Knowledge

Microbial inoculant

Source đź“ť

954: 255: 749:
Firmin, S., Labidi, S., Fontaine, J., Laruelle, F., Tisserant, B., Nsanganwimana, F., Pourrut, B., Dalpé, Y., Grandmougin, A., Douay, F., Shirali, P., Verdin, A. and Lounès-Hadj Sahraoui, A. (2015). Arbuscular mycorrhizal fungal inoculation protects Miscanthus×giganteus against trace element toxicity
139:
commonly applied as inoculants include nitrogen-fixers, phosphate-solubilisers and other root-associated beneficial bacteria which enhance the availability of the macronutrients nitrogen and phosphorus to the host plant. Such bacteria are commonly referred to as plant growth promoting rhizobacteria
1061:
Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Huckelhoven, R., Neumann, C., Von Wettstein, D., Franken, P. & Kogel, K.-H. (2005) The endophytic fungus Piriformis indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield.
1045:
Nguyen, T. H., Kennedy, I. R. & Roughley, R. J. (2002) The response of field-grown rice to inoculation with a multi-strain biofertiliser in the Hanoi district, Vietnam. IN I. R. Kennedy & A. T. M. A. Choudhury (Eds.) Biofertilisers in Action. Barton, ACT, Rural Indrustries Research &
1018:
Belimov, A. A., Kunakova, A. M., Vasilyeva, N. D., Gruzdeva, E. V., Vorobiev, N. I., Kojemiakov, A. P., Khamova, O. F., Postavskaya, S. M. & Sokova, S. A. (1995b) Relationship between survival rates of associative nitrogen-fixers on roots and yield response of plants to inoculation. FEMS
60:). While microbial inoculants are applied to improve plant nutrition, they can also be used to promote plant growth by stimulating plant hormone production. Although bacterial and fungal inoculants are common, inoculation with archaea to promote plant growth is being increasingly studied. 935:
Galal, Y. G. M., El-Ghandour, I. A., Osman, M. E. & Abdel Raouf, A. M. N. (2003), The effect of inoculation by mycorrhizae and rhizobium on the growth and yield of wheat in relation to nitrogen and phosphorus fertilization as assessed by 15n techniques, Symbiosis, 34(2),
759:
Kohler, J., Caravaca, F., Azcón, R., Díaz, G. and Roldán, A. (2015). The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Science of the Total Environment, 514,
550:
Galal, Y. G. M., El-Ghandour, I. A., Osman, M. E. & Abdel Raouf, A. M. N. (2003), The effect of inoculation by mycorrhizae and rhizobium on the growth and yield of wheat in relation to nitrogen and phosphorus fertilization as assessed by 15n techniques, Symbiosis, 34(2),
225:
association. This symbiotic relationships is present in nearly all land plants and give both the plant and fungi advantages to survival. The plant can give upwards of 5-30% of its energy production to the fungi in exchange for increasing the root absorptive area with
769:
Diedhiou, A., Mbaye, F., Mbodj, D., Faye, M., Pignoly, S., Ndoye, I., Djaman, K., Gaye, S., Kane, A., Laplaze, L., Manneh, B. and Champion, A. (2016). Field Trials Reveal Ecotype-Specific Responses to Mycorrhizal Inoculation in Rice. PLOS ONE, 11(12),
925:
Singh, S. & Kapoor, K. K. (1999) Inoculation with phosphate-solubilising microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in sandy soil. Biology and Fertility of Soils, 28,
779:
Liu, L., Li, J., Yue, F., Yan, X., Wang, F., Bloszies, S. and Wang, Y. (2018). Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere, 194,
1041:
Mawarda, P.C., Le Roux, X., van Elsas, J.D. & Falcao Salles J. (2020) Deliberate introduction of invisible invaders: A critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil Biology and Biochemistry, 148,
1025:
Gutierrez Manero, F. J. (2008) Systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection, and biotic elicitors. Phytopathology, 98 (4),
363:(PGPR) has been shown to benefit rice and barley. The main benefit from dual inoculation is increased plant nutrient uptake from both soil and fertilizer. Multiple strains of inoculant have also been demonstrated to increase total 882:
Cacciari, Isabella; Lippi, Daniela; Ippoliti, Silvia; Pietrosanti, Tito; Pietrosanti, Walter (July 1989). "Response to oxygen of diazotrophic Azospirillum brasilense ? Arthrobacter giacomelloi mixed batch culture".
277:(AM) has received attention as a potential agriculture amendment for its ability to access and provide the host plant phosphorus. Under a reduced fertilization greenhouse system that was inoculated with a mixture of 1022:
Caballero-Mellado, J., Carcano-Montiel, M. G. & Mascarua-Esparza, M. A. (1992), Field inoculation of wheat (triticum aestivum) with azospirillum brasilense under temperate climate, Symbiosis, 13, 243-253.
1035:
Khaosaad, T., Garcia-Garrido, J. M., Steinkellner, S. & Vierheilig, H. (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biology and Biochemistry, 39, 727-734.
731:
Hirrel, M.C. and Gerdemann, J.W., 1980. Improved Growth of Onion and Bell Pepper in Saline Soils by Two Vesicular-Arbuscular Mycorrhizal Fungi 1. Soil Science Society of America Journal, 44(3), pp.654-655.
1014:
Bashan, Y., Holguin, G. & E., D.-B. L. (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Canadian Journal of Microbiology, 50,
794:
Belimov, A. A., Kojemiakov, A. P. & Chuvarliyeva, C. V. (1995a) Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilising bacteria. Plant and Soil, 173, 29-37.
1032:
Khammas, K. M. & Kaiser, P. (1992) Pectin decomposition and associated nitrogen fixation by mixed cultures of Azospirillum and Bacillus species. Canadian Journal of Microbiology, 38, 794-797.
740:
Ferrazzano, S. and Williamson, P. (2013). Benefits of mycorrhizal inoculation in reintroduction of endangered plant species under drought conditions. Journal of Arid Environments, 98, pp.123-125.
313:
is a common household amendment for personal gardens, agriculture, and nurseries. It has been observed that this pairing can also promote microbial functions in soils that have been affected by
1049:
Rabie, G. H. & Almadini, A. M. (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. African Journal of Biotechnology, 4 (3), 210-222.
213:, 1995a; 1995b; Singh & Kapoor, 1999). As the name suggests, PSB are free-living bacteria that break down inorganic soil phosphates to simpler forms that enable uptake by plants. 1029:
Heitefuss, R. (2001) Defence reactions of plants to fungal pathogens: principles and perspectives, using powdery mildew on cereals as an example. Naturwissenschaften, 88, 273-283.
1038:
Lippi, D., Cacciari, I., Pietrosanti, T. & Pietrosanti, W. (1992) Interactions between Azospirillum and Arthrobacter in diazotrophic mixed culture. Symbiosis, 13, 107-114.
351:
Fungal inoculants can be used with or without additional amendments in private gardens, homesteads, agricultural production, native nurseries, and land restoration projects.
1011:
Bashan, Y. & Holguin, G. (1997), Azospirillum-plant relationships: environmental and physiological advances (1990-1996), Canadian Journal of Microbiology 43, 103-121.
266:
association. Plants can give upwards of 5-30% of their photosynthetic production to this relationship, represented by G, in exchange for enhanced nutrient uptake, via
603: 166:. This increases host nitrogen nutrition and is important to the cultivation of soybeans, chickpeas and many other leguminous crops. For non-leguminous crops, 285:, tomato yields that were given from 100% fertility were attained at 70% fertility. This 30% reduction in fertilizer application can aid in the reduction of 839:
Khammas, K. M.; Kaiser, P. (August 1992). "Pectin decomposition and associated nitrogen fixation by mixed cultures of Azospirillum and Bacillus species".
270:, which extend the plants root absorptive area, giving it access to nutrients it would otherwise not be able to attain, which is represented by N and P. 476: 71:(SAR) of crop species to several common crop diseases (provides resistance against pathogens). So far SAR has been demonstrated for powdery mildew ( 1055:
Sullivan, P. (2001) Alternative soil amendments. Appropriate Technology Transfer for Rural Areas, National Center for Appropriate Technology.
82: 381:
in combination can be useful in increasing wheat growth in nutrient poor soil and improving nitrogen-extraction from fertilised soils.
997: 975: 661: 579: 1056: 328:
inoculation paired with plant growth promoting bacteria resulted in a higher yield and quicker maturation in upland rice paddys.
440:
Bashan, Yoav; Holguin, Gina (1997). "Azospirillum – plant relationships: Environmental and physiological advances (1990–1996)".
72: 305:
Fungal inoculation alone can benefit host plants. Inoculation paired with other amendments can further improve conditions.
68: 118:
However, it is increasingly recognized that microbial inoculants often modify the soil microbial community (Mawarda
246:
associations are most commonly found in woody-species, and have less implications for agricultural systems.  
205: 968: 962: 416: 1120: 391: 1077: 979: 175:
For cereal crops, diazotrophic rhizobacteria have increased plant growth, grain yield (Caballero-Mellado
1115: 378: 332: 325: 306: 278: 274: 235: 230:
which gives the plant access to nutrients it would otherwise not be able to attain. The two most common
97: 57: 1125: 908: 714: 597: 530: 457: 406: 396: 286: 172:
has been demonstrated to be beneficial in some cases for nitrogen fixation and plant nutrition.
1110: 1105: 1057:
https://web.archive.org/web/20081011174000/http://www.attra.ncat.org/attra-pub/PDF/altsoil.pdf
900: 864: 856: 821: 706: 698: 679:"Plant Growth-Promoting Rhizobacteria Allow Reduced Application Rates of Chemical Fertilizers" 657: 585: 575: 522: 514: 107: 892: 848: 813: 690: 649: 506: 449: 411: 290: 203:
To improve phosphorus nutrition, the use of phosphate-solubilising bacteria (PSB) such as
159: 750:
in a highly metal-contaminated site. Science of the Total Environment, 527-528, pp.91-99.
617: 63:
Research into the benefits of inoculants in agriculture extends beyond their capacity as
1052:
Ramos Solano, R., Barriuso Maicas, J., Pereyra De La Iglesia, M. T., Domenech, J. &
495:"An Archaic Approach to a Modern Issue: Endophytic Archaea for Sustainable Agriculture" 243: 239: 1099: 678: 534: 374: 360: 282: 136: 64: 912: 262:
relationship between a plants roots and a fungus partner, which is referred to as a
718: 461: 401: 168: 493:
Chow, Chanelle; Padda, Kiran Preet; Puri, Akshit; Chanway, Chris P. (2022-09-20).
367:
activity compared to single strains of inoculants, even when only one strain is
364: 42: 510: 694: 653: 368: 263: 231: 222: 46: 17: 904: 860: 825: 702: 589: 518: 494: 1072: 574:. Weil, Ray R. (Third ed.). Upper Saddle River, N.J. pp. 343–346. 259: 254: 195:, 1992). Rhizobacteria live in root nodes, and are associated with legumes. 150: 53: 710: 526: 868: 221:
Symbiotic relationships between fungi and plant roots is referred to as a
294: 179:, 1992), nitrogen and phosphorus uptake, and nitrogen (Caballero-Mellado 162:
bacteria that form symbiotic associations within nodules on the roots of
1078:
https://web.archive.org/web/20080509170441/http://mycorrhiza.ag.utk.edu/
1062:
Proceedings of the National Academy of Sciences, 102 (38), 13386-13391.
1080:
Mycorrhiza Literature Exchange, Plant Sciences, University of Tennessee
896: 340: 336: 321: 310: 163: 49: 297:
tolerance, drought tolerance, and resistance to trace metal toxicity.
314: 852: 817: 453: 677:
Adesemoye, A. O.; Torbert, H. A.; Kloepper, J. W. (November 2009).
267: 227: 644:
Chapin, F. Stuart; Matson, Pamela A.; Vitousek, Peter M. (2011).
1083: 289:, and help prolong finite mineral resources such as phosphorus ( 947: 1092:
ATTRA – National Sustainable Agriculture Information Service
52:
to promote plant health. Many of the microbes involved form
482:(Report). Appropriate Technology Transfer for Rural Areas. 1089: 546: 544: 804:
Kennedy, Ivan R. (2001). "Biofertilisers in action".
648:. New York, NY: Springer New York. pp. 243–244. 639: 637: 56:with the target crops where both parties benefit ( 41:, are agricultural amendments that use beneficial 191:, 1995) and potassium content (Caballero-Mellado 572:Elements of the nature and properties of soils 27:Agricultural amendment to promote plant health 435: 433: 8: 331:Maize growth improved after an amendment of 320:Certain fungal partners do best in specific 148:The most commonly applied rhizobacteria are 646:Principles of Terrestrial Ecosystem Ecology 618:"Mycorrhiza | David Sylvia's Web Resources" 602:: CS1 maint: location missing publisher ( 1073:http://www.satavic.org/biofertilisers.htm 998:Learn how and when to remove this message 961:This article includes a list of general 253: 429: 392:Biological control with micro-organisms 183:, 1992), phosphorus (Caballero-Mellado 595: 293:). Other effects include increases in 790: 788: 786: 565: 563: 561: 559: 557: 209:has also received attention (Belimov 7: 361:Plant Growth Promoting Rhizobacteria 339:. This amendment can also decrease 1019:Microbiology Ecology, 17, 187-196. 967:it lacks sufficient corresponding 258:This diagram shows the beneficial 67:. Microbial inoculants can induce 25: 1086:Soil Foodweb Institute Australia 952: 841:Canadian Journal of Microbiology 442:Canadian Journal of Microbiology 199:Phosphate-solubilising bacteria 359:The combination of strains of 81:, Heitefuss, 2001), take-all ( 1: 1084:http://www.soilfoodweb.com.au 154:and closely related genera. 69:systemic acquired resistance 477:Alternative Soil Amendments 1142: 511:10.1007/s00284-022-03016-y 475:Sullivan, Preston (2001). 309:inoculation combined with 695:10.1007/s00248-009-9531-y 654:10.1007/978-1-4419-9504-9 206:Agrobacterium radiobacter 131:Rhizobacterial inoculants 1046:Development Corporation. 885:Archives of Microbiology 806:Functional Plant Biology 417:Plant disease resistance 144:Nitrogen-fixing bacteria 982:more precise citations. 570:Brady, Nyle C. (2010). 324:or with certain crops. 84:Gaeumannomyces graminis 54:symbiotic relationships 379:arbuscular mycorrhizae 333:arbuscular mycorrhizae 326:Arbuscular mycorrhizal 307:Arbuscular mycorrhizal 271: 236:arbuscular mycorrhizae 105:, 2008) and root rot ( 1090:http://attra.ncat.org 275:Arbuscular mycorrhiza 257: 250:Arbuscular mycorrhiza 499:Current Microbiology 355:Composite inoculants 98:Pseudomonas syringae 95:, 2007), leaf spot ( 31:Microbial inoculants 897:10.1007/bf00456086 407:List of endophytes 397:Carnivorous fungus 287:nutrient pollution 272: 1008: 1007: 1000: 683:Microbial Ecology 343:uptake by crops. 217:Fungal inoculants 108:Fusarium culmorum 74:Blumeria graminis 16:(Redirected from 1133: 1003: 996: 992: 989: 983: 978:this article by 969:inline citations 956: 955: 948: 937: 933: 927: 923: 917: 916: 879: 873: 872: 836: 830: 829: 801: 795: 792: 781: 777: 771: 767: 761: 757: 751: 747: 741: 738: 732: 729: 723: 722: 674: 668: 667: 641: 632: 631: 629: 628: 614: 608: 607: 601: 593: 567: 552: 548: 539: 538: 490: 484: 483: 481: 472: 466: 465: 437: 187:, 1992; Belimov 33:, also known as 21: 1141: 1140: 1136: 1135: 1134: 1132: 1131: 1130: 1096: 1095: 1069: 1004: 993: 987: 984: 974:Please help to 973: 957: 953: 946: 941: 940: 934: 930: 924: 920: 881: 880: 876: 853:10.1139/m92-129 838: 837: 833: 818:10.1071/pp01169 803: 802: 798: 793: 784: 778: 774: 768: 764: 758: 754: 748: 744: 739: 735: 730: 726: 676: 675: 671: 664: 643: 642: 635: 626: 624: 616: 615: 611: 594: 582: 569: 568: 555: 549: 542: 492: 491: 487: 479: 474: 473: 469: 454:10.1139/m97-015 439: 438: 431: 426: 421: 412:Plant pathology 387: 357: 349: 347:Inoculant usage 303: 301:Fungal partners 291:Peak phosphorus 252: 244:Ectomycorrhizae 240:ectomycorrhizae 219: 201: 160:nitrogen-fixing 146: 133: 128: 101:, Ramos Solano 35:soil inoculants 28: 23: 22: 15: 12: 11: 5: 1139: 1137: 1129: 1128: 1123: 1121:Soil improvers 1118: 1113: 1108: 1098: 1097: 1094: 1093: 1087: 1081: 1075: 1068: 1067:External links 1065: 1064: 1063: 1059: 1053: 1050: 1047: 1043: 1039: 1036: 1033: 1030: 1027: 1023: 1020: 1016: 1012: 1006: 1005: 960: 958: 951: 945: 942: 939: 938: 928: 918: 891:(2): 111–114. 874: 847:(8): 794–797. 831: 796: 782: 772: 762: 752: 742: 733: 724: 689:(4): 921–929. 669: 662: 633: 609: 580: 553: 540: 485: 467: 448:(2): 103–121. 428: 427: 425: 422: 420: 419: 414: 409: 404: 399: 394: 388: 386: 383: 356: 353: 348: 345: 302: 299: 251: 248: 218: 215: 200: 197: 145: 142: 132: 129: 127: 124: 65:biofertilizers 43:rhizosphericic 26: 24: 18:Soil inoculant 14: 13: 10: 9: 6: 4: 3: 2: 1138: 1127: 1124: 1122: 1119: 1117: 1114: 1112: 1109: 1107: 1104: 1103: 1101: 1091: 1088: 1085: 1082: 1079: 1076: 1074: 1071: 1070: 1066: 1060: 1058: 1054: 1051: 1048: 1044: 1040: 1037: 1034: 1031: 1028: 1024: 1021: 1017: 1013: 1010: 1009: 1002: 999: 991: 988:February 2022 981: 977: 971: 970: 964: 959: 950: 949: 943: 932: 929: 922: 919: 914: 910: 906: 902: 898: 894: 890: 886: 878: 875: 870: 866: 862: 858: 854: 850: 846: 842: 835: 832: 827: 823: 819: 815: 811: 807: 800: 797: 791: 789: 787: 783: 776: 773: 766: 763: 756: 753: 746: 743: 737: 734: 728: 725: 720: 716: 712: 708: 704: 700: 696: 692: 688: 684: 680: 673: 670: 665: 663:9781441995032 659: 655: 651: 647: 640: 638: 634: 623: 622:sites.psu.edu 619: 613: 610: 605: 599: 591: 587: 583: 581:9780135014332 577: 573: 566: 564: 562: 560: 558: 554: 547: 545: 541: 536: 532: 528: 524: 520: 516: 512: 508: 504: 500: 496: 489: 486: 478: 471: 468: 463: 459: 455: 451: 447: 443: 436: 434: 430: 423: 418: 415: 413: 410: 408: 405: 403: 400: 398: 395: 393: 390: 389: 384: 382: 380: 376: 372: 370: 366: 362: 354: 352: 346: 344: 342: 338: 334: 329: 327: 323: 318: 316: 312: 308: 300: 298: 296: 292: 288: 284: 283:rhizobacteria 280: 276: 269: 265: 261: 256: 249: 247: 245: 241: 237: 233: 229: 224: 216: 214: 212: 208: 207: 198: 196: 194: 190: 186: 182: 178: 173: 171: 170: 165: 161: 157: 153: 152: 143: 141: 138: 137:rhizobacteria 130: 125: 123: 121: 116: 114: 110: 109: 104: 100: 99: 94: 90: 89: 85: 80: 79: 75: 70: 66: 61: 59: 55: 51: 48: 44: 40: 39:bioinoculants 36: 32: 19: 1116:Soil biology 994: 985: 966: 944:Bibliography 931: 921: 888: 884: 877: 844: 840: 834: 809: 805: 799: 775: 765: 755: 745: 736: 727: 686: 682: 672: 645: 625:. Retrieved 621: 612: 571: 502: 498: 488: 470: 445: 441: 402:Endosymbiont 373: 369:diazotrophic 358: 350: 330: 319: 304: 273: 220: 210: 204: 202: 192: 188: 184: 180: 176: 174: 169:Azospirillum 167: 155: 149: 147: 134: 119: 117: 112: 106: 102: 96: 92: 87: 83: 77: 73: 62: 38: 34: 30: 29: 980:introducing 780:pp.495-503. 770:p.e0167014. 505:(11): 322. 365:nitrogenase 232:mycorrhizae 91:, Khaosaad 1100:Categories 963:references 812:(9): 825. 627:2019-10-24 424:References 264:mycorrhiza 223:Mycorrhiza 47:endophytic 1126:Symbiosis 905:0302-8933 861:0008-4166 826:1445-4408 760:pp.42-48. 703:0095-3628 598:cite book 590:276340542 535:252376815 519:1432-0991 260:symbiotic 156:Rhizobium 151:Rhizobium 126:Bacterial 122:, 2020). 111:, Waller 58:mutualism 1111:Mycology 1106:Bacteria 1026:451-457. 1015:521-577. 936:171-183. 926:139-144. 913:10850392 711:19466478 551:171-183. 527:36125558 385:See also 322:ecotones 295:salinity 279:AM fungi 140:(PGPR). 50:microbes 1042:107874. 976:improve 869:1458371 719:8789559 462:6840330 341:cadmium 337:biochar 311:compost 164:legumes 115:2005). 88:tritici 76:f. sp. 965:, but 911:  903:  867:  859:  824:  717:  709:  701:  660:  588:  578:  533:  525:  517:  460:  315:mining 268:hyphae 228:hyphae 211:et al. 193:et al. 189:et al. 185:et al. 181:et al. 177:et al. 120:et al. 113:et al. 103:et al. 93:et al. 78:hordei 909:S2CID 715:S2CID 531:S2CID 480:(PDF) 458:S2CID 86:var. 901:ISSN 865:PMID 857:ISSN 822:ISSN 707:PMID 699:ISSN 658:ISBN 604:link 586:OCLC 576:ISBN 523:PMID 515:ISSN 377:and 375:PGPR 335:and 281:and 238:and 234:are 158:are 135:The 893:doi 889:152 849:doi 814:doi 691:doi 650:doi 507:doi 450:doi 45:or 37:or 1102:: 907:. 899:. 887:. 863:. 855:. 845:38 843:. 820:. 810:28 808:. 785:^ 713:. 705:. 697:. 687:58 685:. 681:. 656:. 636:^ 620:. 600:}} 596:{{ 584:. 556:^ 543:^ 529:. 521:. 513:. 503:79 501:. 497:. 456:. 446:43 444:. 432:^ 371:. 317:. 242:. 1001:) 995:( 990:) 986:( 972:. 915:. 895:: 871:. 851:: 828:. 816:: 721:. 693:: 666:. 652:: 630:. 606:) 592:. 537:. 509:: 464:. 452:: 20:)

Index

Soil inoculant
rhizosphericic
endophytic
microbes
symbiotic relationships
mutualism
biofertilizers
systemic acquired resistance
Blumeria graminis f. sp. hordei
Gaeumannomyces graminis var. tritici
Pseudomonas syringae
Fusarium culmorum
rhizobacteria
Rhizobium
nitrogen-fixing
legumes
Azospirillum
Agrobacterium radiobacter
Mycorrhiza
hyphae
mycorrhizae
arbuscular mycorrhizae
ectomycorrhizae
Ectomycorrhizae

symbiotic
mycorrhiza
hyphae
Arbuscular mycorrhiza
AM fungi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑