Knowledge

Spin coating

Source 📝

113:
specifically when recording absorbance readings from Ultraviolet-visible Spectroscopy, since thicker films have lower optical transmittance and typically do not allow light to shine through in comparison to thinner films allowing light to go through before the optical density of the film becomes too low. Additionally, films with lower absorbance quality are not as ideal of candidates for processes such as Cyclic Voltammetry because the low absorbance hinders electrochemical tuning of cations when in an electrochemical cell. Thinner films in this regard have more desirable optical properties that can be tuned for energy storage technologies because of their spin coated influenced properties. However, spin coating thicker films of
520: 28: 85:
of the solution, and the solvent. Pioneering theoretical analysis of spin coating was undertaken by Emslie et al., and has been extended by many subsequent authors (including Wilson et al., who studied the rate of spreading in spin coating; and Danglad-Flores et al., who found a universal description
112:
One advantage to spin coating thin films is the uniformity of the film thickness. Owing to self-leveling, thicknesses do not vary more than 1%. The thickness of films produced in this manner may also affect the optical properties of such materials. This is important for electrochemical testing,
50:. Usually a small amount of coating material in liquid form is applied on the center of the substrate, which is either spinning at low speed or not spinning at all. The substrate is then rotated at speeds up to 10,000 rpm to spread the coating material by 109:
thick. Photoresist is typically spun at 20 to 80 revolutions per second for 30 to 60 seconds. It is also widely used for the fabrication of planar photonic structures made of polymers.
65:
Rotation is continued while the fluid spins off the edges of the substrate, until the desired thickness of the film is achieved. The applied solvent is usually
457:
Schubert, Dirk W.; Dunkel, Thomas (2003). "Spin coating from a molecular point of view: its concentration regimes, influence of molar mass and distribution".
327:
Hanaor, D.A.H.; Triani, G.; Sorrell, C.C. (2011). "Morphology and photocatalytic activity of highly oriented mixed phase titanium dioxide thin films".
585: 561: 155: 453:
S. Middleman and A.K. Hochberg. "Process Engineering Analysis in Semiconductor Device Fabrication". McGraw-Hill, p. 313 (1993)
590: 580: 500: 554: 97:
precursors, where it can be used to create uniform thin films with nanoscale thicknesses. It is used intensively in
595: 547: 66: 505: 250: 215: 47: 527: 402: 482: 432: 362: 336: 266: 206:
Emslie, A. G.; Bonner, F. T.; Peck, L. G. (1958). "Flow of a viscous liquid on a rotating disk".
147: 474: 354: 188: 151: 51: 466: 422: 414: 346: 307: 297: 258: 223: 180: 143: 98: 90: 403:"The limits of edge bead planarization and surface levelling in spin-coated liquid films" 380: 254: 219: 531: 241:
Wilson, S. K.; Hunt, R.; Duffy, B. R. (2000). "The rate of spreading in spin coating".
574: 436: 312: 82: 74: 486: 366: 270: 350: 171:
Scriven, L. E. (1988). "Physics and Applications of DIP Coating and Spin Coating".
121:
can result in relatively large edge beads whose planarization has physical limits.
77:
of spinning, the thinner the film. The thickness of the film also depends on the
118: 102: 70: 32: 418: 470: 427: 302: 285: 262: 106: 478: 358: 192: 78: 43: 17: 184: 114: 94: 93:
of functional oxide layers on glass or single crystal substrates using
286:"Deposition of polymer films by spin casting: A quantitative analysis" 227: 506:
Deposition of polymer films by spin casting: A quantitative analysis
519: 27: 341: 26: 138:
Cohen, Edward; Lightfoot, E. J. (2011). "Coating Processes".
284:
Danglad-Flores, J.; Eickelmann, S.; Riegler, H. (2018).
535: 31:
Laurell Technologies WS-400 spin coater used to apply
501:Spin Coating of Thin and Ultrathin Polymer Films 140:Kirk-Othmer Encyclopedia of Chemical Technology 407:Journal of Micromechanics and Microengineering 54:. A machine used for spin coating is called a 555: 8: 148:10.1002/0471238961.1921182203150805.a01.pub3 562: 548: 86:to predict the deposited film thickness). 426: 340: 311: 301: 179:. Cambridge University Press (CUP): 717. 130: 42:is a procedure used to deposit uniform 7: 516: 514: 465:(5). Informa UK Limited: 314–321. 35:to the surface of a silicon wafer. 25: 586:Semiconductor device fabrication 518: 329:Surface and Coatings Technology 89:Spin coating is widely used in 459:Materials Research Innovations 351:10.1016/j.surfcoat.2011.01.007 335:(12). Elsevier BV: 3658–3664. 1: 534:. You can help Knowledge by 612: 513: 383:. Inseto. November 4, 2020 471:10.1007/s10019-003-0270-2 313:21.11116/0000-0000-2D6C-6 303:10.1016/j.ces.2018.01.012 263:10.1017/S0022112000008089 419:10.1088/1361-6439/ab60be 142:. New York: John Wiley. 401:Arscott, Steve (2020). 381:"What Is Spin Coating?" 101:, to deposit layers of 530:-related article is a 36: 69:, and simultaneously 30: 591:Thin film deposition 581:Industrial processes 185:10.1557/proc-121-717 255:2000JFM...413...65W 220:1958JAP....29..858E 428:20.500.12210/44092 37: 543: 542: 228:10.1063/1.1723300 73:. The higher the 52:centrifugal force 16:(Redirected from 603: 564: 557: 550: 522: 515: 490: 441: 440: 430: 398: 392: 391: 389: 388: 377: 371: 370: 344: 324: 318: 317: 315: 305: 281: 275: 274: 238: 232: 231: 203: 197: 196: 168: 162: 161: 135: 99:photolithography 91:microfabrication 21: 611: 610: 606: 605: 604: 602: 601: 600: 571: 570: 569: 568: 511: 497: 456: 450: 448:Further reading 445: 444: 400: 399: 395: 386: 384: 379: 378: 374: 326: 325: 321: 283: 282: 278: 240: 239: 235: 205: 204: 200: 173:MRS Proceedings 170: 169: 165: 158: 137: 136: 132: 127: 23: 22: 15: 12: 11: 5: 609: 607: 599: 598: 596:Industry stubs 593: 588: 583: 573: 572: 567: 566: 559: 552: 544: 541: 540: 523: 509: 508: 503: 496: 495:External links 493: 492: 491: 454: 449: 446: 443: 442: 393: 372: 319: 290:Chem. Eng. Sci 276: 233: 214:(5): 858–862. 198: 163: 157:978-0471238966 156: 129: 128: 126: 123: 24: 14: 13: 10: 9: 6: 4: 3: 2: 608: 597: 594: 592: 589: 587: 584: 582: 579: 578: 576: 565: 560: 558: 553: 551: 546: 545: 539: 537: 533: 529: 524: 521: 517: 512: 507: 504: 502: 499: 498: 494: 488: 484: 480: 476: 472: 468: 464: 460: 455: 452: 451: 447: 438: 434: 429: 424: 420: 416: 413:(2): 025003. 412: 408: 404: 397: 394: 382: 376: 373: 368: 364: 360: 356: 352: 348: 343: 338: 334: 330: 323: 320: 314: 309: 304: 299: 295: 291: 287: 280: 277: 272: 268: 264: 260: 256: 252: 248: 244: 243:J. Fluid Mech 237: 234: 229: 225: 221: 217: 213: 209: 208:J. Appl. Phys 202: 199: 194: 190: 186: 182: 178: 174: 167: 164: 159: 153: 149: 145: 141: 134: 131: 124: 122: 120: 116: 110: 108: 104: 100: 96: 92: 87: 84: 83:concentration 80: 76: 75:angular speed 72: 68: 63: 61: 57: 53: 49: 45: 41: 34: 29: 19: 536:expanding it 525: 510: 462: 458: 410: 406: 396: 385:. Retrieved 375: 332: 328: 322: 293: 289: 279: 249:(1): 65–88. 246: 242: 236: 211: 207: 201: 176: 172: 166: 139: 133: 119:photoresists 111: 88: 64: 59: 58:, or simply 55: 40:Spin coating 39: 38: 296:: 257–264. 103:photoresist 56:spin coater 33:photoresist 18:Spin coated 575:Categories 387:2023-05-24 125:References 107:micrometre 71:evaporates 48:substrates 46:onto flat 44:thin films 479:1432-8917 437:214580612 359:0257-8972 342:1303.2741 193:1946-4274 79:viscosity 528:industry 487:98374776 367:96130259 271:14585243 115:polymers 105:about 1 67:volatile 251:Bibcode 216:Bibcode 95:sol-gel 60:spinner 485:  477:  435:  365:  357:  269:  191:  154:  526:This 483:S2CID 433:S2CID 363:S2CID 337:arXiv 267:S2CID 532:stub 475:ISSN 355:ISSN 189:ISSN 152:ISBN 117:and 81:and 467:doi 423:hdl 415:doi 347:doi 333:205 308:hdl 298:doi 294:179 259:doi 247:413 224:doi 181:doi 177:121 144:doi 577:: 481:. 473:. 461:. 431:. 421:. 411:30 409:. 405:. 361:. 353:. 345:. 331:. 306:. 292:. 288:. 265:. 257:. 245:. 222:. 212:29 210:. 187:. 175:. 150:. 62:. 563:e 556:t 549:v 538:. 489:. 469:: 463:7 439:. 425:: 417:: 390:. 369:. 349:: 339:: 316:. 310:: 300:: 273:. 261:: 253:: 230:. 226:: 218:: 195:. 183:: 160:. 146:: 20:)

Index

Spin coated

photoresist
thin films
substrates
centrifugal force
volatile
evaporates
angular speed
viscosity
concentration
microfabrication
sol-gel
photolithography
photoresist
micrometre
polymers
photoresists
doi
10.1002/0471238961.1921182203150805.a01.pub3
ISBN
978-0471238966
doi
10.1557/proc-121-717
ISSN
1946-4274
Bibcode
1958JAP....29..858E
doi
10.1063/1.1723300

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.