Knowledge (XXG)

Carbon-to-nitrogen ratio

Source 📝

790:
organic carbon in the deep ocean is elevated compared to fresh surface ocean organic matter that has not been degraded. An exponential increase in C/N ratios is observed with increasing water depth—with C/N ratios reaching ten at intermediate water depths of about 1000 meters and up to 15 in the deep ocean (deeper than about 2500 meters) . This elevated C/N signature is preserved in the sediment until another form of diagenesis, post-depositional diagenesis, alters its C/N signature once again. Post-depositional diagenesis occurs in organic-carbon-poor marine sediments where bacteria can oxidize organic matter in aerobic conditions as an energy source. The oxidation reaction proceeds as follows: CH
841:
dominance and vascular dominance often lead to conclusions about the state of the lake during these distinct periods of isotopic signatures. Times in which algal signals dominate lakes suggest a deep-water lake, while times in which vascular plant signals dominate lakes suggest the lake is shallow, dry, or marshy. Using the C/N ratio in conjunction with other sediment observations, such as physical variations, D/H isotopic analyses of fatty acids and alkanes, and δ13C analyses on similar biomarkers can lead to further regional climate interpretations that describe the more significant phenomena at play.
36: 861:. A feedstock with a near-optimal C:N ratio will be consumed quickly. Any excess C will cause the N originally in the soil to be consumed, competing with the plant for nutrients (immobilization) – at least temporarily until the microbes die. Any excess N, on the other hand, will usually just be left behind (mineralization), but too much excess may result in leaching losses. The recommended C:N ratio for soil materials is, therefore, 30:1. A 613: 781:
carbon-to-nitrogen ratio of about 4 to 10. However, it has been observed that only 10% of this organic matter (algae) produced in the surface ocean sinks to the deep ocean without being degraded by bacteria in transit, and only about 1% is permanently buried in the sediment. An important process called sediment
836:
Unlike in marine sediments, diagenesis does not pose a large threat to the integrity of the C/N ratio in lacustrine sediments. Though wood from living trees around lakes have consistently higher C/N ratios than wood buried in sediment, the change in elemental composition is not large enough to remove
789:
produced is degraded in the deep ocean. The microbial communities utilizing the sinking organic carbon as an energy source, are partial to nitrogen-rich compounds because much of these bacteria are nitrogen-limited and much prefer it over carbon. As a result, the carbon-to-nitrogen ratio of sinking
840:
For example, two studies on Mangrove Lake, Bermuda, and Lake Yunoko, Japan, show irregular, abrupt fluctuations between C/N around 11 to 18. These fluctuations are attributed to shifts from mainly algal dominance to land-based vascular dominance. Results of studies that show abrupt shifts in algal
805:
The same principle described above explains the preferential degradation of nitrogen-rich organic matter within the sediments, as they are more labile and in higher demand. This principle has been utilized in paleoceanographic studies to identify core sites that have not experienced much microbial
802:+ 4H + 4e, with standard free energy of –27.4 kJ mol (half-reaction). Once all of the oxygen is used up, bacteria can carry out an anoxic sequence of chemical reactions as an energy source, all with negative ∆G°r values, with the reaction becoming less favorable as the chain of reactions proceeds. 809:
Lastly, ammonia, the product of the second reduction reaction, which reduces nitrate and produces nitrogen gas and ammonia, is readily adsorbed on clay mineral surfaces and protected from bacteria. This has been proposed to explain lower-than-expected C/N signatures of organic carbon in sediments
722:
land-based plants, depending on the type of photosynthesis they undergo. Therefore, the C/N ratio serves as a tool for understanding the sources of sedimentary organic matter, which can lead to information about the ecology, climate, and ocean circulation at different times in Earth's history.
721:
are terrestrial-based or marine-based. Carbon-to-nitrogen ratios indicate the degree of nitrogen limitation of plants and other organisms. They can identify whether molecules found in the sediment under study come from land-based or algal plants. Further, they can distinguish between different
780:
Organic matter that is deposited in marine sediments contains a key indicator as to its source and the processes it underwent before reaching the floor as well as after deposition, its carbon to nitrogen ratio. In the global oceans, freshly produced algae in the surface ocean typically have a
849:
In microbial communities like soil, the C:N ratio is a key indicator as it describes a balance between energetic foods (represented by carbon) and material to build protein with (represented by nitrogen). An optimal C:N ratio of around 24:1 provides for higher microbial activity.
940:
Given the C:N ratio and one of C and N contents, the other content may be calculated using the very definition of the ratio. When only the ratio is known, one must estimate the total C+N% or one of the contents to get both values.
730:
C/N ratios in the range of 4-10:1 usually come from marine sources, whereas higher ratios are likely to come from a terrestrial source. Vascular plants from terrestrial sources tend to have C/N ratios greater than 20. The lack of
837:
the vascular versus non-vascular plant signals due to the refractory nature of terrestrial organic matter. Abrupt shifts in the C/N ratio down-core can be interpreted as shifts in the organic source material.
1102:
Zahn, R.; Comas, M.C.; Klaus, A., eds. (February 1999). "Sources, preservation, and thermal maturity of organic matter in Pliocene-Pleistocene organic-carbon-rich sediments of the western Mediterranean Sea".
880:
feedstock is similar to that of soil feedstock. The recommendation is around 20-30:1. The microbes prefer a ratio of 30-35:1, but the carbon is usually not completely digested (especially in the case of
900:
The C and N contents of feedstocks is generally known from lookup tables listing common types of feedstock. It is important to deduct the moisture content if the listed value is for dry material.
767:(CF-IRMS). However, for more practical applications, desired C/N ratios can be achieved by blending commonly used substrates of known C/N content, which are readily available and easy to use. 949:
The C:N ratio of mixed feedstocks is calculated by summing their C and N amounts together and dividing the two results. For compost, moisture is also an important factor.
1702: 1455: 1088: 1043:
Prahl, F. G., J. R. Ertel, M. A. Goni, M. A. Sparrow, and B. Eversmeyer (1994). "Terrestrial Organic-Carbon Contributions to Sediments on the Washington Margin".
1750:
Rouwenhorst, R. J.; Jzn, J. F.; Scheffers, W. A.; van Dijken, J. P. (Feb–Mar 1991). "Determination of protein concentration by total organic carbon analysis".
1788: 123: 1209:
Jasper, John P.; Gagosian, Robert B. (April 1990). "The sources and deposition of organic matter in the Late Quaternary Pigmy Basin, Gulf of Mexico".
977:
Ishiwatari, R.; M. Uzaki (1987). "Diagenetic Changes of Lignin Compounds in a More Than 0.6 Million-Year-Old Lacustrine Sediment (Lake Biwa, Japan)".
408: 81: 888:
An imbalance of C:N ratio causes a slowdown in the composting process and a drop in temperature. When the C:N ratio is less than 15:1, outgassing of
581: 1131:
Müller, P.J (June 1977). "CN ratios in Pacific deep-sea sediments: Effect of inorganic ammonium and organic nitrogen compounds sorbed by clays".
108: 644: 462: 1581: 1335: 1166:
Brenna, J. T.; Corso, T. N.; Tobias, H. J.; Caimi, R. J. (September 1997). "High-precision continuous-flow isotope ratio mass spectrometry".
1025: 586: 1729: 51: 1696: 1187: 785:
accounts for the other 9% of organic carbon that sank to the deep ocean floor, but was not permanently buried, that is 9% of the
1686: 1469:
Meyers, Philip A. (June 1994). "Preservation of elemental and isotopic source identification of sedimentary organic matter".
1247:
Meyers, Philip A. (June 1994). "Preservation of elemental and isotopic source identification of sedimentary organic matter".
1599:
Li, Yong; Wu, Jinshui; Shen, Jianlin; Liu, Shoulong; Wang, Cong; Chen, Dan; Huang, Tieping; Zhang, Jiabao (December 2016).
868:
The C:N ratio of microbes themselves is generally around 10:1. A lower ratio is correlated with higher soil productivity.
511: 516: 501: 181: 820:
of organic material, exists in elevated concentrations (1 - >14μM) within cohesive shelf sea sediments found in the
1397:"Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments" 751:, and greater amount of proteins in algae versus vascular plants causes this significant difference in the C/N ratio. 1353:; Grant, B.; Horowitz, M.; Rau, G.H. (April 1996). "Mid-Pliocene warmth: stronger greenhouse and stronger conveyor". 571: 469: 175: 169: 1515: 576: 196: 637: 479: 474: 457: 302: 163: 61: 1808: 561: 76: 1060: 381: 157: 118: 86: 1813: 1516:"Separation of Autochthonous and Allochthonous Materials in Lacustrine Sediments by Density Differences" 1449: 1082: 630: 617: 566: 297: 1396: 824:(depth: 1–30 cm). The sediment depth exceeds 1m and would be a suitable study site for conducting 1560: 1612: 1478: 1411: 1362: 1315: 1256: 1218: 1175: 1140: 1052: 986: 786: 493: 395: 151: 56: 1065: 1011:
Gray KR, Biddlestone AJ. 1973. Composting - process parameters. The Chemical Engineer. Feb. pp 71-76
1803: 694: 442: 258: 113: 1437: 904: 892:
may occur, creating odor and losing nitrogen. A finished compost has a C:N ratio of around 10:1.
521: 289: 273: 268: 191: 1767: 1692: 1638: 1537: 1331: 1191: 1021: 1020:
Stewart, Keith (2006). It's A Long Road to A Tomato. New York: Marlowe & Company. p. 155.
764: 452: 231: 66: 1759: 1628: 1620: 1527: 1494: 1486: 1427: 1419: 1370: 1323: 1272: 1264: 1226: 1183: 1148: 1108: 1070: 994: 817: 418: 312: 307: 1725: 35: 1291:
Dahlem. "Flux to the Seafloor", Group Report, eds. K.W. Bruland et al., pp. 210–213, 1988.
682: 546: 413: 346: 334: 263: 137: 1616: 1482: 1415: 1366: 1319: 1260: 1222: 1179: 1144: 1056: 990: 1633: 1600: 825: 698: 556: 526: 506: 447: 361: 244: 239: 100: 1601:"Soil microbial C:N ratio is a robust indicator of soil productivity for paddy fields" 1797: 1763: 1490: 1423: 1374: 1350: 1327: 1268: 1230: 1152: 1112: 1074: 998: 915: 718: 670: 1667: 1441: 853:
The C:N ratio of soil can be modified by the addition of materials such as compost,
760: 714: 339: 253: 207: 145: 27: 922:
content (often reported in animal feed) or from reported macronutrient levels as
403: 376: 371: 366: 356: 326: 212: 71: 821: 806:
activity or contamination by terrestrial sources with much higher C/N ratios.
782: 351: 1541: 919: 862: 732: 1642: 1771: 1532: 1195: 1499: 1432: 1277: 889: 813: 686: 678: 1306:
Emerson, S.; Hedges, J. (2003), "Sediment Diagenesis and Benthic Flux",
877: 702: 434: 217: 1624: 1188:
10.1002/(SICI)1098-2787(1997)16:5<227::AID-MAS1>3.0.CO;2-J
882: 854: 674: 596: 759:
Examples of devices that can be used to measure this ratio are the
858: 591: 1514:
Ishiwatari, Ryoshi; Takamatsu, Nobuki; Ishibashi, Tomoko (1977).
1105:
Proceedings of the Ocean Drilling Program, 161 Scientific Results
690: 907:, the N content may be estimated from the protein content as 713:
In the analysis of sediments, C/N ratios are a proxy for
865:
may be done to find the C:N ratio of the soil itself.
685:. It can, amongst other things, be used in analysing 1242: 1240: 1126: 1124: 1122: 1395:Meyers, Philip A., and Ryoshi Ishiwatari (1993). 918:calculation. The C content may be estimated from 1561:"Carbon to Nitrogen Ratios in Cropping Systems" 1752:Journal of Biochemical and Biophysical Methods 1688:The Practical Handbook of Compost Engineering 638: 8: 1454:: CS1 maint: multiple names: authors list ( 1087:: CS1 maint: multiple names: authors list ( 717:research, having different uses whether the 1568:USDA Natural Resources Conservation Service 1662: 1660: 1658: 1656: 1654: 1652: 1555: 1553: 1551: 645: 631: 18: 1632: 1531: 1498: 1431: 1276: 1107:. Vol. 161. Ocean Drilling Program. 1064: 896:Estimating C and N contents of feedstocks 810:undergoing post-depositional diagenesis. 1390: 1388: 1386: 1384: 1301: 1299: 1297: 958: 582:Territorialisation of carbon governance 26: 1447: 1080: 1038: 1036: 1034: 972: 970: 968: 966: 964: 962: 763:and the continuous-flow isotope ratio 885:feedstock), hence the lowered ratio. 587:Total Carbon Column Observing Network 7: 735:, which has a chemical formula of (C 1730:University of Massachusetts Amherst 16:Chemical ratio in organic materials 14: 1705:from the original on 13 July 2021 1582:"Carbon to Nitrogen Ratio (C:N)" 1113:10.2973/odp.proc.sr.161.235.1999 612: 611: 34: 1211:Geochimica et Cosmochimica Acta 1133:Geochimica et Cosmochimica Acta 1045:Geochimica et Cosmochimica Acta 979:Geochimica et Cosmochimica Acta 1328:10.1016/b0-08-043751-6/06112-0 547:Climate reconstruction proxies 1: 1520:Japanese Journal of Limnology 1764:10.1016/0165-022x(91)90024-q 1491:10.1016/0009-2541(94)90059-0 1424:10.1016/0146-6380(93)90100-P 1375:10.1016/0377-8398(95)00048-8 1269:10.1016/0009-2541(94)90059-0 1231:10.1016/0016-7037(90)90443-O 1153:10.1016/0016-7037(77)90047-3 1075:10.1016/0016-7037(94)90177-5 999:10.1016/0016-7037(87)90244-4 517:Carbonate compensation depth 182:Particulate inorganic carbon 1830: 572:Carbon capture and storage 176:Particulate organic carbon 170:Dissolved inorganic carbon 1168:Mass Spectrometry Reviews 945:Managing mixed feedstocks 876:The role of C:N ratio in 577:Carbon cycle re-balancing 1355:Marine Micropaleontology 1308:Treatise on Geochemistry 659:carbon-to-nitrogen ratio 552:Carbon-to-nitrogen ratio 512:Carbonate–silicate cycle 480:Carbon dioxide clathrate 475:Clathrate gun hypothesis 303:Net ecosystem production 164:Dissolved organic carbon 562:Deep Carbon Observatory 22:Part of a series on the 1726:"Analysis of Proteins" 1724:D. Julian McClements. 903:For foodstuffs with a 828:experiments with C:N. 382:Continental shelf pump 158:Total inorganic carbon 124:Satellite measurements 1533:10.3739/rikusui.38.94 1314:, Elsevier: 293–319, 567:Global Carbon Project 298:Ecosystem respiration 1685:Haug, Roger (1993). 1404:Organic Geochemistry 787:total organic carbon 396:Carbon sequestration 152:Total organic carbon 1617:2016NatSR...635266L 1483:1994ChGeo.114..289M 1416:1993OrGeo..20..867M 1367:1996MarMP..27..313R 1320:2003TrGeo...6..293E 1261:1994ChGeo.114..289M 1223:1990GeCoA..54.1117J 1180:1997MSRv...16..227B 1145:1977GeCoA..41..765M 1057:1994GeCoA..58.3035P 991:1987GeCoA..51..321I 695:soil organic matter 443:Atmospheric methane 409:Soil carbon storage 259:Reverse Krebs cycle 114:Ocean acidification 1672:CORNELL Composting 1605:Scientific Reports 905:nutrition analysis 816:produced from the 522:Great Calcite Belt 470:Aerobic production 290:Carbon respiration 232:Metabolic pathways 192:Primary production 1625:10.1038/srep35266 1586:Soil Health Nexus 1337:978-0-08-043751-4 1026:978-1-56924-330-5 765:mass spectrometer 671:ratio of the mass 655: 654: 453:Methane emissions 109:In the atmosphere 1821: 1776: 1775: 1747: 1741: 1740: 1738: 1736: 1721: 1715: 1714: 1712: 1710: 1682: 1676: 1675: 1664: 1647: 1646: 1636: 1596: 1590: 1589: 1578: 1572: 1571: 1565: 1557: 1546: 1545: 1535: 1511: 1505: 1504: 1502: 1477:(3–4): 289–302. 1471:Chemical Geology 1466: 1460: 1459: 1453: 1445: 1435: 1401: 1392: 1379: 1378: 1361:(1–4): 313–326. 1347: 1341: 1340: 1303: 1292: 1289: 1283: 1282: 1280: 1255:(3–4): 289–302. 1249:Chemical Geology 1244: 1235: 1234: 1217:(4): 1117–1132. 1206: 1200: 1199: 1163: 1157: 1156: 1128: 1117: 1116: 1099: 1093: 1092: 1086: 1078: 1068: 1040: 1029: 1018: 1012: 1009: 1003: 1002: 974: 936: 914:, reversing the 913: 818:remineralisation 771:By sediment type 683:organic residues 647: 640: 633: 620: 615: 614: 419:pelagic sediment 313:Soil respiration 308:Photorespiration 38: 19: 1829: 1828: 1824: 1823: 1822: 1820: 1819: 1818: 1794: 1793: 1785: 1780: 1779: 1749: 1748: 1744: 1734: 1732: 1723: 1722: 1718: 1708: 1706: 1699: 1684: 1683: 1679: 1666: 1665: 1650: 1598: 1597: 1593: 1580: 1579: 1575: 1563: 1559: 1558: 1549: 1522:(in Japanese). 1513: 1512: 1508: 1468: 1467: 1463: 1446: 1399: 1394: 1393: 1382: 1349: 1348: 1344: 1338: 1305: 1304: 1295: 1290: 1286: 1246: 1245: 1238: 1208: 1207: 1203: 1165: 1164: 1160: 1130: 1129: 1120: 1101: 1100: 1096: 1079: 1066:10.1.1.175.9020 1051:(14): 3035–48. 1042: 1041: 1032: 1019: 1015: 1010: 1006: 976: 975: 960: 955: 947: 923: 908: 898: 874: 847: 834: 801: 797: 793: 778: 773: 757: 750: 746: 742: 738: 728: 711: 699:soil amendments 677:to the mass of 651: 610: 603: 602: 601: 541: 533: 532: 531: 496: 486: 485: 484: 437: 427: 426: 425: 414:Marine sediment 398: 388: 387: 386: 347:Solubility pump 335:Biological pump 329: 319: 318: 317: 292: 282: 281: 280: 264:Carbon fixation 249: 234: 224: 223: 222: 203: 187: 140: 138:Forms of carbon 130: 129: 128: 103: 93: 92: 91: 46: 17: 12: 11: 5: 1827: 1825: 1817: 1816: 1811: 1809:Soil chemistry 1806: 1796: 1795: 1792: 1791: 1789:C/N calculator 1784: 1783:External links 1781: 1778: 1777: 1758:(2): 119–128. 1742: 1716: 1697: 1677: 1648: 1591: 1573: 1547: 1506: 1461: 1410:(7): 867–900. 1380: 1342: 1336: 1293: 1284: 1236: 1201: 1174:(5): 227–258. 1158: 1139:(6): 765–776. 1118: 1094: 1030: 1013: 1004: 957: 956: 954: 951: 946: 943: 897: 894: 873: 870: 846: 843: 833: 830: 826:paleolimnology 799: 795: 791: 777: 774: 772: 769: 756: 753: 748: 744: 740: 736: 727: 724: 719:sediment cores 710: 707: 653: 652: 650: 649: 642: 635: 627: 624: 623: 622: 621: 605: 604: 600: 599: 594: 589: 584: 579: 574: 569: 564: 559: 557:Deep biosphere 554: 549: 543: 542: 539: 538: 535: 534: 530: 529: 527:Redfield ratio 524: 519: 514: 509: 507:Nutrient cycle 504: 498: 497: 494:Biogeochemical 492: 491: 488: 487: 483: 482: 477: 472: 467: 466: 465: 460: 450: 448:Methanogenesis 445: 439: 438: 433: 432: 429: 428: 424: 423: 422: 421: 411: 406: 400: 399: 394: 393: 390: 389: 385: 384: 379: 374: 369: 364: 362:Microbial loop 359: 354: 349: 344: 343: 342: 331: 330: 325: 324: 321: 320: 316: 315: 310: 305: 300: 294: 293: 288: 287: 284: 283: 279: 278: 277: 276: 271: 261: 256: 250: 248: 247: 245:Chemosynthesis 242: 240:Photosynthesis 236: 235: 230: 229: 226: 225: 221: 220: 215: 210: 204: 202: 201: 200: 199: 188: 186: 185: 179: 173: 167: 161: 155: 149: 142: 141: 136: 135: 132: 131: 127: 126: 121: 116: 111: 105: 104: 101:Carbon dioxide 99: 98: 95: 94: 90: 89: 84: 79: 74: 69: 64: 59: 54: 48: 47: 44: 43: 40: 39: 31: 30: 24: 23: 15: 13: 10: 9: 6: 4: 3: 2: 1826: 1815: 1812: 1810: 1807: 1805: 1802: 1801: 1799: 1790: 1787: 1786: 1782: 1773: 1769: 1765: 1761: 1757: 1753: 1746: 1743: 1731: 1727: 1720: 1717: 1704: 1700: 1698:9780873713733 1694: 1691:. CRC Press. 1690: 1689: 1681: 1678: 1673: 1669: 1663: 1661: 1659: 1657: 1655: 1653: 1649: 1644: 1640: 1635: 1630: 1626: 1622: 1618: 1614: 1610: 1606: 1602: 1595: 1592: 1587: 1583: 1577: 1574: 1569: 1562: 1556: 1554: 1552: 1548: 1543: 1539: 1534: 1529: 1525: 1521: 1517: 1510: 1507: 1501: 1500:2027.42/31544 1496: 1492: 1488: 1484: 1480: 1476: 1472: 1465: 1462: 1457: 1451: 1443: 1439: 1434: 1433:2027.42/30617 1429: 1425: 1421: 1417: 1413: 1409: 1405: 1398: 1391: 1389: 1387: 1385: 1381: 1376: 1372: 1368: 1364: 1360: 1356: 1352: 1346: 1343: 1339: 1333: 1329: 1325: 1321: 1317: 1313: 1309: 1302: 1300: 1298: 1294: 1288: 1285: 1279: 1278:2027.42/31544 1274: 1270: 1266: 1262: 1258: 1254: 1250: 1243: 1241: 1237: 1232: 1228: 1224: 1220: 1216: 1212: 1205: 1202: 1197: 1193: 1189: 1185: 1181: 1177: 1173: 1169: 1162: 1159: 1154: 1150: 1146: 1142: 1138: 1134: 1127: 1125: 1123: 1119: 1114: 1110: 1106: 1098: 1095: 1090: 1084: 1076: 1072: 1067: 1062: 1058: 1054: 1050: 1046: 1039: 1037: 1035: 1031: 1027: 1023: 1017: 1014: 1008: 1005: 1000: 996: 992: 988: 985:(2): 321–28. 984: 980: 973: 971: 969: 967: 965: 963: 959: 952: 950: 944: 942: 938: 934: 930: 926: 921: 917: 916:crude protein 911: 906: 901: 895: 893: 891: 886: 884: 879: 871: 869: 866: 864: 860: 856: 851: 844: 842: 838: 831: 829: 827: 823: 819: 815: 811: 807: 803: 788: 784: 775: 770: 768: 766: 762: 754: 752: 734: 725: 723: 720: 716: 708: 706: 704: 700: 696: 692: 688: 684: 680: 676: 672: 668: 664: 660: 648: 643: 641: 636: 634: 629: 628: 626: 625: 619: 609: 608: 607: 606: 598: 595: 593: 590: 588: 585: 583: 580: 578: 575: 573: 570: 568: 565: 563: 560: 558: 555: 553: 550: 548: 545: 544: 537: 536: 528: 525: 523: 520: 518: 515: 513: 510: 508: 505: 503: 502:Marine cycles 500: 499: 495: 490: 489: 481: 478: 476: 473: 471: 468: 464: 461: 459: 456: 455: 454: 451: 449: 446: 444: 441: 440: 436: 431: 430: 420: 417: 416: 415: 412: 410: 407: 405: 402: 401: 397: 392: 391: 383: 380: 378: 375: 373: 370: 368: 365: 363: 360: 358: 355: 353: 350: 348: 345: 341: 338: 337: 336: 333: 332: 328: 323: 322: 314: 311: 309: 306: 304: 301: 299: 296: 295: 291: 286: 285: 275: 272: 270: 267: 266: 265: 262: 260: 257: 255: 252: 251: 246: 243: 241: 238: 237: 233: 228: 227: 219: 216: 214: 211: 209: 206: 205: 198: 195: 194: 193: 190: 189: 183: 180: 177: 174: 171: 168: 165: 162: 159: 156: 153: 150: 147: 144: 143: 139: 134: 133: 125: 122: 120: 117: 115: 112: 110: 107: 106: 102: 97: 96: 88: 85: 83: 82:Boreal forest 80: 78: 75: 73: 70: 68: 65: 63: 60: 58: 55: 53: 50: 49: 42: 41: 37: 33: 32: 29: 25: 21: 20: 1814:Geochemistry 1755: 1751: 1745: 1733:. Retrieved 1719: 1707:. Retrieved 1687: 1680: 1671: 1611:(1): 35266. 1608: 1604: 1594: 1585: 1576: 1567: 1526:(3): 94–99. 1523: 1519: 1509: 1474: 1470: 1464: 1450:cite journal 1407: 1403: 1358: 1354: 1345: 1311: 1307: 1287: 1252: 1248: 1214: 1210: 1204: 1171: 1167: 1161: 1136: 1132: 1104: 1097: 1083:cite journal 1048: 1044: 1016: 1007: 982: 978: 948: 939: 932: 928: 924: 909: 902: 899: 887: 875: 867: 852: 848: 839: 835: 812: 808: 804: 779: 761:CHN analyzer 758: 729: 715:paleoclimate 712: 666: 662: 658: 656: 551: 340:Martin curve 327:Carbon pumps 254:Calvin cycle 208:Black carbon 146:Total carbon 87:Geochemistry 28:Carbon cycle 1668:"C/N Ratio" 1351:Raymo, M.E. 755:Instruments 404:Carbon sink 367:Viral shunt 357:Marine snow 213:Blue carbon 67:Deep carbon 62:Atmospheric 52:Terrestrial 1804:Composting 1798:Categories 1709:16 October 953:References 832:Lacustrine 822:Celtic Sea 783:diagenesis 693:including 377:Whale pump 372:Jelly pump 352:Lipid pump 77:Permafrost 45:By regions 1542:0021-5104 1061:CiteSeerX 931:× 0.86 + 927:× 0.44 + 920:crude ash 863:soil test 733:cellulose 709:Sediments 687:sediments 667:C:N ratio 663:C/N ratio 1735:27 April 1703:Archived 1643:27739462 1442:36874753 890:ammonium 814:Ammonium 701:such as 679:nitrogen 618:Category 1772:2061559 1634:5064311 1613:Bibcode 1479:Bibcode 1412:Bibcode 1363:Bibcode 1316:Bibcode 1257:Bibcode 1219:Bibcode 1196:9538528 1176:Bibcode 1141:Bibcode 1053:Bibcode 987:Bibcode 878:compost 872:Compost 703:compost 669:) is a 463:Wetland 435:Methane 218:Kerogen 119:Removal 1770:  1695:  1641:  1631:  1540:  1440:  1334:  1194:  1063:  1024:  935:× 0.53 925:carbs% 912:× 0.16 883:lignin 857:, and 855:manure 798:O → CO 776:Marine 726:Ranges 675:carbon 616:  597:CO2SYS 458:Arctic 197:marine 57:Marine 1564:(PDF) 1438:S2CID 1400:(PDF) 933:prot% 910:prot% 859:mulch 794:O + H 592:C4MIP 540:Other 184:(PIC) 178:(POC) 172:(DIC) 166:(DOC) 160:(TIC) 154:(TOC) 1768:PMID 1737:2007 1711:2020 1693:ISBN 1639:PMID 1538:ISSN 1456:link 1332:ISBN 1192:PMID 1089:link 1022:ISBN 929:fat% 845:Soil 697:and 691:soil 689:and 148:(TC) 72:Soil 1760:doi 1629:PMC 1621:doi 1528:doi 1495:hdl 1487:doi 1475:114 1428:hdl 1420:doi 1371:doi 1324:doi 1273:hdl 1265:doi 1253:114 1227:doi 1184:doi 1149:doi 1109:doi 1071:doi 995:doi 681:in 673:of 665:or 1800:: 1766:. 1756:22 1754:. 1728:. 1701:. 1670:. 1651:^ 1637:. 1627:. 1619:. 1607:. 1603:. 1584:. 1566:. 1550:^ 1536:. 1524:38 1518:. 1493:. 1485:. 1473:. 1452:}} 1448:{{ 1436:. 1426:. 1418:. 1408:20 1406:. 1402:. 1383:^ 1369:. 1359:27 1357:. 1330:, 1322:, 1310:, 1296:^ 1271:. 1263:. 1251:. 1239:^ 1225:. 1215:54 1213:. 1190:. 1182:. 1172:16 1170:. 1147:. 1137:41 1135:. 1121:^ 1085:}} 1081:{{ 1069:. 1059:. 1049:58 1047:. 1033:^ 993:. 983:51 981:. 961:^ 937:. 741:10 705:. 657:A 274:C4 269:C3 1774:. 1762:: 1739:. 1713:. 1674:. 1645:. 1623:: 1615:: 1609:6 1588:. 1570:. 1544:. 1530:: 1503:. 1497:: 1489:: 1481:: 1458:) 1444:. 1430:: 1422:: 1414:: 1377:. 1373:: 1365:: 1326:: 1318:: 1312:6 1281:. 1275:: 1267:: 1259:: 1233:. 1229:: 1221:: 1198:. 1186:: 1178:: 1155:. 1151:: 1143:: 1115:. 1111:: 1091:) 1077:. 1073:: 1055:: 1028:. 1001:. 997:: 989:: 800:2 796:2 792:2 749:n 747:) 745:5 743:O 739:H 737:6 661:( 646:e 639:t 632:v

Index

Carbon cycle

Terrestrial
Marine
Atmospheric
Deep carbon
Soil
Permafrost
Boreal forest
Geochemistry
Carbon dioxide
In the atmosphere
Ocean acidification
Removal
Satellite measurements
Forms of carbon
Total carbon
Total organic carbon
Total inorganic carbon
Dissolved organic carbon
Dissolved inorganic carbon
Particulate organic carbon
Particulate inorganic carbon
Primary production
marine
Black carbon
Blue carbon
Kerogen
Metabolic pathways
Photosynthesis

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.