Knowledge (XXG)

Nash-Williams theorem

Source 📝

512: 422: 112: 145: 276: 660:
Chen, Boliong; Matsumoto, Makoto; Wang, Jianfang; Zhang, Zhongfu; Zhang, Jianxun (1994-03-01). "A short proof of Nash-Williams' theorem for the arboricity of a graph".
328: 434: 609: 357: 56: 199: 117: 724: 710:
The Nash-Williams partition theorem (Formal proof development in Isabelle/HOL, Archive of Formal Proofs)
537: 160: 38: 428:
that saturates the inequality (or else we can choose a smaller t). This leads to the following formula
542: 547: 246: 220: 29: 685: 677: 615: 605: 288: 706: 669: 642: 579: 279: 16:
Theorem in graph theory describing number of edge-disjoint spanning trees a graph can have
633:
Nash-Williams, Crispin St. John Alvah. "Decomposition of Finite Graphs Into Forests".
570:
Nash-Williams, Crispin St. John Alvah. "Decomposition of Finite Graphs Into Forests".
523:
The general problem is to ask when a graph can be covered by edge-disjoint subgraphs.
718: 709: 689: 34: 20: 156: 583: 646: 619: 532: 183: 681: 507:{\displaystyle t=\lceil \max _{S\subset G}{\frac {E(S)}{V(S)-1}}\rceil } 673: 337:
This is how people usually define what it means for a graph to be
186:
is slightly different and applies to forests rather than trees.)
235:
In 1964, Nash-Williams generalized the above result to forests:
59: 437: 360: 291: 249: 120: 53:
edge-disjoint spanning trees iff for every partition
167:
For this article, we will say that such a graph has
506: 416: 322: 270: 139: 106: 417:{\displaystyle t\geq \lceil E(S)/(V(S)-1)\rceil } 448: 33:theorem that describes how many edge-disjoint 8: 501: 444: 411: 367: 107:{\textstyle V_{1},\ldots ,V_{k}\subset V(G)} 635:Journal of the London Mathematical Society 572:Journal of the London Mathematical Society 424:. It is tight in that there is a subgraph 227:edge-disjoint paths between two vertices. 463: 451: 436: 382: 359: 306: 298: 290: 248: 125: 119: 83: 64: 58: 562: 7: 595: 593: 243:edge-disjoint forests iff for every 140:{\displaystyle V_{i}\neq \emptyset } 346:In other words, for every subgraph 134: 14: 231:Nash-Williams theorem for forests 600:Diestel, Reinhard (2017-06-30). 155: − 1) crossing edges ( 190:Related tree-packing properties 489: 483: 475: 469: 408: 399: 393: 387: 379: 373: 317: 307: 299: 295: 265: 259: 223:characterize when a graph has 198:-arboric graph is necessarily 101: 95: 1: 271:{\displaystyle U\subset V(G)} 208:As a corollary of NW, every 2 205:. The converse is not true. 182:. (The actual definition of 741: 239:G can be partitioned into 212:-edge connected graph is 662:Graphs and Combinatorics 584:10.1112/jlms/s1-36.1.445 517:also referred to as the 323:{\displaystyle t(|U|-1)} 647:10.1112/jlms/s1-39.1.12 552:Tree packing conjecture 334:A proof is given here. 515: 508: 418: 332: 324: 272: 165: 141: 108: 509: 430: 419: 325: 273: 237: 142: 109: 43: 25:Nash-Williams theorem 707:Paulson, Lawrence C. 543:Matroid partitioning 435: 358: 289: 247: 118: 57: 37:(and more generally 147:there are at least 41:) a graph can have: 674:10.1007/BF01202467 504: 462: 414: 320: 268: 137: 104: 538:Bridge (cut edge) 499: 447: 732: 694: 693: 657: 651: 650: 630: 624: 623: 597: 588: 587: 567: 548:Menger's theorem 513: 511: 510: 505: 500: 498: 478: 464: 461: 423: 421: 420: 415: 386: 329: 327: 326: 321: 310: 302: 280:induced subgraph 277: 275: 274: 269: 221:Menger's theorem 169:arboricity  146: 144: 143: 138: 130: 129: 113: 111: 110: 105: 88: 87: 69: 68: 740: 739: 735: 734: 733: 731: 730: 729: 715: 714: 703: 698: 697: 659: 658: 654: 632: 631: 627: 612: 599: 598: 591: 569: 568: 564: 559: 529: 479: 465: 433: 432: 356: 355: 287: 286: 245: 244: 233: 203:-edge connected 192: 121: 116: 115: 79: 60: 55: 54: 17: 12: 11: 5: 738: 736: 728: 727: 717: 716: 713: 712: 702: 701:External links 699: 696: 695: 652: 625: 610: 589: 578:(1): 445–450. 561: 560: 558: 555: 554: 553: 550: 545: 540: 535: 528: 525: 503: 497: 494: 491: 488: 485: 482: 477: 474: 471: 468: 460: 457: 454: 450: 446: 443: 440: 413: 410: 407: 404: 401: 398: 395: 392: 389: 385: 381: 378: 375: 372: 369: 366: 363: 319: 316: 313: 309: 305: 301: 297: 294: 267: 264: 261: 258: 255: 252: 232: 229: 191: 188: 136: 133: 128: 124: 103: 100: 97: 94: 91: 86: 82: 78: 75: 72: 67: 63: 35:spanning trees 15: 13: 10: 9: 6: 4: 3: 2: 737: 726: 723: 722: 720: 711: 708: 705: 704: 700: 691: 687: 683: 679: 675: 671: 667: 663: 656: 653: 648: 644: 640: 636: 629: 626: 621: 617: 613: 611:9783662536216 607: 603: 596: 594: 590: 585: 581: 577: 573: 566: 563: 556: 551: 549: 546: 544: 541: 539: 536: 534: 531: 530: 526: 524: 521: 520: 514: 495: 492: 486: 480: 472: 466: 458: 455: 452: 441: 438: 429: 427: 405: 402: 396: 390: 383: 376: 370: 364: 361: 353: 349: 344: 343: 341: 335: 331: 314: 311: 303: 292: 284: 281: 262: 256: 253: 250: 242: 236: 230: 228: 226: 222: 217: 215: 211: 206: 204: 202: 197: 189: 187: 185: 181: 177: 173: 172: 164: 162: 161:Nash-Williams 158: 154: 150: 131: 126: 122: 98: 92: 89: 84: 80: 76: 73: 70: 65: 61: 52: 48: 42: 40: 36: 32: 31: 26: 22: 725:Graph theory 668:(1): 27–28. 665: 661: 655: 638: 634: 628: 602:Graph theory 601: 575: 571: 565: 522: 518: 516: 431: 425: 351: 347: 345: 339: 338: 336: 333: 285:has at most 282: 240: 238: 234: 224: 219:Both NW and 218: 213: 209: 207: 200: 195: 193: 179: 175: 170: 168: 166: 152: 148: 50: 46: 44: 30:tree-packing 28: 24: 21:graph theory 18: 519:NW formula. 620:1048203362 557:References 533:Arboricity 354:, we have 216:-arboric. 184:arboricity 690:206791653 682:1435-5914 641:(1): 12. 502:⌉ 493:− 456:⊂ 445:⌈ 412:⌉ 403:− 368:⌈ 365:≥ 312:− 254:⊂ 135:∅ 132:≠ 90:⊂ 74:… 719:Category 527:See also 342:-aboric. 45:A graph 350:=  330:edges. 180:arboric 39:forests 688:  680:  618:  608:  278:, the 174:or is 163:1961). 159:1961, 114:where 23:, the 686:S2CID 157:Tutte 27:is a 678:ISSN 616:OCLC 606:ISBN 49:has 670:doi 643:doi 580:doi 449:max 19:In 721:: 684:. 676:. 666:10 664:. 639:39 637:. 614:. 604:. 592:^ 576:36 574:. 194:A 692:. 672:: 649:. 645:: 622:. 586:. 582:: 496:1 490:) 487:S 484:( 481:V 476:) 473:S 470:( 467:E 459:G 453:S 442:= 439:t 426:S 409:) 406:1 400:) 397:S 394:( 391:V 388:( 384:/ 380:) 377:S 374:( 371:E 362:t 352:G 348:S 340:t 318:) 315:1 308:| 304:U 300:| 296:( 293:t 283:G 266:) 263:G 260:( 257:V 251:U 241:t 225:k 214:k 210:k 201:k 196:k 178:- 176:t 171:t 153:k 151:( 149:t 127:i 123:V 102:) 99:G 96:( 93:V 85:k 81:V 77:, 71:, 66:1 62:V 51:t 47:G

Index

graph theory
tree-packing
spanning trees
forests
Tutte
Nash-Williams
arboricity
k-edge connected
Menger's theorem
induced subgraph
Arboricity
Bridge (cut edge)
Matroid partitioning
Menger's theorem
doi
10.1112/jlms/s1-36.1.445


ISBN
9783662536216
OCLC
1048203362
doi
10.1112/jlms/s1-39.1.12
doi
10.1007/BF01202467
ISSN
1435-5914
S2CID
206791653

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.