Knowledge

Shunting inhibition

Source 📝

100:. In a 2005 article, researchers Abbott and Chance state that "Although the importance of gain modulation and multiplicative interaction in general has been appreciated for many years, it has proven difficult to uncover a realistic biophysical mechanism by which it can occur. It is important to note that, despite comments in the literature to the contrary (see above), divisive inhibition of neuronal responses cannot arise from shunting inhibition. This has been shown theoretically as well as experimentally – inhibition has the same subtractive effect on firing rates whether it is of the shunting or hyperpolarizing variety." Thus, shunting inhibition does not provide a plausible mechanism for 329: 361: 431: 149:
Javier Alvarez-Leefmans F, Delpire E (2010-01-01). "Chapter 5 - Thermodynamics and Kinetics of Chloride Transport in Neurons: An Outline". In Javier Alvarez-Leefmans F, Delpire E (eds.).
472: 347: 50: 28: 24: 465: 57:. This simple scenario arises if the inhibitory synaptic reversal potential is identical to or even more negative than the 496: 132: 86: 458: 491: 93:
caused by concurrent excitation, whereas shunting inhibition can in some cases account for a divisive effect.
97: 96:
Some evidence exists that shunting inhibition can have a divisive effect on neuronal responses, at least on
384: 35: 375:
Holt GR, Koch C (July 1997). "Shunting inhibition does not have a divisive effect on firing rates".
389: 112: 328:
Abbott LF, Chance FS (2005). "Drivers and modulators from push-pull and balanced synaptic input".
410: 42: 402: 353: 343: 305: 270: 252: 203: 58: 394: 335: 297: 242: 234: 193: 185: 154: 46: 101: 31:
by division, rather than linear subtraction. The term "shunting" is used because of the
442: 247: 222: 198: 173: 158: 90: 78: 339: 485: 301: 38: 151:
Physiology and Pathology of Chloride Transporters and Channels in the Nervous System
438: 414: 238: 54: 189: 398: 288:
Blomfield S (March 1974). "Arithmetical operations performed by nerve cells".
357: 256: 207: 406: 309: 32: 430: 223:"The effect of inhibitory nerve impulses on a crustacean muscle fibre" 82: 334:. Progress in Brain Research. Vol. 149. pp. 147–155. 331:
Drivers and modulators from push-pull balanced synaptic input
69:
Shunting inhibition was discovered by Fatt and Katz in 1953.
446: 27:
that can be represented mathematically as reducing the
45:. If a shunting inhibitory synapse is activated, the 77:Shunting inhibition is theorized to be a type of 49:is reduced locally. The amplitude of subsequent 153:. San Diego: Academic Press. pp. 81–108. 53:(EPSP) is reduced by this, in accordance with 466: 8: 473: 459: 133:"Coding & Vision Lesson 4: Cell Types" 388: 323: 321: 319: 246: 197: 174:"How inhibition shapes cortical activity" 172:Isaacson JS, Scanziani M (October 2011). 41:currents that are generated at adjacent 123: 81:mechanism, regulating the responses of 7: 427: 425: 144: 142: 98:subthreshold postsynaptic potentials 159:10.1016/b978-0-12-374373-2.00005-4 14: 51:excitatory postsynaptic potential 25:postsynaptic potential inhibition 429: 89:has a subtractive effect on the 239:10.1113/jphysiol.1953.sp004952 221:Fatt P, Katz B (August 1953). 1: 340:10.1016/S0079-6123(05)49011-1 445:. You can help Knowledge by 302:10.1016/0006-8993(74)90375-8 190:10.1016/j.neuron.2011.09.027 85:. Simple inhibition such as 513: 424: 399:10.1162/neco.1997.9.5.1001 277:. Berlin: Springer-Verlag. 275:The Physiology of Synapses 227:The Journal of Physiology 102:neuronal gain modulation 29:excitatory potential 113:Synaptic depression 43:excitatory synapses 21:divisive inhibition 17:Shunting inhibition 497:Neuroscience stubs 377:Neural Computation 135:. Allen Institute. 454: 453: 87:hyperpolarization 59:resting potential 504: 475: 468: 461: 433: 426: 419: 418: 392: 383:(5): 1001–1013. 372: 366: 365: 360:. Archived from 325: 314: 313: 285: 279: 278: 267: 261: 260: 250: 218: 212: 211: 201: 169: 163: 162: 146: 137: 136: 128: 47:input resistance 19:, also known as 512: 511: 507: 506: 505: 503: 502: 501: 492:Neurophysiology 482: 481: 480: 479: 423: 422: 374: 373: 369: 350: 327: 326: 317: 287: 286: 282: 269: 268: 264: 220: 219: 215: 171: 170: 166: 148: 147: 140: 130: 129: 125: 120: 110: 75: 67: 23:, is a form of 12: 11: 5: 510: 508: 500: 499: 494: 484: 483: 478: 477: 470: 463: 455: 452: 451: 434: 421: 420: 390:10.1.1.27.8715 367: 364:on 2013-02-02. 348: 315: 296:(1): 115–124. 290:Brain Research 280: 262: 233:(2): 374–389. 213: 184:(2): 231–243. 164: 138: 122: 121: 119: 116: 109: 106: 91:depolarization 74: 71: 66: 63: 13: 10: 9: 6: 4: 3: 2: 509: 498: 495: 493: 490: 489: 487: 476: 471: 469: 464: 462: 457: 456: 450: 448: 444: 441:article is a 440: 435: 432: 428: 416: 412: 408: 404: 400: 396: 391: 386: 382: 378: 371: 368: 363: 359: 355: 351: 349:9780444516794 345: 341: 337: 333: 332: 324: 322: 320: 316: 311: 307: 303: 299: 295: 291: 284: 281: 276: 272: 266: 263: 258: 254: 249: 244: 240: 236: 232: 228: 224: 217: 214: 209: 205: 200: 195: 191: 187: 183: 179: 175: 168: 165: 160: 156: 152: 145: 143: 139: 134: 127: 124: 117: 115: 114: 107: 105: 103: 99: 94: 92: 88: 84: 80: 72: 70: 64: 62: 60: 56: 52: 48: 44: 40: 39:short-circuit 37: 34: 30: 26: 22: 18: 447:expanding it 439:neuroscience 436: 380: 376: 370: 362:the original 330: 293: 289: 283: 274: 265: 230: 226: 216: 181: 177: 167: 150: 126: 111: 95: 79:gain control 76: 68: 20: 16: 15: 36:conductance 486:Categories 118:References 385:CiteSeerX 271:Eccles JC 73:Mechanism 65:Discovery 55:Ohm's Law 358:16226582 273:(1964). 257:13085341 208:22017986 131:Koch C. 108:See also 33:synaptic 415:7566057 407:9188191 310:4817903 248:1366081 199:3236361 83:neurons 413:  405:  387:  356:  346:  308:  255:  245:  206:  196:  178:Neuron 437:This 411:S2CID 443:stub 403:PMID 354:PMID 344:ISBN 306:PMID 253:PMID 204:PMID 395:doi 336:doi 298:doi 243:PMC 235:doi 231:121 194:PMC 186:doi 155:doi 488:: 409:. 401:. 393:. 379:. 352:. 342:. 318:^ 304:. 294:69 292:. 251:. 241:. 229:. 225:. 202:. 192:. 182:72 180:. 176:. 141:^ 104:. 61:. 474:e 467:t 460:v 449:. 417:. 397:: 381:9 338:: 312:. 300:: 259:. 237:: 210:. 188:: 161:. 157::

Index

postsynaptic potential inhibition
excitatory potential
synaptic
conductance
short-circuit
excitatory synapses
input resistance
excitatory postsynaptic potential
Ohm's Law
resting potential
gain control
neurons
hyperpolarization
depolarization
subthreshold postsynaptic potentials
neuronal gain modulation
Synaptic depression
"Coding & Vision Lesson 4: Cell Types"


doi
10.1016/b978-0-12-374373-2.00005-4
"How inhibition shapes cortical activity"
doi
10.1016/j.neuron.2011.09.027
PMC
3236361
PMID
22017986
"The effect of inhibitory nerve impulses on a crustacean muscle fibre"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.