Knowledge (XXG)

Alpha-ketoglutarate-dependent hydroxylases

Source 📝

292:
study ligand binding, enzyme kinetics, modes of inhibition as well as protein conformational change. Mass spectrometry is also widely applied. It can be used to characterise enzyme kinetics, to guide enzyme inhibitor development, study ligand and metal binding as well as analyse protein conformational change. Assays using spectrophotometry were also used, for example those that measure 2OG oxidation, co-product succinate formation or product formation. Other biophysical techniques including (but not limited to) isothermal titration calorimetry (ITC) and electron paramagnetic resonance (EPR) were also applied. Radioactive assays that uses C labelled substrates were also developed and used. Given αKG-dependent dioxygenases require oxygen for their catalytic activity, oxygen consumption assay was also applied.
263:(NOG), pyridine-2,4-dicarboxylic acid (2,4-PDCA), 5-carboxy-8-hydroxyquinoline, FG-2216 and FG-4592, which were all designed mimic the co-substrate αKG and compete against the binding of αKG at the enzyme active site Fe(II). Although they are potent inhibitors of αKG-dependent dioxygenase, they lack selectivity and hence sometimes being referred to as so-called 'broad spectrum' inhibitors. Inhibitors that compete against the substrate were also developed, such as peptidyl-based inhibitors that target human 54:. In plants, αKG-dependent dioxygenases are involved in diverse reactions in plant metabolism. These include flavonoid biosynthesis, and ethylene biosyntheses. In mammals and humans, αKG-dependent dioxygenase have functional roles in biosyntheses (e.g. collagen biosynthesis and L-carnitine biosynthesis), post-translational modifications (e.g. protein hydroxylation), epigenetic regulations (e.g. 275:. Finally, as αKG-dependent dioxygenases require molecular oxygen as a co-substrate, it has also been shown that gaseous molecules such as carbon monoxide and nitric oxide are inhibitors of αKG-dependent dioxygenases, presumably by competing with molecular oxygen for the binding at the active site Fe(II) ion. 152:
The first step involves the binding of αKG and substrate to the active site. αKG coordinates as a bidentate ligand to Fe(II), while the substrate is held by noncovalent forces in close proximity. Subsequently, molecular oxygen binds end-on to Fe cis to the two donors of the αKG. The uncoordinated end
69:
Many αKG-dependent dioxygenase also catalyse uncoupled turnover, in which oxidative decarboxylation of αKG into succinate and carbon dioxide proceeds in the absence of substrate. The catalytic activity of many αKG-dependent dioxygenases are dependent on reducing agents (especially ascorbate) although
291:
Many assays were developed to study αKG-dependent dioxygenases so that information such as enzyme kinetics, enzyme inhibition and ligand binding can be obtained. Nuclear magnetic resonance (NMR) spectroscopy is widely applied to study αKG-dependent dioxygenases. For example, assays were developed to
2210:
Hopkinson RJ, Tumber A, Yapp C, Chowdhury R, Aik W, Che KH, Li XS, Kristensen JB, King ON, Chan MC, Yeoh KK, Choi H, Walport LJ, Thinnes CC, Bush JT, Lejeune C, Rydzik AM, Rose NR, Bagg EA, McDonough MA, Krojer T, Yue WW, Ng SS, Olsen L, Brennan PE, Oppermann U, Muller-Knapp S, Klose RJ, Ratcliffe
470:
Price JC, Barr EW, Tirupati B, Bollinger JM Jr, Krebs C (June 2003). "The first direct characterization of a high-valent iron intermediate in the reaction of an alpha-ketoglutarate-dependent dioxygenase: a high-spin FeIV complex in taurine/alpha-ketoglutarate dioxygenase (TauD) from Escherichia
172: 238: 2946:
Demetriades M, Leung IK, Chowdhury R, Chan MC, McDonough MA, Yeoh KK, Tian YM, Claridge TD, Ratcliffe PJ, Woon EC, Schofield CJ (July 2012). "Dynamic combinatorial chemistry employing boronic acids/boronate esters leads to potent oxygenase inhibitors".
3025:
Stubbs CJ, Loenarz C, Mecinović J, Yeoh KK, Hindley N, Liénard BM, Sobott F, Schofield CJ, Flashman E (May 2009). "Application of a proteolysis/mass spectrometry method for investigating the effects of inhibitors on hydroxylase structure".
201:
The active site contains a highly conserved 2-His-1-carboxylate (HXD/E...H) amino acid residue triad motif, in which the catalytically-essential Fe(II) is held by two histidine residues and one aspartic acid/glutamic acid residue. The
2156:
Yeh TL, Leissing TM, Abboud MI, Thinnes CC, Atasoylu O, Holt-Martyn JP, Zhang D, Tumber A, Lippl K, Lohans CT, Leung IK, Morcrette H, Clifton IJ, Claridge TD, Kawamura A, Flashman E, Lu X, Ratcliffe PJ, Chowdhury R, Pugh CW,
2397:
Hayashi Y, Kirimoto T, Asaka N, Nakano M, Tajima K, Miyake H, Matsuura N (May 2000). "Beneficial effects of MET-88, a gamma-butyrobetaine hydroxylase inhibitor in rats with heart failure following myocardial infarction".
23:
that catalyse a wide range of reactions. These reactions include hydroxylation reactions, demethylations, ring expansions, ring closures, and desaturations. Functionally, the αKG-dependent hydroxylases are comparable to
258:
Given the important biological roles that αKG-dependent dioxygenase play, many αKG-dependent dioxygenase inhibitors were developed. The inhibitors that were regularly used to target αKG-dependent dioxygenase include
3181:
Rydzik AM, Leung IK, Kochan GT, Thalhammer A, Oppermann U, Claridge TD, Schofield CJ (July 2012). "Development and application of a fluoride-detection-based fluorescence assay for γ-butyrobetaine hydroxylase".
3145:
Luo L, Pappalardi MB, Tummino PJ, Copeland RA, Fraser ME, Grzyska PK, Hausinger RP (June 2006). "An assay for Fe(II)/2-oxoglutarate-dependent dioxygenases by enzyme-coupled detection of succinate formation".
222:
The binding of αKG and substrate has been analyzed by X-ray crystallography, molecular dynamics calculations, and NMR spectroscopy. The binding of the ketoglutarate has been observed using enzyme inhibitors.
2433:
Mbenza NM, Nasarudin N, Vadakkedath PG, Patel K, Ismail AZ, Hanif M, Wright LJ, Sarojini V, Hartinger CG, Leung IK (June 2021). "Carbon monoxide is an inhibitor of HIF prolyl hydroxylase domain 2".
245:(PHD2), a human αKG-dependent dioxygenase. The Fe(II) is coordinated by two imidazoles and one carboxylate provided by the protein. Other ligands on iron, which are transiently occupied αKG and O 500:
Proshlyakov DA, Henshaw TF, Monterosso GR, Ryle MJ, Hausinger RP (February 2004). "Direct detection of oxygen intermediates in the non-heme Fe enzyme taurine/alpha-ketoglutarate dioxygenase".
226:
Some αKG-dependent dioxygenases bind their substrate through an induced fit mechanism. For example, significant protein structural changes have been observed upon substrate binding for human
842:
Scotti JS, Leung IK, Ge W, Bentley MA, Paps J, Kramer HB, Lee J, Aik W, Choi H, Paulsen SM, Bowman LA, Loik ND, Horita S, Ho CH, Kershaw NJ, Tang CM, Claridge TD, Preston GM, McDonough MA,
40:αKG-dependent hydroxylases have diverse roles. In microorganisms such as bacteria, αKG-dependent dioxygenases are involved in many biosynthetic and metabolic pathways; for example, in 2899:"Kinetic rationale for selectivity toward N- and C-terminal oxygen-dependent degradation domain substrates mediated by a loop region of hypoxia-inducible factor prolyl hydroxylases" 2982:
Mecinović J, Chowdhury R, Liénard BM, Flashman E, Buck MR, Oldham NJ, Schofield CJ (April 2008). "ESI-MS studies on prolyl hydroxylase domain 2 reveal a new metal binding site".
2029:
William C, Nicholls L, Ratcliffe P, Pugh C, Maxwell P (2004). "The prolyl hydroxylase enzymes that act as oxygen sensors regulating destruction of hypoxia-inducible factor α".
529:
Hewitson KS, Granatino N, Welford RW, McDonough MA, Schofield CJ (April 2005). "Oxidation by 2-oxoglutarate oxygenases: non-haem iron systems in catalysis and signalling".
1852:
McDonough MA, Li V, Flashman E, Chowdhury R, Mohr C, Liénard BM, Zondlo J, Oldham NJ, Clifton IJ, Lewis J, McNeill LA, Kurzeja RJ, Hewitson KS, Yang E, Jordan S, Syed RS,
1536:"Investigating the dependence of the hypoxia-inducible factor hydroxylases (factor inhibiting HIF and prolyl hydroxylase domain 2) on ascorbate and other reducing agents" 1434:"2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process" 1580:(September 2005). "Incorporation of oxygen into the succinate co-product of iron(II) and 2-oxoglutarate dependent oxygenases from bacteria, plants and humans". 2350:"Mildronate, an inhibitor of carnitine biosynthesis, induces an increase in gamma-butyrobetaine contents and cardioprotection in isolated rat heart infarction" 2807:"Different modes of inhibitor binding to prolyl hydroxylase by combined use of X-ray crystallography and NMR spectroscopy of paramagnetic complexes" 2584:
Mbenza NM, Vadakkedath PG, McGillivray DJ, Leung IK (December 2017). "NMR studies of the non-haem Fe(II) and 2-oxoglutarate-dependent oxygenases".
2762:(March 2010). "Monitoring the activity of 2-oxoglutarate dependent histone demethylases by NMR spectroscopy: direct observation of formaldehyde". 1688:, Flashman E (April 2014). "Studies on deacetoxycephalosporin C synthase support a consensus mechanism for 2-oxoglutarate dependent oxygenases". 279: 2264:
Kwon HS, Choi YK, Kim JW, Park YK, Yang EG, Ahn DR (July 2011). "Inhibition of a prolyl hydroxylase domain (PHD) by substrate analog peptides".
807:(January 2011). "Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases". 2301:"Mildronate, a novel fatty acid oxidation inhibitor and antianginal agent, reduces myocardial infarct size without affecting hemodynamics" 1054:"Protein Dynamics Control the Progression and Efficiency of the Catalytic Reaction Cycle of the Escherichia coli DNA-Repair Enzyme AlkB" 3110:
McNeill LA, Bethge L, Hewitson KS, Schofield CJ (January 2005). "A fluorescence-based assay for 2-oxoglutarate-dependent oxygenases".
995:"Enzymological and structural studies of the mechanism of promiscuous substrate recognition by the oxidative DNA repair enzyme AlkB" 282:
Common inhibitors of αKG-dependent dioxygenases. They compete against the cosubstrate αKG for binding to the active site Fe(II).
1211:"Crystal structure and mechanistic implications of 1-aminocyclopropane-1-carboxylic acid oxidase - the ethylene-forming enzyme" 272: 3318:"Assay of prolyl 4-hydroxylase by the chromatographic determination of [14C]succinic acid on ion-exchange minicolumns" 2676:, Claridge TD (January 2010). "Using NMR solvent water relaxation to investigate metalloenzyme-ligand binding interactions". 1491:"Ascorbate is consumed stoichiometrically in the uncoupled reactions catalyzed by prolyl 4-hydroxylase and lysyl hydroxylase" 1535: 3425: 206:
O triad binds to one face of the Fe center, leaving three labile sites available on the octahedron for binding αKG and O
768:
Prescott AG, Lloyd MD (August 2000). "The iron(II) and 2-oxoacid-dependent dioxygenases and their role in metabolism".
1766:(April 2006). "Structural studies on 2-oxoglutarate oxygenases and related double-stranded beta-helix fold proteins". 78:αKG-dependent dioxygenases catalyse oxidation reactions by incorporating a single oxygen atom from molecular oxygen (O 2217:"5-Carboxy-8-hydroxyquinoline is a Broad Spectrum 2-Oxoglutarate Oxygenase Inhibitor which Causes Iron Translocation" 1052:
Ergel, Burçe; Gill, Michelle L.; Brown, Lewis; Yu, Bomina; Palmer, III, Arthur G.; Hunt, John F. (24 October 2014).
2897:
Flashman E, Bagg EA, Chowdhury R, Mecinović J, Loenarz C, McDonough MA, Hewitson KS, Schofield CJ (February 2008).
190: 2537:"Nitric oxide modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2" 427: 2845: 2759: 2712: 2673: 2620: 2212: 2158: 2118: 2065: 1969: 1920: 1853: 1763: 1724: 1685: 1577: 1531: 1394: 1331: 1286: 1206: 959: 906: 843: 804: 623: 231: 162: 426:
Valegård K, Terwisscha van Scheltinga AC, Dubus A, Ranghino G, Oster LM, Hajdu J, Andersson I (January 2004).
357:"The 2-His-1-carboxylate facial triad--an emerging structural motif in mononuclear non-heme iron(II) enzymes" 1156:"The function and catalysis of 2-oxoglutarate-dependent oxygenases involved in plant flavonoid biosynthesis" 674:
Hausinger RP (January–February 2004). "Fe(II)/α-ketoglutarate-dependent hydroxylases and related enzymes".
3365:
Ehrismann D, Flashman E, Genn DN, Mathioudakis N, Hewitson KS, Ratcliffe PJ, Schofield CJ (January 2007).
3269:"Screening chelating inhibitors of HIF-prolyl hydroxylase domain 2 (PHD2) and factor inhibiting HIF (FIH)" 2070:"Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation" 3227:"The different catalytic roles of the metal-binding ligands in human 4-hydroxyphenylpyruvate dioxygenase" 3367:"Studies on the activity of the hypoxia-inducible-factor hydroxylases using an oxygen consumption assay" 1635:"Insight into the mechanism of an iron dioxygenase by resolution of steps following the FeIV=HO species" 20: 1985: 1869: 1006: 859: 538: 211: 63: 1925:"Structural basis for binding of hypoxia-inducible factor to the oxygen-sensing prolyl hydroxylases" 2717:"Development and application of ligand-based NMR screening assays for γ-butyrobetaine hydroxylase" 1858:"Cellular oxygen sensing: Crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2)" 3207: 3007: 2928: 2787: 2566: 2468: 2379: 2330: 2099: 1615: 1471: 940: 699: 562: 458: 848:"Human oxygen sensing may have origins in prokaryotic elongation factor Tu prolyl-hydroxylation" 2348:
Liepinsh E, Vilskersts R, Loca D, Kirjanova O, Pugovichs O, Kalvinsh I, Dambrova M (Dec 2006).
3396: 3347: 3298: 3249: 3199: 3163: 3127: 3092: 3043: 2999: 2964: 2920: 2879: 2826: 2779: 2693: 2654: 2601: 2558: 2517: 2460: 2415: 2371: 2322: 2281: 2246: 2192: 2138: 2091: 2046: 2011: 1946: 1897: 1834: 1783: 1744: 1705: 1666: 1607: 1558: 1512: 1463: 1414: 1375: 1357: 1312: 1285:
Leung IK, Krojer TJ, Kochan GT, Henry L, von Delft F, Claridge TD, Oppermann U, McDonough MA,
1267: 1250:
Myllyharju J (March 2003). "Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis".
1232: 1187: 1136: 1085: 1034: 975: 932: 887: 824: 785: 750: 691: 649: 554: 517: 488: 450: 414: 378: 343: 325: 171: 158: 2806: 3420: 3386: 3378: 3337: 3329: 3288: 3280: 3241: 3191: 3155: 3119: 3082: 3074: 3035: 2991: 2956: 2910: 2869: 2861: 2818: 2771: 2738: 2728: 2685: 2644: 2636: 2593: 2548: 2507: 2499: 2450: 2442: 2407: 2361: 2312: 2273: 2236: 2228: 2182: 2174: 2130: 2081: 2038: 2001: 1993: 1936: 1887: 1877: 1824: 1814: 1775: 1736: 1697: 1656: 1646: 1597: 1589: 1550: 1502: 1453: 1445: 1406: 1365: 1347: 1302: 1259: 1222: 1177: 1167: 1126: 1116: 1075: 1065: 1024: 1014: 967: 922: 877: 867: 816: 777: 740: 730: 683: 639: 587: 546: 509: 480: 442: 404: 393:"Mechanism of the prolyl hydroxylase reaction. 2. Kinetic analysis of the reaction sequence" 368: 333: 315: 90:
as substrate, the one label appears in the succinate and one in the hydroxylated substrate:
41: 2163:"Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials" 1974:"Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases" 1684:
Tarhonskaya H, Szöllössi A, Leung IK, Bush JT, Henry L, Chowdhury R, Iqbal A, Claridge TD,
373: 356: 2488:"Nitric Oxide Impairs Normoxic Degradation of HIF-1α by Inhibition of Prolyl Hydroxylases" 1803:"Crystal structure of the non-heme iron dioxygenase PtlH in pentalenolactone biosynthesis" 1105:"Functional diversity of 2-oxoglutarate/Fe(II)-dependent dioxygenases in plant metabolism" 278: 260: 82:) into their substrates. This conversion is coupled with the oxidation of the cosubstrate 25: 2805:
Poppe L, Tegley CM, Li V, Lewis J, Zondlo J, Yang E, Kurzeja RJ, Syed R (November 2009).
576:"Structural Insight into the Prolyl Hydroxylase PHD2: A Molecular Dynamics and DFT Study" 1989: 1873: 1458: 1433: 1010: 863: 542: 3391: 3366: 3342: 3317: 3293: 3268: 3087: 3062: 2874: 2849: 2649: 2624: 2366: 2349: 2317: 2300: 2241: 2216: 2187: 2162: 2006: 1973: 1892: 1857: 1829: 1802: 1661: 1634: 1370: 1335: 1182: 1155: 1131: 1104: 1080: 1053: 1029: 994: 882: 847: 409: 392: 338: 303: 237: 83: 2844:
Bleijlevens B, Shivarattan T, Flashman E, Yang Y, Simpson PJ, Koivisto P, Sedgwick B,
2512: 2487: 2411: 1507: 1490: 1263: 745: 718: 3414: 3063:"Spectroscopic analyses of 2-oxoglutarate-dependent oxygenases: TauD as a case study" 2472: 2103: 1965: 1916: 1602: 3284: 3211: 3011: 2932: 2791: 2597: 2570: 2334: 2042: 1779: 1727:(December 2010). "Structural studies on human 2-oxoglutarate dependent oxygenases". 1619: 1475: 703: 2383: 1307: 1290: 1227: 1210: 944: 566: 462: 210:. A similar facial Fe-binding motif, but featuring his-his-his array, is found in 3226: 1593: 2619:
Leung IK, Demetriades M, Hardy AP, Lejeune C, Smart TJ, Szöllössi A, Kawamura A,
428:"The structural basis of cephalosporin formation in a mononuclear ferrous enzyme" 271:, a drug molecule that is commonly used in Russia and Eastern Europe that target 2277: 1410: 820: 3078: 2625:"Reporter ligand NMR screening method for 2-oxoglutarate oxygenase inhibitors" 1941: 1924: 1740: 1449: 1397:(December 2012). "Mechanisms of human histone and nucleic acid demethylases". 687: 268: 3159: 3123: 1361: 329: 2503: 1915:
Chowdhury R, McDonough MA, Mecinović J, Loenarz C, Flashman E, Hewitson KS,
1882: 1651: 1489:
Myllylä R, Majamaa K, Günzler V, Hanauske-Abel HM, Kivirikko KI (May 1984).
1352: 1121: 1070: 1019: 872: 735: 644: 627: 320: 230:(PHD2), a αKG-dependent dioxygenase that is involved in oxygen sensing, and 3400: 3302: 3253: 3203: 3195: 3167: 3131: 3096: 3047: 3003: 2995: 2968: 2960: 2924: 2915: 2898: 2883: 2865: 2830: 2783: 2775: 2697: 2658: 2605: 2562: 2553: 2536: 2521: 2464: 2446: 2419: 2375: 2326: 2285: 2250: 2196: 2142: 2050: 2015: 1950: 1901: 1838: 1819: 1787: 1748: 1709: 1670: 1611: 1562: 1467: 1418: 1379: 1316: 1271: 1236: 1191: 1140: 1089: 1038: 979: 936: 927: 910: 891: 828: 789: 754: 695: 653: 592: 575: 558: 550: 521: 492: 454: 347: 175:
Consensus catalytic mechanism of the αKG-dependent dioxygenase superfamily.
3351: 2095: 1968:, Cantrelle FX, Landrieu I, Hardy AP, Pugh CW, Ratcliffe PJ, Claridge TD, 1516: 962:(September 2005). "The enzymology of clavam and carbapenem biosynthesis". 382: 3225:
Huang CW, Liu HC, Shen CP, Chen YT, Lee SJ, Lloyd MD, Lee HJ (May 2016).
1172: 418: 304:"Catalytic Mechanisms of Fe(II)- and 2-Oxoglutarate-dependent Oxygenases" 3245: 2535:
Berchner-Pfannschmidt U, Yamac H, Trinidad B, Fandrey J (January 2007).
2455: 1997: 1336:"Protein Hydroxylation Catalyzed by 2-Oxoglutarate-dependent Oxygenases" 153:
of the superoxide ligand attacks the keto carbon, inducing release of CO
3382: 3267:
Flagg SC, Martin CB, Taabazuing CY, Holmes BE, Knapp MJ (August 2012).
2850:"Dynamic states of the DNA repair enzyme AlkB regulate product release" 2733: 2716: 2711:
Khan A, Leśniak RK, Brem J, Rydzik AM, Choi H, Leung IK, McDonough MA,
2232: 2178: 2134: 1554: 55: 3333: 3039: 2822: 2743: 2689: 2640: 1701: 513: 484: 971: 781: 193:(DSBH, also known as cupin) fold, which is formed with two β-sheets. 2121:(August 2011). "Inhibition of 2-oxoglutarate dependent oxygenases". 1633:
Grzyska PK, Appelman EH, Hausinger RP, Proshlyakov DA (March 2010).
446: 1291:"Structural and mechanistic studies on γ-butyrobetaine hydroxylase" 2086: 2069: 277: 264: 242: 236: 227: 170: 32:
and reducing equivalents as cosubstrates and both generate water.
574:
Wick CR, Lanig H, Jäger CM, Burzlaff N, Clark T (November 2012).
2486:
Metzen E, Zhou J, Jelkmann W, Fandrey J, Brüne B (August 2003).
1762:
Clifton IJ, McDonough MA, Ehrismann D, Kershaw NJ, Granatino N,
905:
Clifton IJ, Doan LX, Sleeman MC, Topf M, Suzuki H, Wilmouth RC,
47: 59: 51: 1801:
You, Z.; Omura, S.; Ikeda, H.; Cane, D.E.; Jogl, G. (2007).
1576:
Welford RW, Kirkpatrick JM, McNeill LA, Puri M, Oldham NJ,
2299:
Sesti C, Simkhovich BZ, Kalvinsh I, Kloner RA (Mar 2006).
3061:
Proshlyakov DA, McCracken J, Hausinger RP (April 2016).
161:. This Fe=O center then oxygenates the substrate by an 3316:
Cunliffe CJ, Franklin TJ, Gaskell RM (December 1986).
302:
Martinez, Salette; Hausinger, Robert P. (2015-08-21).
391:
Myllylä R, Tuderman L, Kivirikko KI (November 1977).
719:"Non-heme iron enzymes: contrasts to heme catalysis" 168:
Alternative mechanisms have failed to gain support.
999:
Proceedings of the National Academy of Sciences USA
628:"The most versatile of all reactive intermediates?" 189:All αKG-dependent dioxygenases contain a conserved 1723:McDonough MA, Loenarz C, Chowdhury R, Clifton IJ, 1432:Salminen, A; Kauppinen, A; Kaarniranta, K (2015). 86:into succinate and carbon dioxide. With labeled O 1964:Chowdhury R, Leung IK, Tian YM, Abboud MI, Ge W, 911:"Crystal structure of carbapenem synthase (CarC)" 1154:Cheng AX, Han XJ, Wu YF, Lou HX (January 2014). 50:enzyme is associated with the repair of damaged 617: 615: 613: 611: 234:(IPNS), a microbial αKG-dependent dioxygenase. 2758:Hopkinson RJ, Hamed RB, Rose NR, Claridge TD, 2064:Roach PL, Clifton IJ, Hensgens CM, Shibata N, 717:Solomon EI, Decker A, Lehnert N (April 2003). 669: 667: 665: 663: 8: 2117:Rose NR, McDonough MA, King ON, Kawamura A, 993:Yu, Bomina; Hunt, John F. (25 August 2009). 17:Alpha-ketoglutarate-dependent hydroxylases 3390: 3341: 3292: 3086: 2914: 2873: 2742: 2732: 2648: 2552: 2511: 2454: 2365: 2316: 2240: 2186: 2085: 2005: 1940: 1891: 1881: 1828: 1818: 1660: 1650: 1601: 1506: 1457: 1369: 1351: 1306: 1226: 1181: 1171: 1130: 1120: 1079: 1069: 1028: 1018: 926: 881: 871: 744: 734: 643: 591: 408: 372: 337: 319: 1330:Markolovic, Suzana; Wilkins, Sarah E.; 1103:Farrow SC, Facchini PJ (October 2014). 607: 2354:Journal of Cardiovascular Pharmacology 2305:Journal of Cardiovascular Pharmacology 374:10.1111/j.1432-1033.1997.t01-1-00625.x 241:Simplified view of the active site of 62:demethylation), as well as sensors of 7: 70:the exact roles are not understood. 2068:, Hajdu J, Baldwin JE (June 1997). 1340:The Journal of Biological Chemistry 958:Kershaw NJ, Caines ME, Sleeman MC, 355:Hegg EL, Que L Jr (December 1997). 308:The Journal of Biological Chemistry 2367:10.1097/01.fjc.0000250077.07702.23 2318:10.1097/01.fjc.0000211732.76668.d2 410:10.1111/j.1432-1033.1977.tb11889.x 14: 218:Substrate and cosubstrate binding 2848:, Matthews SJ (September 2008). 2400:European Journal of Pharmacology 1530:Flashman E, Davies SL, Yeoh KK, 3285:10.1016/j.jinorgbio.2012.03.002 2715:, Claridge TD (February 2017). 2672:Leung IK, Flashman E, Yeoh KK, 2598:10.1016/j.jinorgbio.2017.08.032 2541:Journal of Biological Chemistry 2043:10.1016/j.advenzreg.2003.11.017 1780:10.1016/j.jinorgbio.2006.01.024 1058:Journal of Biological Chemistry 273:gamma-butyrobetaine dioxygenase 2623:, Claridge TD (January 2013). 1308:10.1016/j.chembiol.2010.09.016 1228:10.1016/j.chembiol.2004.08.012 1: 2492:Molecular Biology of the Cell 2412:10.1016/S0014-2999(00)00098-4 1594:10.1016/j.febslet.2005.08.033 1508:10.1016/S0021-9258(18)91023-9 1264:10.1016/S0945-053X(03)00006-4 1205:Zhang Z, Ren JS, Clifton IJ, 676:Crit. Rev. Biochem. Mol. Biol 2215:, Kawamura A (August 2013). 1862:Proc. Natl. Acad. Sci. U.S.A 1639:Proc. Natl. Acad. Sci. U.S.A 852:Proc. Natl. Acad. Sci. U.S.A 723:Proc. Natl. Acad. Sci. U.S.A 243:prolyl hydroxylase isoform 2 228:prolyl hydroxylase isoform 2 265:prolyl hydroxylase domain 2 3442: 2278:10.1016/j.bmcl.2011.05.050 1411:10.1016/j.cbpa.2012.09.015 1393:Walport LJ, Hopkinson RJ, 821:10.1016/j.tibs.2010.07.002 249:, are omitted for clarity. 3079:10.1007/s00775-016-1406-3 1942:10.1016/j.str.2009.06.002 1741:10.1016/j.sbi.2010.08.006 1450:10.1007/s00018-015-1978-z 1332:Schofield, Christopher J. 688:10.1080/10409230490440541 3160:10.1016/j.ab.2006.03.033 3124:10.1016/j.ab.2004.09.019 1729:Curr. Opin. Struct. Biol 232:isopenicillin N synthase 163:oxygen rebound mechanism 2504:10.1091/mbc.E02-12-0791 2266:Bioorg. Med. Chem. Lett 1883:10.1073/pnas.0601283103 1652:10.1073/pnas.0911565107 1353:10.1074/jbc.R115.662627 1122:10.3389/fpls.2014.00524 1071:10.1074/jbc.M114.575647 1020:10.1073/pnas.0812938106 873:10.1073/pnas.1409916111 736:10.1073/pnas.0336792100 645:10.1038/nchembio0207-86 321:10.1074/jbc.R115.648691 191:double-stranded β-helix 159:Fe(IV)-oxo intermediate 3196:10.1002/cbic.201200256 2996:10.1002/cmdc.200700233 2961:10.1002/anie.201202000 2916:10.1074/jbc.M707411200 2866:10.1038/embor.2008.120 2776:10.1002/cbic.200900713 2554:10.1074/jbc.M607065200 2447:10.1002/cbic.202100181 1820:10.1074/jbc.M706358200 1399:Curr. Opin. Chem. Biol 928:10.1074/jbc.M213054200 593:10.1002/ejic.201200391 551:10.1098/rsta.2004.1540 531:Phil. Trans. R. Soc. A 435:Nat. Struct. Mol. Biol 283: 250: 176: 21:non-heme iron proteins 1603:10536/DRO/DU:30019701 281: 240: 174: 19:are a major class of 3426:Human 2OG oxygenases 3067:J. Biol. Inorg. Chem 2949:Angew. Chem. Int. Ed 1173:10.3390/ijms15011080 212:cysteine dioxygenase 28:enzymes. Both use O 3246:10.1042/BCJ20160146 2817:(46): 16654–16655. 2031:Advan. Enzyme Regul 1998:10.1038/ncomms12673 1990:2016NatCo...712673C 1874:2006PNAS..103.9814M 1346:(34): 20712–20722. 1064:(43): 29584–29601. 1011:2009PNAS..10614315Y 1005:(34): 14315–14320. 921:(23): 20843–20850. 864:2014PNAS..11113331S 858:(37): 13331–13336. 809:Trends Biochem. Sci 580:Eur. J. Inorg. Chem 543:2005RSPTA.363..807H 314:(34): 20702–20711. 74:Catalytic mechanism 36:Biological function 3383:10.1042/BJ20061151 2734:10.1039/C6MD00004E 2233:10.1039/C3SC51122G 2179:10.1039/C7SC02103H 2161:(September 2017). 2135:10.1039/c0cs00203h 1555:10.1042/BJ20091609 846:(September 2014). 284: 251: 177: 3334:10.1042/bj2400617 3273:J. Inorg. Biochem 3190:(11): 1559–1563. 3040:10.1021/jm900285r 2955:(27): 6672–6675. 2823:10.1021/ja907933p 2721:Med. Chem. Commun 2690:10.1021/jm901537q 2641:10.1021/jm301583m 2586:J. Inorg. Biochem 2441:(15): 2521–2525. 2272:(14): 4325–4328. 2173:(11): 7651–7668. 2080:(6635): 827–830. 1868:(26): 9814–9819. 1768:J. Inorg. Biochem 1702:10.1021/bi500086p 1696:(15): 2483–2493. 1588:(23): 5170–5174. 1438:Cell Mol Life Sci 1301:(12): 1316–1324. 1289:(December 2010). 1221:(10): 1383–1394. 966:(34): 4251–4263. 626:(February 2007). 586:(31): 4973–4985. 537:(1829): 807–828. 514:10.1021/ja039113j 485:10.1021/bi030011f 479:(24): 7497–7508. 64:energy metabolism 3433: 3405: 3404: 3394: 3362: 3356: 3355: 3345: 3313: 3307: 3306: 3296: 3264: 3258: 3257: 3240:(9): 1179–1189. 3231: 3222: 3216: 3215: 3178: 3172: 3171: 3142: 3136: 3135: 3107: 3101: 3100: 3090: 3073:(2–3): 367–379. 3058: 3052: 3051: 3034:(9): 2799–2805. 3022: 3016: 3015: 2979: 2973: 2972: 2943: 2937: 2936: 2918: 2909:(7): 3808–3815. 2894: 2888: 2887: 2877: 2841: 2835: 2834: 2811:J. Am. Chem. Soc 2802: 2796: 2795: 2755: 2749: 2748: 2746: 2736: 2708: 2702: 2701: 2669: 2663: 2662: 2652: 2616: 2610: 2609: 2581: 2575: 2574: 2556: 2547:(3): 1788–1796. 2532: 2526: 2525: 2515: 2498:(8): 3470–3481. 2483: 2477: 2476: 2458: 2430: 2424: 2423: 2394: 2388: 2387: 2369: 2345: 2339: 2338: 2320: 2296: 2290: 2289: 2261: 2255: 2254: 2244: 2227:(8): 3110–3117. 2207: 2201: 2200: 2190: 2153: 2147: 2146: 2129:(8): 4364–4397. 2114: 2108: 2107: 2089: 2061: 2055: 2054: 2026: 2020: 2019: 2009: 1961: 1955: 1954: 1944: 1912: 1906: 1905: 1895: 1885: 1849: 1843: 1842: 1832: 1822: 1798: 1792: 1791: 1759: 1753: 1752: 1720: 1714: 1713: 1681: 1675: 1674: 1664: 1654: 1645:(9): 3982–3987. 1630: 1624: 1623: 1605: 1573: 1567: 1566: 1540: 1527: 1521: 1520: 1510: 1501:(9): 5403–5405. 1486: 1480: 1479: 1461: 1444:(20): 3897–914. 1429: 1423: 1422: 1405:(5–6): 525–534. 1390: 1384: 1383: 1373: 1355: 1327: 1321: 1320: 1310: 1282: 1276: 1275: 1247: 1241: 1240: 1230: 1209:(October 2004). 1202: 1196: 1195: 1185: 1175: 1166:(1): 1080–1095. 1160:Int. J. Mol. Sci 1151: 1145: 1144: 1134: 1124: 1109:Front. Plant Sci 1100: 1094: 1093: 1083: 1073: 1049: 1043: 1042: 1032: 1022: 990: 984: 983: 972:10.1039/b505964j 955: 949: 948: 930: 902: 896: 895: 885: 875: 839: 833: 832: 800: 794: 793: 782:10.1039/A902197C 765: 759: 758: 748: 738: 729:(7): 3589–3594. 714: 708: 707: 671: 658: 657: 647: 619: 597: 595: 570: 525: 508:(4): 1022–1023. 502:J. Am. Chem. Soc 496: 466: 432: 422: 412: 386: 376: 351: 341: 323: 136: 128: 104: 3441: 3440: 3436: 3435: 3434: 3432: 3431: 3430: 3411: 3410: 3409: 3408: 3364: 3363: 3359: 3315: 3314: 3310: 3266: 3265: 3261: 3229: 3224: 3223: 3219: 3180: 3179: 3175: 3144: 3143: 3139: 3109: 3108: 3104: 3060: 3059: 3055: 3024: 3023: 3019: 2981: 2980: 2976: 2945: 2944: 2940: 2896: 2895: 2891: 2843: 2842: 2838: 2804: 2803: 2799: 2757: 2756: 2752: 2710: 2709: 2705: 2671: 2670: 2666: 2618: 2617: 2613: 2583: 2582: 2578: 2534: 2533: 2529: 2485: 2484: 2480: 2432: 2431: 2427: 2396: 2395: 2391: 2347: 2346: 2342: 2298: 2297: 2293: 2263: 2262: 2258: 2209: 2208: 2204: 2155: 2154: 2150: 2116: 2115: 2111: 2063: 2062: 2058: 2028: 2027: 2023: 1972:(August 2016). 1963: 1962: 1958: 1914: 1913: 1909: 1851: 1850: 1846: 1813:(2): 36552–60. 1800: 1799: 1795: 1761: 1760: 1756: 1722: 1721: 1717: 1683: 1682: 1678: 1632: 1631: 1627: 1575: 1574: 1570: 1538: 1529: 1528: 1524: 1488: 1487: 1483: 1431: 1430: 1426: 1392: 1391: 1387: 1329: 1328: 1324: 1284: 1283: 1279: 1249: 1248: 1244: 1204: 1203: 1199: 1153: 1152: 1148: 1102: 1101: 1097: 1051: 1050: 1046: 992: 991: 987: 957: 956: 952: 904: 903: 899: 841: 840: 836: 802: 801: 797: 767: 766: 762: 716: 715: 711: 673: 672: 661: 632:Nat. Chem. Biol 621: 620: 609: 604: 573: 528: 499: 469: 447:10.1038/nsmb712 430: 425: 397:Eur. J. Biochem 390: 361:Eur. J. Biochem 354: 301: 298: 296:Further reading 289: 261:N-oxalylglycine 256: 248: 220: 209: 205: 199: 197:Metallocofactor 187: 182: 157:and forming an 156: 148: 144: 140: 134: 132: 126: 124: 120: 116: 112: 108: 103: 99: 97: 89: 81: 76: 38: 31: 26:cytochrome P450 12: 11: 5: 3439: 3437: 3429: 3428: 3423: 3413: 3412: 3407: 3406: 3377:(1): 227–234. 3357: 3328:(2): 617–619. 3308: 3259: 3217: 3173: 3137: 3118:(1): 125–131. 3102: 3053: 3017: 2990:(4): 569–572. 2974: 2938: 2889: 2860:(9): 872–877. 2836: 2797: 2770:(4): 506–510. 2750: 2727:(5): 873–880. 2703: 2684:(2): 867–875. 2664: 2635:(2): 547–555. 2611: 2576: 2527: 2478: 2425: 2389: 2340: 2291: 2256: 2202: 2148: 2123:Chem. Soc. Rev 2109: 2056: 2021: 1956: 1935:(7): 981–989. 1907: 1844: 1793: 1774:(4): 644–669. 1754: 1735:(6): 659–672. 1715: 1676: 1625: 1568: 1549:(1): 135–142. 1534:(March 2010). 1522: 1481: 1424: 1385: 1334:(2015-08-21). 1322: 1277: 1242: 1197: 1146: 1095: 1044: 985: 950: 897: 834: 795: 776:(4): 367–383. 770:Nat. Prod. Rep 760: 709: 659: 606: 605: 603: 600: 599: 598: 571: 526: 497: 467: 423: 403:(2): 349–357. 388: 367:(3): 625–629. 352: 297: 294: 288: 285: 255: 252: 246: 219: 216: 207: 203: 198: 195: 186: 183: 181: 178: 154: 150: 149: 146: 142: 138: 130: 122: 118: 114: 110: 106: 101: 95: 87: 79: 75: 72: 37: 34: 29: 13: 10: 9: 6: 4: 3: 2: 3438: 3427: 3424: 3422: 3419: 3418: 3416: 3402: 3398: 3393: 3388: 3384: 3380: 3376: 3372: 3368: 3361: 3358: 3353: 3349: 3344: 3339: 3335: 3331: 3327: 3323: 3319: 3312: 3309: 3304: 3300: 3295: 3290: 3286: 3282: 3278: 3274: 3270: 3263: 3260: 3255: 3251: 3247: 3243: 3239: 3235: 3228: 3221: 3218: 3213: 3209: 3205: 3201: 3197: 3193: 3189: 3185: 3177: 3174: 3169: 3165: 3161: 3157: 3153: 3149: 3148:Anal. Biochem 3141: 3138: 3133: 3129: 3125: 3121: 3117: 3113: 3112:Anal. Biochem 3106: 3103: 3098: 3094: 3089: 3084: 3080: 3076: 3072: 3068: 3064: 3057: 3054: 3049: 3045: 3041: 3037: 3033: 3029: 3021: 3018: 3013: 3009: 3005: 3001: 2997: 2993: 2989: 2985: 2978: 2975: 2970: 2966: 2962: 2958: 2954: 2950: 2942: 2939: 2934: 2930: 2926: 2922: 2917: 2912: 2908: 2904: 2903:J. Biol. Chem 2900: 2893: 2890: 2885: 2881: 2876: 2871: 2867: 2863: 2859: 2855: 2851: 2847: 2840: 2837: 2832: 2828: 2824: 2820: 2816: 2812: 2808: 2801: 2798: 2793: 2789: 2785: 2781: 2777: 2773: 2769: 2765: 2761: 2754: 2751: 2745: 2740: 2735: 2730: 2726: 2722: 2718: 2714: 2707: 2704: 2699: 2695: 2691: 2687: 2683: 2679: 2675: 2668: 2665: 2660: 2656: 2651: 2646: 2642: 2638: 2634: 2630: 2626: 2622: 2615: 2612: 2607: 2603: 2599: 2595: 2591: 2587: 2580: 2577: 2572: 2568: 2564: 2560: 2555: 2550: 2546: 2542: 2538: 2531: 2528: 2523: 2519: 2514: 2509: 2505: 2501: 2497: 2493: 2489: 2482: 2479: 2474: 2470: 2466: 2462: 2457: 2452: 2448: 2444: 2440: 2436: 2429: 2426: 2421: 2417: 2413: 2409: 2406:(3): 217–24. 2405: 2401: 2393: 2390: 2385: 2381: 2377: 2373: 2368: 2363: 2359: 2355: 2351: 2344: 2341: 2336: 2332: 2328: 2324: 2319: 2314: 2310: 2306: 2302: 2295: 2292: 2287: 2283: 2279: 2275: 2271: 2267: 2260: 2257: 2252: 2248: 2243: 2238: 2234: 2230: 2226: 2222: 2218: 2214: 2206: 2203: 2198: 2194: 2189: 2184: 2180: 2176: 2172: 2168: 2164: 2160: 2152: 2149: 2144: 2140: 2136: 2132: 2128: 2124: 2120: 2113: 2110: 2105: 2101: 2097: 2093: 2088: 2087:10.1038/42990 2083: 2079: 2075: 2071: 2067: 2060: 2057: 2052: 2048: 2044: 2040: 2036: 2032: 2025: 2022: 2017: 2013: 2008: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1975: 1971: 1967: 1960: 1957: 1952: 1948: 1943: 1938: 1934: 1930: 1926: 1923:(July 2009). 1922: 1918: 1911: 1908: 1903: 1899: 1894: 1889: 1884: 1879: 1875: 1871: 1867: 1863: 1859: 1856:(June 2006). 1855: 1848: 1845: 1840: 1836: 1831: 1826: 1821: 1816: 1812: 1808: 1807:J. Biol. Chem 1804: 1797: 1794: 1789: 1785: 1781: 1777: 1773: 1769: 1765: 1758: 1755: 1750: 1746: 1742: 1738: 1734: 1730: 1726: 1719: 1716: 1711: 1707: 1703: 1699: 1695: 1691: 1687: 1680: 1677: 1672: 1668: 1663: 1658: 1653: 1648: 1644: 1640: 1636: 1629: 1626: 1621: 1617: 1613: 1609: 1604: 1599: 1595: 1591: 1587: 1583: 1579: 1572: 1569: 1564: 1560: 1556: 1552: 1548: 1544: 1537: 1533: 1526: 1523: 1518: 1514: 1509: 1504: 1500: 1496: 1495:J. Biol. Chem 1492: 1485: 1482: 1477: 1473: 1469: 1465: 1460: 1455: 1451: 1447: 1443: 1439: 1435: 1428: 1425: 1420: 1416: 1412: 1408: 1404: 1400: 1396: 1389: 1386: 1381: 1377: 1372: 1367: 1363: 1359: 1354: 1349: 1345: 1341: 1337: 1333: 1326: 1323: 1318: 1314: 1309: 1304: 1300: 1296: 1292: 1288: 1281: 1278: 1273: 1269: 1265: 1261: 1257: 1253: 1246: 1243: 1238: 1234: 1229: 1224: 1220: 1216: 1212: 1208: 1201: 1198: 1193: 1189: 1184: 1179: 1174: 1169: 1165: 1161: 1157: 1150: 1147: 1142: 1138: 1133: 1128: 1123: 1118: 1114: 1110: 1106: 1099: 1096: 1091: 1087: 1082: 1077: 1072: 1067: 1063: 1059: 1055: 1048: 1045: 1040: 1036: 1031: 1026: 1021: 1016: 1012: 1008: 1004: 1000: 996: 989: 986: 981: 977: 973: 969: 965: 964:Chem. Commun. 961: 954: 951: 946: 942: 938: 934: 929: 924: 920: 916: 915:J. Biol. Chem 912: 909:(June 2003). 908: 901: 898: 893: 889: 884: 879: 874: 869: 865: 861: 857: 853: 849: 845: 838: 835: 830: 826: 822: 818: 814: 810: 806: 799: 796: 791: 787: 783: 779: 775: 771: 764: 761: 756: 752: 747: 742: 737: 732: 728: 724: 720: 713: 710: 705: 701: 697: 693: 689: 685: 681: 677: 670: 668: 666: 664: 660: 655: 651: 646: 641: 637: 633: 629: 625: 618: 616: 614: 612: 608: 601: 594: 589: 585: 581: 577: 572: 568: 564: 560: 556: 552: 548: 544: 540: 536: 532: 527: 523: 519: 515: 511: 507: 503: 498: 494: 490: 486: 482: 478: 474: 468: 464: 460: 456: 452: 448: 444: 441:(1): 95–101. 440: 436: 429: 424: 420: 416: 411: 406: 402: 398: 394: 389: 384: 380: 375: 370: 366: 362: 358: 353: 349: 345: 340: 335: 331: 327: 322: 317: 313: 309: 305: 300: 299: 295: 293: 286: 280: 276: 274: 270: 266: 262: 253: 244: 239: 235: 233: 229: 224: 217: 215: 213: 196: 194: 192: 184: 179: 173: 169: 166: 164: 160: 93: 92: 91: 85: 73: 71: 67: 65: 61: 57: 53: 49: 45: 44: 35: 33: 27: 22: 18: 3374: 3370: 3360: 3325: 3321: 3311: 3276: 3272: 3262: 3237: 3233: 3220: 3187: 3183: 3176: 3154:(1): 69–74. 3151: 3147: 3140: 3115: 3111: 3105: 3070: 3066: 3056: 3031: 3028:J. Med. Chem 3027: 3020: 2987: 2983: 2977: 2952: 2948: 2941: 2906: 2902: 2892: 2857: 2853: 2846:Schofield CJ 2839: 2814: 2810: 2800: 2767: 2763: 2760:Schofield CJ 2753: 2724: 2720: 2713:Schofield CJ 2706: 2681: 2678:J. Med. Chem 2677: 2674:Schofield CJ 2667: 2632: 2629:J. Med. Chem 2628: 2621:Schofield CJ 2614: 2589: 2585: 2579: 2544: 2540: 2530: 2495: 2491: 2481: 2456:11343/298654 2438: 2434: 2428: 2403: 2399: 2392: 2360:(6): 314–9. 2357: 2353: 2343: 2311:(3): 493–9. 2308: 2304: 2294: 2269: 2265: 2259: 2224: 2220: 2213:Schofield CJ 2205: 2170: 2166: 2159:Schofield CJ 2151: 2126: 2122: 2119:Schofield CJ 2112: 2077: 2073: 2066:Schofield CJ 2059: 2034: 2030: 2024: 1981: 1977: 1970:Schofield CJ 1959: 1932: 1928: 1921:Schofield CJ 1910: 1865: 1861: 1854:Schofield CJ 1847: 1810: 1806: 1796: 1771: 1767: 1764:Schofield CJ 1757: 1732: 1728: 1725:Schofield CJ 1718: 1693: 1690:Biochemistry 1689: 1686:Schofield CJ 1679: 1642: 1638: 1628: 1585: 1581: 1578:Schofield CJ 1571: 1546: 1542: 1532:Schofield CJ 1525: 1498: 1494: 1484: 1441: 1437: 1427: 1402: 1398: 1395:Schofield CJ 1388: 1343: 1339: 1325: 1298: 1294: 1287:Schofield CJ 1280: 1258:(1): 15–24. 1255: 1251: 1245: 1218: 1214: 1207:Schofield CJ 1200: 1163: 1159: 1149: 1112: 1108: 1098: 1061: 1057: 1047: 1002: 998: 988: 963: 960:Schofield CJ 953: 918: 914: 907:Schofield CJ 900: 855: 851: 844:Schofield CJ 837: 812: 808: 805:Schofield CJ 798: 773: 769: 763: 726: 722: 712: 682:(1): 21–68. 679: 675: 638:(2): 86–87. 635: 631: 624:Schofield CJ 622:Flashman E, 583: 579: 534: 530: 505: 501: 476: 473:Biochemistry 472: 438: 434: 400: 396: 364: 360: 311: 307: 290: 257: 225: 221: 200: 188: 167: 151: 77: 68: 42: 39: 16: 15: 3184:ChemBioChem 2984:ChemMedChem 2764:ChemBioChem 2592:: 384–394. 2435:ChemBioChem 1978:Nat. Commun 1252:Matrix Biol 815:(1): 7–18. 803:Loenarz C, 267:(PHD2) and 3415:Categories 3371:Biochem. J 3322:Biochem. J 3234:Biochem. J 2744:2292/30083 1543:Biochem. J 1295:Chem. Biol 1215:Chem. Biol 602:References 269:Mildronate 254:Inhibitors 3279:: 25–30. 2473:235460239 2221:Chem. Sci 2167:Chem. Sci 2104:205032251 2037:: 75–92. 1984:: 12673. 1929:Structure 1582:FEBS Lett 1362:1083-351X 330:0021-9258 180:Structure 3401:16952279 3303:22687491 3254:26936969 3212:13956474 3204:22730246 3168:16643838 3132:15582567 3097:27812832 3048:19364117 3012:37628097 3004:18058781 2969:22639232 2933:34893579 2925:18063574 2884:18617893 2854:EMBO Rep 2831:19886658 2792:42994868 2784:20095001 2698:20025281 2659:23234607 2606:28893416 2571:26185260 2563:17060326 2522:12925778 2465:34137488 2420:10812052 2376:17204911 2335:45844835 2327:16633095 2286:21665470 2251:26682036 2197:29435217 2143:21390379 2051:15581484 2016:27561929 1966:Domene C 1951:19604478 1917:Domene C 1902:16782814 1839:17942405 1788:16513174 1749:20888218 1710:24684493 1671:20147623 1620:11295236 1612:16153644 1563:20055761 1476:14310267 1468:26118662 1459:11114064 1419:23063108 1380:26152730 1317:21168767 1272:12714038 1237:15489165 1192:24434621 1141:25346740 1090:25043760 1039:19706517 980:16113715 937:12611886 892:25197067 829:20728359 790:11014338 755:12598659 704:85784668 696:15121720 654:17235343 559:15901537 522:14746461 493:12809506 455:14718929 348:26152721 129:H + CO 3421:Enzymes 3392:1698668 3352:3028379 3343:1147460 3294:3525482 3088:5352539 2875:2529343 2650:4673903 2384:1812127 2242:4678600 2188:5802278 2096:9194566 2007:5007464 1986:Bibcode 1893:1502536 1870:Bibcode 1830:3010413 1662:2840172 1517:6325436 1371:4543633 1183:3907857 1132:4191161 1115:: 524. 1081:4207975 1030:2725012 1007:Bibcode 945:9662423 883:4169948 860:Bibcode 567:8568103 539:Bibcode 471:coli". 463:1205987 383:9461283 339:4543632 185:Protein 109:CC(O)CH 98:CH + 56:histone 43:E. coli 3399:  3389:  3350:  3340:  3301:  3291:  3252:  3210:  3202:  3166:  3130:  3095:  3085:  3046:  3010:  3002:  2967:  2931:  2923:  2882:  2872:  2829:  2790:  2782:  2696:  2657:  2647:  2604:  2569:  2561:  2520:  2513:181582 2510:  2471:  2463:  2418:  2382:  2374:  2333:  2325:  2284:  2249:  2239:  2195:  2185:  2141:  2102:  2094:  2074:Nature 2049:  2014:  2004:  1949:  1900:  1890:  1837:  1827:  1786:  1747:  1708:  1669:  1659:  1618:  1610:  1561:  1515:  1474:  1466:  1456:  1417:  1378:  1368:  1360:  1315:  1270:  1235:  1190:  1180:  1139:  1129:  1088:  1078:  1037:  1027:  978:  943:  935:  890:  880:  827:  788:  753:  746:152966 743:  702:  694:  652:  565:  557:  520:  491:  461:  453:  419:200425 417:  381:  346:  336:  328:  287:Assays 46:, the 3230:(PDF) 3208:S2CID 3008:S2CID 2929:S2CID 2788:S2CID 2567:S2CID 2469:S2CID 2380:S2CID 2331:S2CID 2100:S2CID 1616:S2CID 1539:(PDF) 1472:S2CID 941:S2CID 700:S2CID 563:S2CID 459:S2CID 431:(PDF) 121:→ R 3397:PMID 3348:PMID 3299:PMID 3250:PMID 3200:PMID 3164:PMID 3128:PMID 3093:PMID 3044:PMID 3000:PMID 2965:PMID 2921:PMID 2880:PMID 2827:PMID 2780:PMID 2694:PMID 2655:PMID 2602:PMID 2559:PMID 2518:PMID 2461:PMID 2416:PMID 2372:PMID 2323:PMID 2282:PMID 2247:PMID 2211:PJ, 2193:PMID 2139:PMID 2092:PMID 2047:PMID 2012:PMID 1947:PMID 1898:PMID 1835:PMID 1784:PMID 1745:PMID 1706:PMID 1667:PMID 1608:PMID 1559:PMID 1513:PMID 1464:PMID 1415:PMID 1376:PMID 1358:ISSN 1313:PMID 1268:PMID 1233:PMID 1188:PMID 1137:PMID 1086:PMID 1035:PMID 976:PMID 933:PMID 888:PMID 825:PMID 786:PMID 751:PMID 692:PMID 650:PMID 584:2012 555:PMID 518:PMID 489:PMID 451:PMID 415:PMID 379:PMID 344:PMID 326:ISSN 133:+ O 105:+ O 58:and 48:AlkB 3387:PMC 3379:doi 3375:401 3338:PMC 3330:doi 3326:240 3289:PMC 3281:doi 3277:113 3242:doi 3238:473 3192:doi 3156:doi 3152:353 3120:doi 3116:336 3083:PMC 3075:doi 3036:doi 2992:doi 2957:doi 2911:doi 2907:283 2870:PMC 2862:doi 2819:doi 2815:131 2772:doi 2739:hdl 2729:doi 2686:doi 2645:PMC 2637:doi 2594:doi 2590:177 2549:doi 2545:282 2508:PMC 2500:doi 2451:hdl 2443:doi 2408:doi 2404:395 2362:doi 2313:doi 2274:doi 2237:PMC 2229:doi 2183:PMC 2175:doi 2131:doi 2082:doi 2078:387 2039:doi 2002:PMC 1994:doi 1937:doi 1888:PMC 1878:doi 1866:103 1825:PMC 1815:doi 1811:282 1776:doi 1772:100 1737:doi 1698:doi 1657:PMC 1647:doi 1643:107 1598:hdl 1590:doi 1586:579 1551:doi 1547:427 1503:doi 1499:259 1454:PMC 1446:doi 1407:doi 1366:PMC 1348:doi 1344:290 1303:doi 1260:doi 1223:doi 1178:PMC 1168:doi 1127:PMC 1117:doi 1076:PMC 1066:doi 1062:289 1025:PMC 1015:doi 1003:106 968:doi 923:doi 919:278 878:PMC 868:doi 856:111 817:doi 778:doi 741:PMC 731:doi 727:100 684:doi 640:doi 588:doi 547:doi 535:363 510:doi 506:126 481:doi 443:doi 405:doi 369:doi 365:250 334:PMC 316:doi 312:290 137:CCH 84:αKG 60:DNA 52:DNA 3417:: 3395:. 3385:. 3373:. 3369:. 3346:. 3336:. 3324:. 3320:. 3297:. 3287:. 3275:. 3271:. 3248:. 3236:. 3232:. 3206:. 3198:. 3188:13 3186:. 3162:. 3150:. 3126:. 3114:. 3091:. 3081:. 3071:22 3069:. 3065:. 3042:. 3032:52 3030:. 3006:. 2998:. 2986:. 2963:. 2953:51 2951:. 2927:. 2919:. 2905:. 2901:. 2878:. 2868:. 2856:. 2852:. 2825:. 2813:. 2809:. 2786:. 2778:. 2768:11 2766:. 2737:. 2723:. 2719:. 2692:. 2682:53 2680:. 2653:. 2643:. 2633:56 2631:. 2627:. 2600:. 2588:. 2565:. 2557:. 2543:. 2539:. 2516:. 2506:. 2496:14 2494:. 2490:. 2467:. 2459:. 2449:. 2439:22 2437:. 2414:. 2402:. 2378:. 2370:. 2358:48 2356:. 2352:. 2329:. 2321:. 2309:47 2307:. 2303:. 2280:. 2270:21 2268:. 2245:. 2235:. 2223:. 2219:. 2191:. 2181:. 2169:. 2165:. 2137:. 2127:40 2125:. 2098:. 2090:. 2076:. 2072:. 2045:. 2035:44 2033:. 2010:. 2000:. 1992:. 1980:. 1976:. 1945:. 1933:17 1931:. 1927:. 1919:, 1896:. 1886:. 1876:. 1864:. 1860:. 1833:. 1823:. 1809:. 1805:. 1782:. 1770:. 1743:. 1733:20 1731:. 1704:. 1694:53 1692:. 1665:. 1655:. 1641:. 1637:. 1614:. 1606:. 1596:. 1584:. 1557:. 1545:. 1541:. 1511:. 1497:. 1493:. 1470:. 1462:. 1452:. 1442:72 1440:. 1436:. 1413:. 1403:16 1401:. 1374:. 1364:. 1356:. 1342:. 1338:. 1311:. 1299:17 1297:. 1293:. 1266:. 1256:22 1254:. 1231:. 1219:11 1217:. 1213:. 1186:. 1176:. 1164:15 1162:. 1158:. 1135:. 1125:. 1111:. 1107:. 1084:. 1074:. 1060:. 1056:. 1033:. 1023:. 1013:. 1001:. 997:. 974:. 939:. 931:. 917:. 913:. 886:. 876:. 866:. 854:. 850:. 823:. 813:36 811:. 784:. 774:17 772:. 749:. 739:. 725:. 721:. 698:. 690:. 680:39 678:. 662:^ 648:. 634:. 630:. 610:^ 582:. 578:. 561:. 553:. 545:. 533:. 516:. 504:. 487:. 477:42 475:. 457:. 449:. 439:11 437:. 433:. 413:. 401:80 399:. 395:. 377:. 363:. 359:. 342:. 332:. 324:. 310:. 306:. 214:. 165:. 145:CO 141:CH 117:CO 113:CH 66:. 3403:. 3381:: 3354:. 3332:: 3305:. 3283:: 3256:. 3244:: 3214:. 3194:: 3170:. 3158:: 3134:. 3122:: 3099:. 3077:: 3050:. 3038:: 3014:. 2994:: 2988:3 2971:. 2959:: 2935:. 2913:: 2886:. 2864:: 2858:9 2833:. 2821:: 2794:. 2774:: 2747:. 2741:: 2731:: 2725:7 2700:. 2688:: 2661:. 2639:: 2608:. 2596:: 2573:. 2551:: 2524:. 2502:: 2475:. 2453:: 2445:: 2422:. 2410:: 2386:. 2364:: 2337:. 2315:: 2288:. 2276:: 2253:. 2231:: 2225:4 2199:. 2177:: 2171:8 2145:. 2133:: 2106:. 2084:: 2053:. 2041:: 2018:. 1996:: 1988:: 1982:7 1953:. 1939:: 1904:. 1880:: 1872:: 1841:. 1817:: 1790:. 1778:: 1751:. 1739:: 1712:. 1700:: 1673:. 1649:: 1622:. 1600:: 1592:: 1565:. 1553:: 1519:. 1505:: 1478:. 1448:: 1421:. 1409:: 1382:. 1350:: 1319:. 1305:: 1274:. 1262:: 1239:. 1225:: 1194:. 1170:: 1143:. 1119:: 1113:5 1092:. 1068:: 1041:. 1017:: 1009:: 982:. 970:: 947:. 925:: 894:. 870:: 862:: 831:. 819:: 792:. 780:: 757:. 733:: 706:. 686:: 656:. 642:: 636:3 596:. 590:: 569:. 549:: 541:: 524:. 512:: 495:. 483:: 465:. 445:: 421:. 407:: 387:. 385:. 371:: 350:. 318:: 247:2 208:2 204:2 202:N 155:2 147:2 143:2 139:2 135:O 131:2 127:O 125:C 123:3 119:2 115:2 111:2 107:2 102:2 100:O 96:3 94:R 88:2 80:2 30:2

Index

non-heme iron proteins
cytochrome P450
E. coli
AlkB
DNA
histone
DNA
energy metabolism
αKG
Fe(IV)-oxo intermediate
oxygen rebound mechanism

double-stranded β-helix
cysteine dioxygenase
prolyl hydroxylase isoform 2
isopenicillin N synthase

prolyl hydroxylase isoform 2
N-oxalylglycine
prolyl hydroxylase domain 2
Mildronate
gamma-butyrobetaine dioxygenase

"Catalytic Mechanisms of Fe(II)- and 2-Oxoglutarate-dependent Oxygenases"
doi
10.1074/jbc.R115.648691
ISSN
0021-9258
PMC
4543632

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.