Knowledge (XXG)

Polygenic adaptation

Source πŸ“

95:. In a 2012 paper, Joel Hirschhorn and colleagues showed that there was a consistent tendency for the "tall" alleles at genome-wide significant loci to be at higher frequencies in northern Europeans than in southern Europeans. They interpreted this observation to indicate that the difference in average height between northern and southern Europeans is at least partly genetic (as opposed to environmental) and that it was driven by selection. This result has been replicated by subsequent studies, however the environmental factor driving the selection remains unclear. A study of recent polygenic adaptation in the English has shown that selection on height has had small effects on allele frequencies (<1%) across most of the genome, and found evidence for polygenic adaptation in a wide variety of other traits as well including selection for increased infant birth size and increased female hip and waist size. 65:, purging variation from a region of linkage around the selected site. More recent models have focused on partial sweeps, and on soft sweeps - i.e., sweeps that start from standing variation or comprise multiple sweeping variants at the same locus. All of these models focus on adaptation through genetic changes at a single locus and they generally assume large changes in allele frequencies. 72:. However, traditional models in quantitative genetics usually abstract away the contributions of individual loci by focusing instead on means and variances of genetic scores. In contrast, population genetics models and data analysis have generally emphasized models of adaptation through 370:
Turchin, Michael C.; Chiang, Charleston W. K.; Palmer, Cameron D.; Sankararaman, Sriram; Reich, David; Genetic Investigation of ANthropometric Traits (GIANT) Consortium; Hirschhorn, Joel N. (2012-09-01).
327:
Burke, Molly K.; Dunham, Joseph P.; Shahrestani, Parvin; Thornton, Kevin R.; Rose, Michael R.; Long, Anthony D. (2010). "Genome-wide analysis of a long-term evolution experiment with Drosophila".
547:
Robinson, Matthew R.; Hemani, Gibran; Medina-Gomez, Carolina; Mezzavilla, Massimo; Esko, Tonu; Shakhbazov, Konstantin; Powell, Joseph E.; Vinkhuyzen, Anna; Berndt, Sonja I. (2015-11-01).
490:
Mathieson, Iain; Lazaridis, Iosif; Rohland, Nadin; Mallick, Swapan; Patterson, Nick; Roodenberg, SongΓΌl Alpaslan; Harney, Eadaoin; Stewardson, Kristin; Fernandes, Daniel (2015-12-24).
46:. However, if the phenotypic optimum changes, then the population can adapt by small directional shifts in allele frequencies spread across all the variants that affect the 38:, i.e., affected by standing genetic variation at hundreds or thousands of loci. Under normal conditions, the genetic variation underlying such traits is governed by 88:, when plants or animals undergo rapid responses to selective pressures. However, in most cases the actual genetic loci involved are not yet known (but see e.g.,). 91:
At present the best-understood examples of polygenic adaptation are in humans, and particularly for height, a trait that can be interpreted using data from
607:
Field, Yair; Boyle, Evan A.; Telis, Natalie; Gao, Ziyue; Gaulton, Kyle J.; Golan, David; Yengo, Loic; Rocheleau, Ghislain; Froguel, Philippe (2016-11-11).
76:
at individual loci. The modern formulation of polygenic adaptation in population genetics was developed in a pair of 2010 review articles.
54:), however it is difficult to detect from genomic data because the changes in allele frequencies at individual loci are very small. 670: 62: 92: 372: 69: 39: 51: 85: 352: 675: 646: 628: 586: 568: 529: 511: 472: 454: 413: 395: 344: 309: 291: 252: 234: 195: 154: 136: 636: 620: 576: 560: 519: 503: 462: 444: 403: 387: 373:"Evidence of widespread selection on standing variation in Europe at height-associated SNPs" 336: 299: 283: 242: 226: 185: 144: 128: 47: 28: 24: 61:. In classic selective sweep models, a single new mutation sweeps through a population to 215:"Soft sweeps: molecular population genetics of adaptation from standing genetic variation" 73: 58: 35: 641: 608: 581: 548: 524: 491: 467: 432: 408: 304: 271: 247: 214: 149: 116: 117:"The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation" 664: 356: 449: 549:"Population genetic differentiation of height and body mass index across Europe" 230: 190: 173: 132: 20: 632: 572: 515: 458: 399: 295: 238: 140: 42:, in which natural selection acts to hold the population close to an optimal 624: 43: 650: 590: 533: 476: 417: 348: 313: 256: 158: 199: 84:
Polygenic adaptation is presumed to be the dominant mode of adaptation in
50:. Polygenic adaptation can occur relatively quickly (as described in the 507: 340: 115:
Pritchard, Jonathan K.; Pickrell, Joseph K.; Coop, Graham (2010-02-23).
68:
The concept of polygenic adaptation is related to classical models from
564: 391: 287: 57:
Polygenic adaptation represents an alternative to adaptation by
492:"Genome-wide patterns of selection in 230 ancient Eurasians" 609:"Detection of human adaptation during the past 2000 years" 270:
Pritchard, Jonathan K.; Di Rienzo, Anna (October 2010).
213:
Hermisson, Joachim; Pennings, Pleuni S. (2005-04-01).
433:"A population genetic signal of polygenic adaptation" 34:Many traits in humans and other species are highly 174:"The hitch-hiking effect of a favourable gene" 8: 431:Berg, Jeremy J.; Coop, Graham (2014-08-01). 640: 580: 523: 466: 448: 407: 303: 246: 189: 148: 104: 172:Smith, J. M.; Haigh, J. (1974-02-01). 602: 600: 7: 110: 108: 272:"Adaptation - not by sweeps alone" 14: 80:Examples of polygenic adaptation 23:adapts through small changes in 93:genome-wide association studies 19:describes a process in which a 1: 450:10.1371/journal.pgen.1004412 27:at hundreds or thousands of 231:10.1534/genetics.104.036947 692: 191:10.1017/S0016672300014634 133:10.1016/j.cub.2009.11.055 276:Nature Reviews. Genetics 625:10.1126/science.aag0776 671:Population statistics 70:quantitative genetics 40:stabilizing selection 86:artificial selection 17:Polygenic adaptation 508:10.1038/nature16152 341:10.1038/nature09352 178:Genetical Research 52:breeder's equation 25:allele frequencies 619:(6313): 760–764. 559:(11): 1357–1362. 502:(7583): 499–503. 335:(7315): 587–590. 683: 655: 654: 644: 604: 595: 594: 584: 544: 538: 537: 527: 487: 481: 480: 470: 452: 428: 422: 421: 411: 386:(9): 1015–1019. 377: 367: 361: 360: 324: 318: 317: 307: 267: 261: 260: 250: 225:(4): 2335–2352. 210: 204: 203: 193: 169: 163: 162: 152: 112: 59:selective sweeps 691: 690: 686: 685: 684: 682: 681: 680: 661: 660: 659: 658: 606: 605: 598: 565:10.1038/ng.3401 553:Nature Genetics 546: 545: 541: 489: 488: 484: 443:(8): e1004412. 430: 429: 425: 392:10.1038/ng.2368 380:Nature Genetics 375: 369: 368: 364: 326: 325: 321: 288:10.1038/nrg2880 282:(10): 665–667. 269: 268: 264: 212: 211: 207: 171: 170: 166: 127:(4): R208–215. 121:Current Biology 114: 113: 106: 101: 82: 12: 11: 5: 689: 687: 679: 678: 673: 663: 662: 657: 656: 596: 539: 482: 423: 362: 319: 262: 205: 164: 103: 102: 100: 97: 81: 78: 13: 10: 9: 6: 4: 3: 2: 688: 677: 674: 672: 669: 668: 666: 652: 648: 643: 638: 634: 630: 626: 622: 618: 614: 610: 603: 601: 597: 592: 588: 583: 578: 574: 570: 566: 562: 558: 554: 550: 543: 540: 535: 531: 526: 521: 517: 513: 509: 505: 501: 497: 493: 486: 483: 478: 474: 469: 464: 460: 456: 451: 446: 442: 438: 437:PLOS Genetics 434: 427: 424: 419: 415: 410: 405: 401: 397: 393: 389: 385: 381: 374: 366: 363: 358: 354: 350: 346: 342: 338: 334: 330: 323: 320: 315: 311: 306: 301: 297: 293: 289: 285: 281: 277: 273: 266: 263: 258: 254: 249: 244: 240: 236: 232: 228: 224: 220: 216: 209: 206: 201: 197: 192: 187: 183: 179: 175: 168: 165: 160: 156: 151: 146: 142: 138: 134: 130: 126: 122: 118: 111: 109: 105: 98: 96: 94: 89: 87: 79: 77: 75: 71: 66: 64: 60: 55: 53: 49: 45: 41: 37: 32: 30: 26: 22: 18: 616: 612: 556: 552: 542: 499: 495: 485: 440: 436: 426: 383: 379: 365: 332: 328: 322: 279: 275: 265: 222: 218: 208: 184:(1): 23–35. 181: 177: 167: 124: 120: 90: 83: 67: 56: 33: 16: 15: 665:Categories 99:References 21:population 633:1095-9203 573:1546-1718 516:1476-4687 459:1553-7404 400:1546-1718 357:205222217 296:1471-0064 239:0016-6731 141:1879-0445 44:phenotype 36:polygenic 676:Genetics 651:27738015 591:26366552 534:26595274 477:25102153 418:22902787 349:20844486 314:20838407 257:15716498 219:Genetics 159:20178769 63:fixation 642:5182071 613:Science 582:4984852 525:4918750 468:4125079 409:3480734 305:4652788 248:1449620 200:4407212 150:2994553 649:  639:  631:  589:  579:  571:  532:  522:  514:  496:Nature 475:  465:  457:  416:  406:  398:  355:  347:  329:Nature 312:  302:  294:  255:  245:  237:  198:  157:  147:  139:  74:sweeps 376:(PDF) 353:S2CID 48:trait 647:PMID 629:ISSN 587:PMID 569:ISSN 530:PMID 512:ISSN 473:PMID 455:ISSN 414:PMID 396:ISSN 345:PMID 310:PMID 292:ISSN 253:PMID 235:ISSN 196:PMID 155:PMID 137:ISSN 29:loci 637:PMC 621:doi 617:354 577:PMC 561:doi 520:PMC 504:doi 500:528 463:PMC 445:doi 404:PMC 388:doi 337:doi 333:467 300:PMC 284:doi 243:PMC 227:doi 223:169 186:doi 145:PMC 129:doi 667:: 645:. 635:. 627:. 615:. 611:. 599:^ 585:. 575:. 567:. 557:47 555:. 551:. 528:. 518:. 510:. 498:. 494:. 471:. 461:. 453:. 441:10 439:. 435:. 412:. 402:. 394:. 384:44 382:. 378:. 351:. 343:. 331:. 308:. 298:. 290:. 280:11 278:. 274:. 251:. 241:. 233:. 221:. 217:. 194:. 182:23 180:. 176:. 153:. 143:. 135:. 125:20 123:. 119:. 107:^ 31:. 653:. 623:: 593:. 563:: 536:. 506:: 479:. 447:: 420:. 390:: 359:. 339:: 316:. 286:: 259:. 229:: 202:. 188:: 161:. 131::

Index

population
allele frequencies
loci
polygenic
stabilizing selection
phenotype
trait
breeder's equation
selective sweeps
fixation
quantitative genetics
sweeps
artificial selection
genome-wide association studies


"The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation"
doi
10.1016/j.cub.2009.11.055
ISSN
1879-0445
PMC
2994553
PMID
20178769
"The hitch-hiking effect of a favourable gene"
doi
10.1017/S0016672300014634
PMID
4407212

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑