Knowledge (XXG)

Nanoelectronics

Source đź“ť

763:, muscle fibers and rotary motors in aqueous environments, all on the nanoscale. These machines exploit the increased frictional forces found at the micro or nanoscale. Unlike a paddle or a propeller which depends on normal frictional forces (the frictional forces perpendicular to the surface) to achieve propulsion, cilia develop motion from the exaggerated drag or laminar forces (frictional forces parallel to the surface) present at micro and nano dimensions. To build meaningful "machines" at the nanoscale, the relevant forces need to be considered. We are faced with the development and design of intrinsically pertinent machines rather than the simple reproductions of macroscopic ones. 1061:. This effect can be significantly amplified (GMR - Giant Magneto-Resistance) for nanosized objects, for example when two ferromagnetic layers are separated by a nonmagnetic layer, which is several nanometers thick (e.g. Co-Cu-Co). The GMR effect has led to a strong increase in the data storage density of hard disks and made the gigabyte range possible. The so-called tunneling magnetoresistance (TMR) is very similar to GMR and based on the spin dependent tunneling of electrons through adjacent ferromagnetic layers. Both GMR and TMR effects can be used to create a non-volatile main memory for computers, such as the so-called magnetic random access memory or 1097: 470: 655: 482: 167: 1093:. Quantum dots are nanoscaled objects, which can be used, among many other things, for the construction of lasers. The advantage of a quantum dot laser over the traditional semiconductor laser is that their emitted wavelength depends on the diameter of the dot. Quantum dot lasers are cheaper and offer a higher beam quality than conventional laser diodes. 1222:(about 2000 food calories per day) using a bio-nano generator. However, this estimate is only true if all food was converted to electricity, and the human body needs some energy consistently, so possible power generated is likely much lower. The electricity generated by such a device could power devices embedded in the body (such as 1138:
Entirely new approaches for computing exploit the laws of quantum mechanics for novel quantum computers, which enable the use of fast quantum algorithms. The Quantum computer has quantum bit memory space termed "Qubit" for several computations at the same time. In nanoelectronic devices, the qubit
738:
is proportional to their surface area. For a normal-sized drill, the power of the device is enough to handily overcome any friction. However, scaling its length down by a factor of 1000, for example, decreases its power by 1000 (a factor of a billion) while reducing the friction by only 1000 (a
975: 746:
are fully functional, the same technology cannot be used to make working mechanical devices beyond the scales where frictional forces start to exceed the available power. So even though you may see microphotographs of delicately etched silicon gears, such devices are currently little more than
1700:
Achilli, Simona; Le, Nguyen H.; Fratesi, Guido; Manini, Nicola; Onida, Giovanni; Turchetti, Marco; Ferrari, Giorgio; Shinada, Takahiro; Tanii, Takashi; Prati, Enrico (February 2021). "Position-Controlled Functionalization of Vacancies in Silicon by Single-Ion Implanted Germanium Atoms".
1085:. Photonic crystals are materials with a periodic variation in the refractive index with a lattice constant that is half the wavelength of the light used. They offer a selectable band gap for the propagation of a certain wavelength, thus they resemble a semiconductor, but for light or 2018:
Cheng, Mark Ming-Cheng; Cuda, Giovanni; Bunimovich, Yuri L; Gaspari, Marco; Heath, James R; Hill, Haley D; Mirkin,Chad A; Nijdam, A Jasper; Terracciano, Rosa; Thundat, Thomas; Ferrari, Mauro (2006). "Nanotechnologies for biomolecular detection and medical diagnostics".
739:
factor of only a million). Proportionally it has 1000 times less power per unit friction than the original drill. If the original friction-to-power ratio was, say, 1%, that implies the smaller drill will have 10 times as much friction as power; the drill is useless.
747:
curiosities with limited real world applications, for example, in moving mirrors and shutters. Surface tension increases in much the same way, thus magnifying the tendency for very small objects to stick together. This could possibly make any kind of
885:
Molecular electronics is a technology under development brings hope for future atomic-scale electronic systems. A promising application of molecular electronics was proposed by the IBM researcher Ari Aviram and the theoretical chemist
636:
doesn't directly represent the minimum feature size. The field of nanoelectronics aims to enable the continued realization of this law by using new methods and materials to build electronic devices with feature sizes on the
1789:
Tian, Bozhi; Zheng, Xiaolin; Kempa, Thomas J.; Fang, Ying; Yu, Nanfang; Yu, Guihua; Huang, Jinlin; Lieber, Charles M. (2007). "Coaxial silicon nanowires as solar cells and nanoelectronic power sources".
978:
Simulation result for formation of inversion channel (electron density) and attainment of threshold voltage (IV) in a nanowire MOSFET. Note that the threshold voltage for this device lies around 0.45V.
2056:
Patolsky, F.; Timko, B.P.; Yu, G.; Fang, Y.; Greytak, A.B.; Zheng, G.; Lieber, C.M. (2006). "Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays".
1034:
based electronics have offered an alternative using reconfigurable interconnections between vertical and horizontal wiring arrays to create ultra high density memories. Two leaders in this area are
1170:
than are possible with conventional planar silicon solar cells. It is believed that the invention of more efficient solar energy would have a great effect on satisfying global energy needs.
950:
Current high-technology production processes are based on traditional top down strategies, where nanotechnology has already been introduced silently. The critical length scale of
1116:. Such nanostructures are electrically conductive and due to their small diameter of several nanometers, they can be used as field emitters with extremely high efficiency for 1258:. Such miniaturization on nanoelectronics towards in vivo proteomic sensing should enable new approaches for health monitoring, surveillance, and defense technology. 1543:"A review of functional linear carbon chains (oligoynes, polyynes, cumulenes) and their applications as molecular wires in molecular electronics and optoelectronics" 1647:
Xiang, Jie; Lu, Wei; Hu, Yongjie; Wu, Yue; Yan Hao; Lieber, Charles M. (2006). "Ge/Si nanowire heterostructures as highperformance field-effect transistors".
1423:
Goicoechea, J.; Zamarreñoa, C.R.; Matiasa, I.R.; Arregui, F.J. (2007). "Minimizing the photobleaching of self-assembled multilayers for sensor applications".
536:
components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and
2446: 1388:
Das, S.; Gates, A.J.; Abdu, H.A.; Rose, G.S.; Picconatto, C.A.; Ellenbogen, J.C. (2007). "Designs for Ultra-Tiny, Special-Purpose Nanoelectronic Circuits".
281: 751:
impractical: even if robotic arms and hands could be scaled down, anything they pick up will tend to be impossible to put down. The above being said,
195: 2266:"Priorities for Standards and Measurements to Accelerate Innovations in Nano-Electrotechnologies: Analysis of the NIST-Energetics-IEC TC 113 Survey" 1514: 512: 2537: 2317:
Despotuli, Alexander; Andreeva, Alexandra (August–October 2009). "A Short Review on Deep-Sub-Voltage Nanoelectronics and Related Technologies".
632:. Since his observation, transistor minimum feature sizes have decreased from 10 micrometers to the 10 nm range as of 2019. Note that the 2355: 1459: 1975:
Cavalcanti, A.; Shirinzadeh, B.; Freitas Jr, Robert A. & Hogg, Tad (2008). "Nanorobot architecture for medical target identification".
385: 234: 121: 2265: 2021: 1139:
is encoded by the quantum state of one or more electrons spin. The spin are confined by either a semiconductor quantum dot or a dopant.
582:(metal–oxide–semiconductor field-effect transistor, or MOS transistor) technology generations are already within this regime, including 874:, designing the device components to construct a larger structure or even a complete system on their own. This can be very useful for 628:
observed that silicon transistors were undergoing a continual process of scaling downward, an observation which was later codified as
664: 697: 718:
only decreases as its second power. This somewhat subtle and unavoidable principle has significant ramifications. For example, the
2557: 2519: 2439: 590: 380: 116: 2264:
Bennett, Herbert S.; Andres, Howard; Pellegrino, Joan; Kwok, Winnie; Fabricius, Norbert; Chapin, J. Thomas (March–April 2009).
942:
studies the behavior of light on the nanoscale, and has the goal of developing devices that take advantage of this behavior.
257: 1912: 821:
Besides being small and allowing more transistors to be packed into a single chip, the uniform and symmetrical structure of
2552: 879: 790: 408: 188: 96: 1329:
Melosh, N.; Boukai, Abram; Diana, Frederic; Gerardot, Brian; Badolato, Antonio; Petroff, Pierre; Heath, James R. (2003).
505: 286: 766:
All scaling issues therefore need to be assessed thoroughly when evaluating nanotechnology for practical applications.
2888: 2432: 2394: 865: 418: 360: 53: 1073:
In the modern communication technology traditional analog electrical devices are increasingly replaced by optical or
805:
are being increasingly studied towards diverse applications in nanoelectronics, energy conversion and storage. Such
1057:. The dependence of the resistance of a material (due to the spin of the electrons) on an external field is called 910: 1030:
Electronic memory designs in the past have largely relied on the formation of transistors. However, research into
987: 244: 239: 229: 668: 2924: 1477: 1011: 875: 432: 332: 253: 181: 2795: 871: 498: 403: 337: 323: 212: 2399: 1214:, freeing them for use in electrical devices. The average person's body could, theoretically, generate 100 1096: 2765: 2734: 2714: 2674: 2479: 1868:
LaVan, D.A.; McGuire, Terry & Langer, Robert (2003). "Small-scale systems for in vivo drug delivery".
1117: 895: 2699: 2572: 2567: 609: 561: 456: 1242:
There is great interest in constructing nanoelectronic devices that could detect the concentrations of
1250:. A parallel line of research seeks to create nanoelectronic devices which could interact with single 793:
also fall under this category. Nanofabrication can be used to construct ultradense parallel arrays of
2874: 2830: 2800: 2562: 2469: 2326: 2166: 2067: 1984: 1801: 1755: 1658: 1605: 1486: 1344: 1223: 1062: 1003: 870:
Single-molecule electronic devices are extensively researched. These schemes would make heavy use of
731: 365: 276: 58: 572: 2893: 2869: 2694: 2597: 2582: 2504: 2474: 2414: 974: 951: 752: 748: 441: 413: 789:
For example, electron transistors, which involve transistor operation based on a single electron.
2847: 2820: 2739: 2243: 2091: 2000: 1957: 1893: 1825: 1728: 1710: 1682: 1629: 1572: 1405: 1370: 983: 743: 342: 171: 2409: 2306: 1843: 1077:
devices due to their enormous bandwidth and capacity, respectively. Two promising examples are
540:
properties need to be studied extensively. Some of these candidates include: hybrid molecular/
2514: 2499: 2376: 2351: 2298: 2235: 2194: 2132: 2083: 2058: 2038: 1940: 1885: 1817: 1771: 1674: 1621: 1596: 1564: 1455: 1362: 1335: 1291: 1078: 1058: 830: 810: 802: 537: 486: 1591: 2883: 2780: 2620: 2489: 2334: 2288: 2280: 2225: 2184: 2174: 2122: 2075: 2030: 1992: 1949: 1877: 1809: 1792: 1763: 1720: 1666: 1649: 1613: 1554: 1523: 1494: 1432: 1397: 1352: 1283: 1183: 1133: 1121: 1113: 1109: 1019: 822: 638: 553: 545: 451: 111: 2362: 990:
techniques. A number of approaches are currently being researched, including new forms of
2840: 2835: 2815: 2805: 2760: 2744: 2719: 2669: 2625: 2494: 2484: 1151: 1043: 1031: 1015: 991: 784: 719: 633: 557: 370: 309: 91: 1996: 2330: 2170: 2071: 1988: 1805: 1759: 1662: 1609: 1490: 1348: 2825: 2810: 2775: 2704: 2684: 2659: 2644: 2547: 2293: 2189: 1251: 1180: 1074: 905:
structures have been studied as candidates for interconnecting nanoelectronic devices:
629: 529: 474: 375: 271: 220: 106: 63: 1309: 1166:
and other nanostructured materials with the hope to create cheaper and more efficient
608:(fin field-effect transistor) generations. Nanoelectronics is sometimes considered as 2918: 2679: 2630: 2509: 2377:
Lessons from Nanoelectronics: A New Perspective on Transport(In 2 Parts)(2nd Edition)
1961: 1732: 1576: 1498: 1287: 1195: 1191: 995: 939: 922: 842: 780: 598: 583: 541: 423: 394: 295: 149: 144: 81: 2004: 1633: 1590:
Postma, Henk W. Ch.; Teepen, Tijs; Yao, Zhen; Grifoni, Milena; Dekker, Cees (2001).
1409: 2709: 2689: 2592: 2400:
Site on electronics of Single Walled Carbon nanotube at nanoscale - nanoelectronics
2247: 2095: 1897: 1829: 1686: 1374: 1247: 1227: 1108:
The production of displays with low energy consumption might be accomplished using
1082: 853: 849: 715: 679: 625: 469: 446: 314: 266: 2151: 1924: 2664: 2602: 2542: 2455: 2419: 2404: 1953: 1243: 1219: 1054: 887: 613: 568: 533: 2034: 1246:
in real time for use as medical diagnostics, thus falling into the category of
1230:. Much of the research done on bio-nano generators is still experimental, with 166: 2864: 2729: 2649: 2338: 2230: 2213: 1938:
Saito, S. (1997). "Carbon Nanotubes for Next-Generation Electronics Devices".
1436: 1255: 1167: 1147: 933: 834: 481: 139: 101: 17: 2389: 1568: 1401: 1295: 1173:
There is also research into energy production for devices that would operate
2852: 2724: 2587: 2079: 1617: 1357: 1330: 1231: 1187: 1163: 1047: 955: 826: 798: 760: 714:
of an object decreases as the third power of its linear dimensions, but the
304: 2302: 2239: 2198: 2136: 2087: 2042: 1889: 1821: 1775: 1724: 1678: 1625: 1366: 936:
studies the transport of ions rather than electrons in nanoscale systems.
567:
Nanoelectronic devices have critical dimensions with a size range between
2902: 2858: 2770: 2635: 2284: 2273:
Journal of Research of the National Institute of Standards and Technology
2127: 2110: 1211: 1090: 1039: 999: 914: 906: 902: 838: 794: 727: 549: 86: 2410:
Website of the nanoelectronics unit of the European Commission, DG INFSO
1813: 1670: 1527: 675: 612:
because present candidates are significantly different from traditional
2790: 2654: 1746:
Jensen, K.; Weldon, J.; Garcia, H.; Zettl A. (2007). "Nanotube Radio".
1559: 1542: 1175: 1035: 918: 576: 2150:
Cavalcanti, A.; Shirinzadeh, B.; Zhang, M. & Kretly, L.C. (2008).
1767: 2639: 2179: 1715: 1512:
Aviram, A. (1988). "Molecules for memory, logic, and amplification".
1207: 1199: 1086: 756: 711: 605: 579: 2367: 1234:'s Nanotechnology Research Laboratory among those at the forefront. 813:
in large quantities to yield nanowires with controllable thickness.
1881: 1038:
which has developed a carbon nanotube based crossbar memory called
2879: 2785: 1095: 973: 723: 594: 1592:"Carbon nanotube single-electron transistors at room temperature" 2898: 1215: 1203: 1007: 963: 806: 735: 726:(or any other machine) is proportional to the volume, while the 602: 586: 2428: 1274:
Beaumont, Steven P. (September 1996). "III–V Nanoelectronics".
1254:
for use in basic biological research. These devices are called
2424: 959: 648: 2214:"Nanotechnology: intelligent design to treat complex disease" 1198:
in a living body, much the same as how the body generates
1475:
Aviram, A.; Ratner, M. A. (1974). "Molecular Rectifier".
2363:
https://openlibrary.org/works/OL15759799W/Bits_on_Chips/
1179:, called bio-nano generators. A bio-nano generator is a 1120:(FED). The principle of operation resembles that of the 958:
and below) regarding the gate length of transistors in
801:
individually. Of particular prominence in this field,
2152:"Nanorobot Hardware Architecture for Medical Defense" 833:(faster electron movement in the material), a higher 1210:
is used that is capable of stripping glucose of its
2753: 2611: 2528: 2462: 2405:
Site on Nano Electronics and Advanced VLSI Research
1844:"Power from blood could lead to 'human batteries'" 1331:"Ultrahigh density nanowire lattices and circuits" 1050:material as a future replacement of Flash memory. 986:more powerful than are possible with conventional 742:For this reason, while super-miniature electronic 837:constant (faster frequency), and a symmetrical 921:carbon atom chains, and many polymers such as 27:Use of nanotechnology in electronic components 2440: 2415:Nanoelectronics at UnderstandingNano Web site 1053:An example of such novel devices is based on 892:Molecules for Memory, Logic and Amplification 506: 189: 8: 1450:Petty, M.C.; Bryce, M.R.; Bloor, D. (1995). 982:Nanoelectronics holds the promise of making 1390:IEEE Transactions on Circuits and Systems I 2447: 2433: 2425: 878:, and may even completely replace present 678:. Please do not remove this message until 513: 499: 207: 196: 182: 29: 2292: 2229: 2188: 2178: 2126: 1714: 1558: 1356: 1014:have been made using both semiconducting 698:Learn how and when to remove this message 2212:Couvreur, P. & Vauthier, C. (2006). 1913:"Special Feature: Emerging Technologies" 1515:Journal of the American Chemical Society 1452:An Introduction to Molecular Electronics 1018:and with heterostructured semiconductor 674:Relevant discussion may be found on the 1266: 431: 393: 350: 322: 294: 252: 219: 158: 130: 72: 44: 37: 1150:have been developed structured around 1124:, but on a much smaller length scale. 2395:Virtual Institute of Spin Electronics 2390:IEEE Silicon Nanoelectronics Workshop 954:is already at the nanoscale (50  7: 2319:International Journal of Nanoscience 797:, as an alternative to synthesizing 122:List of semiconductor scale examples 2022:Current Opinion in Chemical Biology 1917:Medical Product Manufacturing News 25: 2111:"Health care in the 21st century" 1425:Sensors and Actuators B: Chemical 2558:Failure of electronic components 653: 480: 468: 381:Semiconductor device fabrication 165: 117:Semiconductor device fabrication 909:of carbon and other materials, 33:Part of a series of articles on 2350:. Bits on Chips. p. 253. 1997:10.1088/0957-4484/19/01/015103 1046:which has proposed the use of 890:in their 1974 and 1988 papers 1: 1703:Advanced Functional Materials 791:Nanoelectromechanical systems 544:electronics, one-dimensional 409:Scanning tunneling microscope 2553:List of emerging electronics 1499:10.1016/0009-2614(74)85031-1 1288:10.1016/0167-9317(95)00367-3 1206:. To achieve the effect, an 1069:Novel optoelectronic devices 386:Semiconductor scale examples 2370:Fundamentals of Electronics 1954:10.1126/science.278.5335.77 1276:Microelectronic Engineering 1162:Research is ongoing to use 866:Molecular scale electronics 680:conditions to do so are met 419:Super resolution microscopy 361:Molecular scale electronics 73:Solid-state nanoelectronics 54:Molecular scale electronics 45:Single-molecule electronics 2941: 2346:Veendrick, H.J.M. (2011). 2035:10.1016/j.cbpa.2006.01.006 1131: 863: 778: 2420:Nanoelectronics - PhysOrg 2339:10.1142/S0219581X09006328 2231:10.1007/s11095-006-0284-8 1541:Bryce, Martin R. (2021). 1454:. London: Edward Arnold. 1437:10.1016/j.snb.2006.10.037 1194:, but drawing power from 988:semiconductor fabrication 817:Nanomaterials electronics 1478:Chemical Physics Letters 1402:10.1109/TCSI.2007.907864 1012:Field effect transistors 1006:in place of traditional 994:, as well as the use of 876:reconfigurable computing 755:has resulted in working 433:Molecular nanotechnology 333:Self-assembled monolayer 2796:Electromagnetic warfare 2379:by Supriyo Datta (2018) 2373:by Supriyo Datta (2008) 2080:10.1126/science.1128640 1923:: 22–23. Archived from 1618:10.1126/science.1061797 1358:10.1126/science.1081940 1118:field emission displays 872:molecular self-assembly 404:Atomic force microscopy 338:Supramolecular assembly 324:Molecular self-assembly 2766:Automotive electronics 2715:Robotic vacuum cleaner 2675:Information technology 2480:Electronic engineering 1725:10.1002/adfm.202011175 1100: 979: 946:Nanoelectronic devices 896:unimolecular rectifier 172:Electronics portal 2700:Portable media player 2573:Molecular electronics 2568:Low-power electronics 1848:Sydney Morning Herald 1099: 977: 860:Molecular electronics 809:can be fabricated by 610:disruptive technology 562:molecular electronics 528:refers to the use of 487:Technology portal 457:Molecular engineering 2894:Terahertz technology 2875:Open-source hardware 2831:Consumer electronics 2801:Electronics industry 2563:Flexible electronics 2470:Analogue electronics 2285:10.6028/jres.114.008 2128:10.1056/NEJMsa045011 2109:Frist, W.H. (2005). 620:Fundamental concepts 589:(complementary MOS) 366:Molecular logic gate 277:Green nanotechnology 59:Molecular logic gate 2870:Nuclear electronics 2695:Networking hardware 2598:Quantum electronics 2583:Organic electronics 2505:Printed electronics 2475:Digital electronics 2331:2009IJN....08..389D 2171:2008Senso...8.2932C 2072:2006Sci...313.1100P 2066:(5790): 1100–1104. 1989:2008Nanot..19a5103C 1983:(1): 015103(15pp). 1814:10.1038/nature06181 1806:2007Natur.449..885T 1760:2007NanoL...7.3508J 1671:10.1038/nature04796 1663:2006Natur.441..489X 1610:2001Sci...293...76P 1553:(33): 10524–10546. 1528:10.1021/ja00225a017 1491:1974CPL....29..277A 1349:2003Sci...300..112M 1238:Medical diagnostics 984:computer processors 952:integrated circuits 753:molecular evolution 744:integrated circuits 667:of this section is 442:Molecular assembler 414:Electron microscope 2848:Marine electronics 2821:Integrated circuit 2740:Video game console 2538:2020s in computing 2520:Thermal management 1911:Grace, D. (2008). 1560:10.1039/d1tc01406d 1101: 980: 911:metal atom chaines 538:quantum mechanical 475:Science portal 343:DNA nanotechnology 131:Related approaches 2912: 2911: 2889:Radio electronics 2515:Schematic capture 2500:Power electronics 2368:Online course on 2357:978-1-61627-947-9 1876:(10): 1184–1191. 1800:(7164): 885–889. 1768:10.1021/nl0721113 1754:(11): 3508–3511. 1657:(7092): 489–493. 1547:J. Mater. Chem. C 1522:(17): 5687–5692. 1461:978-0-19-521156-6 1158:Energy production 1128:Quantum computers 1114:Silicon nanowires 1079:photonic crystals 1059:magnetoresistance 831:electron mobility 811:thermal oxidation 803:Silicon nanowires 708: 707: 700: 645:Mechanical issues 554:silicon nanowires 523: 522: 206: 205: 16:(Redirected from 2932: 2884:Radio navigation 2781:Data acquisition 2490:Microelectronics 2449: 2442: 2435: 2426: 2361: 2342: 2325:(4–5): 389–402. 2313: 2311: 2305:. Archived from 2296: 2270: 2252: 2251: 2233: 2224:(7): 1417–1450. 2209: 2203: 2202: 2192: 2182: 2180:10.3390/s8052932 2165:(5): 2932–2958. 2156: 2147: 2141: 2140: 2130: 2106: 2100: 2099: 2053: 2047: 2046: 2015: 2009: 2008: 1972: 1966: 1965: 1935: 1929: 1928: 1908: 1902: 1901: 1865: 1859: 1858: 1856: 1855: 1850:. August 4, 2003 1840: 1834: 1833: 1786: 1780: 1779: 1743: 1737: 1736: 1718: 1697: 1691: 1690: 1644: 1638: 1637: 1587: 1581: 1580: 1562: 1538: 1532: 1531: 1509: 1503: 1502: 1472: 1466: 1465: 1447: 1441: 1440: 1420: 1414: 1413: 1385: 1379: 1378: 1360: 1326: 1320: 1319: 1317: 1316: 1306: 1300: 1299: 1271: 1226:), or sugar-fed 1152:carbon nanotubes 1134:Quantum computer 1122:cathode ray tube 1110:carbon nanotubes 1016:carbon nanotubes 929:Other approaches 845:characteristic. 829:allows a higher 703: 696: 692: 689: 683: 657: 656: 649: 558:carbon nanotubes 515: 508: 501: 485: 484: 473: 472: 452:Mechanosynthesis 310:Carbon nanotubes 208: 198: 191: 184: 170: 169: 112:Multigate device 30: 21: 2940: 2939: 2935: 2934: 2933: 2931: 2930: 2929: 2925:Nanoelectronics 2915: 2914: 2913: 2908: 2841:Small appliance 2836:Major appliance 2816:Home automation 2806:Embedded system 2761:Audio equipment 2749: 2745:Washing machine 2670:Home theater PC 2626:Central heating 2621:Air conditioner 2613: 2607: 2578:Nanoelectronics 2530: 2524: 2495:Optoelectronics 2485:Instrumentation 2458: 2453: 2386: 2358: 2345: 2316: 2309: 2268: 2263: 2260: 2258:Further reading 2255: 2211: 2210: 2206: 2154: 2149: 2148: 2144: 2115:N. Engl. J. Med 2108: 2107: 2103: 2055: 2054: 2050: 2017: 2016: 2012: 1974: 1973: 1969: 1948:(5335): 77–78. 1937: 1936: 1932: 1910: 1909: 1905: 1870:Nat. Biotechnol 1867: 1866: 1862: 1853: 1851: 1842: 1841: 1837: 1788: 1787: 1783: 1745: 1744: 1740: 1709:(21): 2011175. 1699: 1698: 1694: 1646: 1645: 1641: 1604:(5527): 76–79. 1589: 1588: 1584: 1540: 1539: 1535: 1511: 1510: 1506: 1474: 1473: 1469: 1462: 1449: 1448: 1444: 1422: 1421: 1417: 1387: 1386: 1382: 1343:(5616): 112–5. 1328: 1327: 1323: 1314: 1312: 1310:"MEMS Overview" 1308: 1307: 1303: 1273: 1272: 1268: 1264: 1240: 1186:device, like a 1184:electrochemical 1160: 1145: 1136: 1130: 1106: 1071: 1044:Hewlett-Packard 1032:crossbar switch 1028: 1004:small molecules 992:nanolithography 972: 948: 931: 868: 862: 852:can be used as 819: 787: 785:nanolithography 779:Main articles: 777: 775:Nanofabrication 772: 749:"micro factory" 730:of the drill's 704: 693: 687: 684: 673: 658: 654: 647: 634:technology node 622: 593:and succeeding 526:Nanoelectronics 519: 479: 467: 371:Nanolithography 352:Nanoelectronics 240:Popular culture 202: 164: 154: 126: 92:Nanolithography 68: 64:Molecular wires 39:Nanoelectronics 28: 23: 22: 15: 12: 11: 5: 2938: 2936: 2928: 2927: 2917: 2916: 2910: 2909: 2907: 2906: 2905:Communications 2896: 2891: 2886: 2877: 2872: 2867: 2862: 2856: 2850: 2845: 2844: 2843: 2838: 2833: 2826:Home appliance 2823: 2818: 2813: 2811:Home appliance 2808: 2803: 2798: 2793: 2788: 2783: 2778: 2776:Control system 2773: 2768: 2763: 2757: 2755: 2751: 2750: 2748: 2747: 2742: 2737: 2732: 2727: 2722: 2717: 2712: 2707: 2702: 2697: 2692: 2687: 2685:Microwave oven 2682: 2677: 2672: 2667: 2662: 2657: 2652: 2647: 2642: 2633: 2628: 2623: 2617: 2615: 2609: 2608: 2606: 2605: 2600: 2595: 2590: 2585: 2580: 2575: 2570: 2565: 2560: 2555: 2550: 2548:Bioelectronics 2545: 2540: 2534: 2532: 2526: 2525: 2523: 2522: 2517: 2512: 2507: 2502: 2497: 2492: 2487: 2482: 2477: 2472: 2466: 2464: 2460: 2459: 2454: 2452: 2451: 2444: 2437: 2429: 2423: 2422: 2417: 2412: 2407: 2402: 2397: 2392: 2385: 2384:External links 2382: 2381: 2380: 2374: 2365: 2356: 2343: 2314: 2312:on 2010-05-05. 2259: 2256: 2254: 2253: 2204: 2142: 2121:(3): 267–272. 2101: 2048: 2010: 1977:Nanotechnology 1967: 1930: 1927:on 2008-06-12. 1903: 1882:10.1038/nbt876 1860: 1835: 1781: 1738: 1692: 1639: 1582: 1533: 1504: 1485:(2): 277–283. 1467: 1460: 1442: 1415: 1380: 1321: 1301: 1282:(1): 283–295. 1265: 1263: 1260: 1239: 1236: 1159: 1156: 1144: 1141: 1132:Main article: 1129: 1126: 1105: 1102: 1075:optoelectronic 1070: 1067: 1027: 1026:Memory storage 1024: 971: 968: 947: 944: 930: 927: 923:polythiophenes 864:Main article: 861: 858: 818: 815: 776: 773: 771: 768: 706: 705: 661: 659: 652: 646: 643: 621: 618: 560:) or advanced 530:nanotechnology 521: 520: 518: 517: 510: 503: 495: 492: 491: 490: 489: 477: 462: 461: 460: 459: 454: 449: 444: 436: 435: 429: 428: 427: 426: 421: 416: 411: 406: 398: 397: 391: 390: 389: 388: 383: 378: 373: 368: 363: 355: 354: 348: 347: 346: 345: 340: 335: 327: 326: 320: 319: 318: 317: 312: 307: 299: 298: 292: 291: 290: 289: 284: 279: 274: 272:Nanotoxicology 269: 261: 260: 250: 249: 248: 247: 242: 237: 232: 224: 223: 221:Nanotechnology 217: 216: 215:of articles on 204: 203: 201: 200: 193: 186: 178: 175: 174: 161: 160: 156: 155: 153: 152: 147: 142: 136: 133: 132: 128: 127: 125: 124: 119: 114: 109: 104: 99: 94: 89: 84: 78: 75: 74: 70: 69: 67: 66: 61: 56: 50: 47: 46: 42: 41: 35: 34: 26: 24: 18:Nanoelectronic 14: 13: 10: 9: 6: 4: 3: 2: 2937: 2926: 2923: 2922: 2920: 2904: 2900: 2897: 2895: 2892: 2890: 2887: 2885: 2881: 2878: 2876: 2873: 2871: 2868: 2866: 2863: 2860: 2857: 2854: 2851: 2849: 2846: 2842: 2839: 2837: 2834: 2832: 2829: 2828: 2827: 2824: 2822: 2819: 2817: 2814: 2812: 2809: 2807: 2804: 2802: 2799: 2797: 2794: 2792: 2789: 2787: 2784: 2782: 2779: 2777: 2774: 2772: 2769: 2767: 2764: 2762: 2759: 2758: 2756: 2752: 2746: 2743: 2741: 2738: 2736: 2733: 2731: 2728: 2726: 2723: 2721: 2718: 2716: 2713: 2711: 2708: 2706: 2703: 2701: 2698: 2696: 2693: 2691: 2688: 2686: 2683: 2681: 2678: 2676: 2673: 2671: 2668: 2666: 2663: 2661: 2658: 2656: 2653: 2651: 2648: 2646: 2643: 2641: 2637: 2634: 2632: 2631:Clothes dryer 2629: 2627: 2624: 2622: 2619: 2618: 2616: 2610: 2604: 2601: 2599: 2596: 2594: 2591: 2589: 2586: 2584: 2581: 2579: 2576: 2574: 2571: 2569: 2566: 2564: 2561: 2559: 2556: 2554: 2551: 2549: 2546: 2544: 2541: 2539: 2536: 2535: 2533: 2527: 2521: 2518: 2516: 2513: 2511: 2510:Semiconductor 2508: 2506: 2503: 2501: 2498: 2496: 2493: 2491: 2488: 2486: 2483: 2481: 2478: 2476: 2473: 2471: 2468: 2467: 2465: 2461: 2457: 2450: 2445: 2443: 2438: 2436: 2431: 2430: 2427: 2421: 2418: 2416: 2413: 2411: 2408: 2406: 2403: 2401: 2398: 2396: 2393: 2391: 2388: 2387: 2383: 2378: 2375: 2372: 2371: 2366: 2364: 2359: 2353: 2349: 2348:Bits on Chips 2344: 2340: 2336: 2332: 2328: 2324: 2320: 2315: 2308: 2304: 2300: 2295: 2290: 2286: 2282: 2279:(2): 99–135. 2278: 2274: 2267: 2262: 2261: 2257: 2249: 2245: 2241: 2237: 2232: 2227: 2223: 2219: 2215: 2208: 2205: 2200: 2196: 2191: 2186: 2181: 2176: 2172: 2168: 2164: 2160: 2153: 2146: 2143: 2138: 2134: 2129: 2124: 2120: 2116: 2112: 2105: 2102: 2097: 2093: 2089: 2085: 2081: 2077: 2073: 2069: 2065: 2061: 2060: 2052: 2049: 2044: 2040: 2036: 2032: 2028: 2024: 2023: 2014: 2011: 2006: 2002: 1998: 1994: 1990: 1986: 1982: 1978: 1971: 1968: 1963: 1959: 1955: 1951: 1947: 1943: 1942: 1934: 1931: 1926: 1922: 1918: 1914: 1907: 1904: 1899: 1895: 1891: 1887: 1883: 1879: 1875: 1871: 1864: 1861: 1849: 1845: 1839: 1836: 1831: 1827: 1823: 1819: 1815: 1811: 1807: 1803: 1799: 1795: 1794: 1785: 1782: 1777: 1773: 1769: 1765: 1761: 1757: 1753: 1749: 1742: 1739: 1734: 1730: 1726: 1722: 1717: 1712: 1708: 1704: 1696: 1693: 1688: 1684: 1680: 1676: 1672: 1668: 1664: 1660: 1656: 1652: 1651: 1643: 1640: 1635: 1631: 1627: 1623: 1619: 1615: 1611: 1607: 1603: 1599: 1598: 1593: 1586: 1583: 1578: 1574: 1570: 1566: 1561: 1556: 1552: 1548: 1544: 1537: 1534: 1529: 1525: 1521: 1517: 1516: 1508: 1505: 1500: 1496: 1492: 1488: 1484: 1480: 1479: 1471: 1468: 1463: 1457: 1453: 1446: 1443: 1438: 1434: 1430: 1426: 1419: 1416: 1411: 1407: 1403: 1399: 1395: 1391: 1384: 1381: 1376: 1372: 1368: 1364: 1359: 1354: 1350: 1346: 1342: 1338: 1337: 1332: 1325: 1322: 1311: 1305: 1302: 1297: 1293: 1289: 1285: 1281: 1277: 1270: 1267: 1261: 1259: 1257: 1253: 1249: 1245: 1237: 1235: 1233: 1229: 1225: 1221: 1217: 1213: 1209: 1205: 1201: 1197: 1196:blood glucose 1193: 1192:galvanic cell 1189: 1185: 1182: 1178: 1177: 1171: 1169: 1165: 1157: 1155: 1153: 1149: 1142: 1140: 1135: 1127: 1125: 1123: 1119: 1115: 1112:(CNT) and/or 1111: 1103: 1098: 1094: 1092: 1088: 1084: 1080: 1076: 1068: 1066: 1064: 1060: 1056: 1051: 1049: 1045: 1041: 1037: 1033: 1025: 1023: 1021: 1017: 1013: 1009: 1005: 1001: 997: 996:nanomaterials 993: 989: 985: 976: 969: 967: 965: 961: 957: 953: 945: 943: 941: 940:Nanophotonics 937: 935: 928: 926: 924: 920: 916: 912: 908: 904: 899: 897: 893: 889: 883: 881: 877: 873: 867: 859: 857: 855: 851: 850:nanoparticles 846: 844: 840: 836: 832: 828: 824: 816: 814: 812: 808: 804: 800: 796: 792: 786: 782: 781:Nanocircuitry 774: 769: 767: 764: 762: 758: 754: 750: 745: 740: 737: 733: 729: 725: 721: 717: 713: 702: 699: 691: 681: 677: 671: 670: 666: 660: 651: 650: 644: 642: 640: 635: 631: 627: 619: 617: 615: 611: 607: 604: 600: 596: 592: 588: 585: 584:22 nanometers 581: 578: 574: 570: 565: 563: 559: 555: 551: 547: 543: 542:semiconductor 539: 535: 531: 527: 516: 511: 509: 504: 502: 497: 496: 494: 493: 488: 483: 478: 476: 471: 466: 465: 464: 463: 458: 455: 453: 450: 448: 445: 443: 440: 439: 438: 437: 434: 430: 425: 424:Nanotribology 422: 420: 417: 415: 412: 410: 407: 405: 402: 401: 400: 399: 396: 395:Nanometrology 392: 387: 384: 382: 379: 377: 374: 372: 369: 367: 364: 362: 359: 358: 357: 356: 353: 349: 344: 341: 339: 336: 334: 331: 330: 329: 328: 325: 321: 316: 315:Nanoparticles 313: 311: 308: 306: 303: 302: 301: 300: 297: 296:Nanomaterials 293: 288: 285: 283: 280: 278: 275: 273: 270: 268: 265: 264: 263: 262: 259: 255: 251: 246: 243: 241: 238: 236: 235:Organizations 233: 231: 228: 227: 226: 225: 222: 218: 214: 210: 209: 199: 194: 192: 187: 185: 180: 179: 177: 176: 173: 168: 163: 162: 157: 151: 150:Nanomechanics 148: 146: 145:Nanophotonics 143: 141: 138: 137: 135: 134: 129: 123: 120: 118: 115: 113: 110: 108: 105: 103: 100: 98: 95: 93: 90: 88: 85: 83: 82:Nanocircuitry 80: 79: 77: 76: 71: 65: 62: 60: 57: 55: 52: 51: 49: 48: 43: 40: 36: 32: 31: 19: 2754:Applications 2735:Water heater 2710:Refrigerator 2690:Mobile phone 2593:Piezotronics 2577: 2369: 2347: 2322: 2318: 2307:the original 2276: 2272: 2221: 2217: 2207: 2162: 2158: 2145: 2118: 2114: 2104: 2063: 2057: 2051: 2029:(1): 11–19. 2026: 2020: 2013: 1980: 1976: 1970: 1945: 1939: 1933: 1925:the original 1920: 1916: 1906: 1873: 1869: 1863: 1852:. Retrieved 1847: 1838: 1797: 1791: 1784: 1751: 1747: 1741: 1716:2102.01390v2 1706: 1702: 1695: 1654: 1648: 1642: 1601: 1595: 1585: 1550: 1546: 1536: 1519: 1513: 1507: 1482: 1476: 1470: 1451: 1445: 1431:(1): 41–47. 1428: 1424: 1418: 1393: 1389: 1383: 1340: 1334: 1324: 1313:. Retrieved 1304: 1279: 1275: 1269: 1248:nanomedicine 1244:biomolecules 1241: 1174: 1172: 1161: 1146: 1137: 1107: 1083:quantum dots 1072: 1052: 1029: 1010:components. 981: 949: 938: 932: 900: 891: 884: 882:technology. 869: 854:quantum dots 847: 820: 788: 765: 741: 716:surface area 709: 694: 685: 663: 626:Gordon Moore 623: 566: 525: 524: 447:Nanorobotics 351: 267:Nanomedicine 258:applications 38: 2861:electronics 2665:Home cinema 2603:Spintronics 2543:Atomtronics 2456:Electronics 1256:nanosensors 1220:electricity 1168:solar cells 1089:instead of 1055:spintronics 888:Mark Ratner 688:August 2023 630:Moore's law 614:transistors 573:100 nm 376:Moore's law 107:Moore's law 2865:Multimedia 2855:technology 2730:Television 2660:Home robot 2650:Dishwasher 2612:Electronic 2218:Pharm. Res 1854:2008-10-08 1396:(11): 11. 1315:2009-06-06 1262:References 1228:nanorobots 1224:pacemakers 1148:Nanoradios 934:Nanoionics 835:dielectric 770:Approaches 665:neutrality 534:electronic 305:Fullerenes 287:Regulation 140:Nanoionics 102:Nanosensor 2853:Microwave 2725:Telephone 2614:equipment 2588:Photonics 1962:137586409 1748:Nano Lett 1733:231749540 1577:235456429 1569:2050-7526 1296:0167-9317 1232:Panasonic 1212:electrons 1188:fuel cell 1181:nanoscale 1164:nanowires 1091:electrons 1048:memristor 1022:(SiNWs). 1020:nanowires 1000:nanowires 970:Computers 966:devices. 907:nanotubes 827:nanotubes 823:nanowires 799:nanowires 795:nanowires 676:talk page 639:nanoscale 624:In 1965, 575:. Recent 550:nanowires 546:nanotubes 87:Nanowires 2919:Category 2903:Wireless 2859:Military 2791:e-health 2771:Avionics 2640:Notebook 2636:Computer 2529:Advanced 2463:Branches 2303:27504216 2240:16779701 2199:27879858 2137:15659726 2088:16931757 2043:16418011 2005:15557853 1890:14520404 1822:17943126 1776:17973438 1679:16724062 1634:10977413 1626:11441175 1410:13575385 1367:12637672 1104:Displays 1040:Nano-RAM 998:such as 915:cumulene 903:nanowire 839:electron 761:flagella 732:bearings 728:friction 669:disputed 213:a series 211:Part of 2655:Freezer 2327:Bibcode 2294:4648624 2248:1520698 2190:3675524 2167:Bibcode 2159:Sensors 2096:3178344 2068:Bibcode 2059:Science 1985:Bibcode 1941:Science 1898:1490060 1830:2688078 1802:Bibcode 1756:Bibcode 1687:4408636 1659:Bibcode 1606:Bibcode 1597:Science 1487:Bibcode 1375:6434777 1345:Bibcode 1336:Science 1176:in vivo 1087:photons 1036:Nantero 919:polyyne 825:and/or 577:silicon 282:Hazards 245:Outline 230:History 159:Portals 2786:e-book 2720:Tablet 2680:Cooker 2645:Camera 2531:topics 2354:  2301:  2291:  2246:  2238:  2197:  2187:  2135:  2094:  2086:  2041:  2003:  1960:  1896:  1888:  1828:  1820:  1793:Nature 1774:  1731:  1685:  1677:  1650:Nature 1632:  1624:  1575:  1567:  1458:  1408:  1373:  1365:  1294:  1208:enzyme 1200:energy 1143:Radios 848:Also, 712:volume 606:FinFET 580:MOSFET 552:(e.g. 254:Impact 2899:Wired 2880:Radar 2705:Radio 2310:(PDF) 2269:(PDF) 2244:S2CID 2155:(PDF) 2092:S2CID 2001:S2CID 1958:S2CID 1894:S2CID 1826:S2CID 1729:S2CID 1711:arXiv 1683:S2CID 1630:S2CID 1573:S2CID 1406:S2CID 1371:S2CID 1252:cells 1216:watts 1202:from 901:Many 894:(see 807:SiNWs 757:cilia 736:gears 724:drill 722:of a 720:power 599:10 nm 595:14 nm 591:nodes 2901:and 2882:and 2352:ISBN 2299:PMID 2236:PMID 2195:PMID 2133:PMID 2084:PMID 2039:PMID 1886:PMID 1818:PMID 1772:PMID 1675:PMID 1622:PMID 1565:ISSN 1456:ISBN 1363:PMID 1292:ISSN 1204:food 1081:and 1063:MRAM 1042:and 1008:CMOS 964:DRAM 960:CPUs 880:FPGA 843:hole 783:and 734:and 710:The 662:The 603:7 nm 601:and 587:CMOS 571:and 569:1 nm 256:and 97:NEMS 2335:doi 2289:PMC 2281:doi 2277:114 2226:doi 2185:PMC 2175:doi 2123:doi 2119:352 2076:doi 2064:313 2031:doi 1993:doi 1950:doi 1946:278 1878:doi 1810:doi 1798:449 1764:doi 1721:doi 1667:doi 1655:441 1614:doi 1602:293 1555:doi 1524:doi 1520:110 1495:doi 1433:doi 1429:126 1398:doi 1353:doi 1341:300 1284:doi 1218:of 1190:or 1002:or 962:or 917:or 898:). 556:or 532:in 2921:: 2333:. 2321:. 2297:. 2287:. 2275:. 2271:. 2242:. 2234:. 2222:23 2220:. 2216:. 2193:. 2183:. 2173:. 2161:. 2157:. 2131:. 2117:. 2113:. 2090:. 2082:. 2074:. 2062:. 2037:. 2027:10 2025:. 1999:. 1991:. 1981:19 1979:. 1956:. 1944:. 1921:12 1919:. 1915:. 1892:. 1884:. 1874:21 1872:. 1846:. 1824:. 1816:. 1808:. 1796:. 1770:. 1762:. 1750:. 1727:. 1719:. 1707:31 1705:. 1681:. 1673:. 1665:. 1653:. 1628:. 1620:. 1612:. 1600:. 1594:. 1571:. 1563:. 1549:. 1545:. 1518:. 1493:. 1483:29 1481:. 1427:. 1404:. 1394:54 1392:. 1369:. 1361:. 1351:. 1339:. 1333:. 1290:. 1280:32 1278:. 1154:. 1065:. 956:nm 925:. 913:, 856:. 759:, 641:. 616:. 597:, 564:. 2638:/ 2448:e 2441:t 2434:v 2360:. 2341:. 2337:: 2329:: 2323:8 2283:: 2250:. 2228:: 2201:. 2177:: 2169:: 2163:8 2139:. 2125:: 2098:. 2078:: 2070:: 2045:. 2033:: 2007:. 1995:: 1987:: 1964:. 1952:: 1900:. 1880:: 1857:. 1832:. 1812:: 1804:: 1778:. 1766:: 1758:: 1752:7 1735:. 1723:: 1713:: 1689:. 1669:: 1661:: 1636:. 1616:: 1608:: 1579:. 1557:: 1551:9 1530:. 1526:: 1501:. 1497:: 1489:: 1464:. 1439:. 1435:: 1412:. 1400:: 1377:. 1355:: 1347:: 1318:. 1298:. 1286:: 841:/ 701:) 695:( 690:) 686:( 682:. 672:. 548:/ 514:e 507:t 500:v 197:e 190:t 183:v 20:)

Index

Nanoelectronic
Nanoelectronics
Molecular scale electronics
Molecular logic gate
Molecular wires
Nanocircuitry
Nanowires
Nanolithography
NEMS
Nanosensor
Moore's law
Multigate device
Semiconductor device fabrication
List of semiconductor scale examples
Nanoionics
Nanophotonics
Nanomechanics
icon
Electronics portal
v
t
e
a series
Nanotechnology
History
Organizations
Popular culture
Outline
Impact
applications

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑