 513: 508: 503: 499: 495: 487: 484: 479: 475: 471: 467: 463: 459: 454: 449: 445: 441: 433: 430: 425: 421: 417: 413: 409: 405: 398: 395: 390: 386: 382: 378: 374: 370: 365: 360: 356: 352: 341: 338: 333: 329: 325: 319: 315: 311: 306: 301: 297: 293: 286: 283: 278: 274: 270: 266: 262: 258: 251: 249: 245: 239: 237: 233: 230: 228: 224: 214: 207: 205: 203: 198: 179: 175: 167: 165: 161: 139: 132: 130: 127: 112: 108: 103: 95: 93: 90: 86: 77: 69: 67: 65: 61: 55: 53: 49: 45: 41: 37: 33: 29: 25: 21: 1945:oxypnictides 1880:conventional 1819:superstripes 1818: 1764:flux pumping 1759:flux pinning 1754:Cooper pairs 1538: 1534: 1527: 1515:. Retrieved 1511:news.mit.edu 1510: 1501: 1450: 1446: 1386: 1382: 1322: 1318: 1312: 1290:(35): 9133. 1287: 1283: 1269: 1226: 1222: 1200: 1157: 1153: 1149: 1142: 1099: 1095: 1073: 1022: 1018: 1000: 945: 941: 923: 898: 894: 873: 830: 826: 820: 801: 795: 776: 770: 751: 745: 718: 714: 704: 687: 683: 673: 646: 640: 613: 607: 554: 550: 540: 497: 493: 486: 443: 439: 432: 410:(3–4): 269. 407: 403: 397: 354: 350: 340: 295: 292:Bianconi, G. 285: 260: 256: 234: 231: 220: 199: 180: 176: 168: 164:intercalated 160:superlattice 156: 99: 88: 76:superstripes 75: 73: 56: 36:atomic limit 20:Superstripes 19: 18: 1804:SU(2) color 1784:Homes's law 225:(BEC) with 87:. The term 2081:Categories 1940:iron-based 1799:reentrance 1548:1610.08194 564:1505.02240 240:References 28:superfluid 1737:Phenomena 1460:1202.3036 1396:1312.3292 1332:1108.4120 1261:118364960 1236:1107.0412 1167:0809.4865 1134:119233632 1109:1212.2742 1032:1008.2015 955:1208.0101 865:119243248 840:1107.3249 532:118510526 507:1209.1528 478:119232655 453:1007.0510 364:1107.3292 332:118809015 305:1107.4858 133:Materials 74:The term 1972:cryotron 1930:cuprates 1925:covalent 1682:Matthias 1650:Theories 1573:28252062 1493:15680596 1485:23003610 1421:23389539 1365:40563268 1357:21857676 1192:55675041 1057:20703301 992:22961255 599:27877784 389:95957312 2066:more... 1950:organic 1581:4463520 1553:Bibcode 1517:6 March 1465:Bibcode 1401:Bibcode 1337:Bibcode 1292:Bibcode 1241:Bibcode 1172:Bibcode 1114:Bibcode 1065:4405620 1037:Bibcode 983:3465392 960:Bibcode 903:Bibcode 845:Bibcode 723:Bibcode 590:5099821 569:Bibcode 512:Bibcode 458:Bibcode 412:Bibcode 369:Bibcode 265:Bibcode 70:History 60:k-space 34:at the 1843:Types 1677:London 1579:  1571:  1535:Nature 1491:  1483:  1429:240743 1427:  1419:  1383:Nature 1363:  1355:  1259:  1190:  1132:  1063:  1055:  1019:Nature 990:  980:  863:  808:  783:  758:  661:  628:  597:  587:  530:  476:  387:  330:  320:  2056:TBCCO 2028:BSCCO 2007:wires 2002:SQUID 1577:S2CID 1543:arXiv 1489:S2CID 1455:arXiv 1425:S2CID 1391:arXiv 1361:S2CID 1327:arXiv 1257:S2CID 1231:arXiv 1188:S2CID 1162:arXiv 1130:S2CID 1104:arXiv 1061:S2CID 1027:arXiv 950:arXiv 891:(PDF) 861:S2CID 835:arXiv 559:arXiv 528:S2CID 502:arXiv 474:S2CID 448:arXiv 385:S2CID 359:arXiv 328:S2CID 300:arXiv 2061:YBCO 2051:NbTi 2046:NbSn 2033:LBCO 1569:PMID 1519:2017 1481:PMID 1417:PMID 1353:PMID 1090:6.33 1053:PMID 988:PMID 806:ISBN 781:ISBN 756:ISBN 659:ISBN 626:ISBN 595:PMID 318:ISBN 2038:MgB 1987:NMR 1982:MRI 1857:1.5 1697:WHH 1692:RVB 1657:BCS 1561:doi 1539:543 1473:doi 1451:108 1409:doi 1387:494 1345:doi 1300:doi 1249:doi 1213:1.6 1209:0.8 1180:doi 1122:doi 1045:doi 1023:466 1013:4+y 1011:CuO 978:PMC 968:doi 946:109 936:4+y 934:CuO 911:doi 884:CuO 853:doi 731:doi 719:108 692:doi 651:doi 618:doi 585:PMC 577:doi 520:doi 466:doi 420:doi 408:296 377:doi 355:100 349:". 310:doi 273:doi 193:CuO 187:4+y 185:CuO 170:CoO 145:CuO 26:or 2083:: 1852:II 1575:. 1567:. 1559:. 1551:. 1537:. 1509:. 1487:. 1479:. 1471:. 1463:. 1449:. 1437:^ 1423:. 1415:. 1407:. 1399:. 1385:. 1373:^ 1359:. 1351:. 1343:. 1335:. 1323:10 1321:. 1298:. 1288:36 1286:. 1282:. 1255:. 1247:. 1239:. 1227:84 1225:. 1221:. 1215:Se 1211:Fe 1186:. 1178:. 1170:. 1158:22 1156:. 1150:As 1128:. 1120:. 1112:. 1100:87 1098:. 1094:. 1084:Cu 1059:. 1051:. 1043:. 1035:. 1021:. 1017:. 986:. 976:. 966:. 958:. 944:. 940:. 909:. 899:14 897:. 893:. 859:. 851:. 843:. 831:89 829:. 729:. 717:. 713:. 688:35 686:. 657:. 624:. 593:. 583:. 575:. 567:. 555:16 553:. 549:. 526:. 518:. 510:. 498:25 496:. 472:. 464:. 456:. 444:82 442:. 418:. 406:. 383:. 375:. 367:. 353:. 326:. 316:. 308:. 271:. 261:14 259:. 247:^ 66:. 2040:2 1847:I 1635:e 1628:t 1621:v 1583:. 1563:: 1555:: 1545:: 1521:. 1495:. 1475:: 1467:: 1457:: 1431:. 1411:: 1403:: 1393:: 1367:. 1347:: 1339:: 1329:: 1306:. 1302:: 1294:: 1278:2 1263:. 1251:: 1243:: 1233:: 1217:2 1194:. 1182:: 1174:: 1164:: 1136:. 1124:: 1116:: 1106:: 1092:" 1088:O 1086:3 1082:2 1067:. 1047:: 1039:: 1029:: 1015:" 1009:2 994:. 970:: 962:: 952:: 938:" 932:2 917:. 913:: 905:: 888:" 886:4 882:2 867:. 855:: 847:: 837:: 814:. 789:. 764:. 739:. 733:: 725:: 698:. 694:: 680:C 667:. 653:: 634:. 620:: 601:. 579:: 571:: 561:: 534:. 522:: 514:: 504:: 480:. 468:: 460:: 450:: 426:. 422:: 414:: 391:. 379:: 371:: 361:: 347:C 334:. 312:: 302:: 279:. 275:: 267:: 195:4 191:2 183:2 172:2 151:6 147:4 143:2 121:c 119:T 116:c 80:c

Index

superconducting
superfluid
heterostructures
atomic limit
spatial symmetry
superconductivity
shape resonance
Fano resonance
k-space
Josephson junctions
high-temperature superconductivity
high-temperature superconductivity
shape resonance
Fano Feshbach resonances
shape resonance

superlattice
intercalated
strain engineering

Bose–Einstein condensates
spin–orbit coupling


Bibcode
2000IJMPB..14.3289B
doi
10.1142/S0217979200003769
Bianconi, G.
arXiv

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑