Knowledge (XXG)

Laser diode thermal desorption

Source 📝

100:, where the droplets, gas or laser come into direct contact with the sample, LDTD relies on heat transfer through a metal surface. An infrared laser diode array (980 nm) is collimated to heat the back of the sample holder causing the desorption of the molecules. The gas-phase neutral molecules are then transported through a transfer tube, which is pneumatically and sequentially inserted into each well, with a carrier gas into a 17: 129: 1402: 200:
While it only requires a small volume of sample, this technique results in a destruction of that sample. The manual sample placing required can cause a variation in results achieved. Care must be taken when designing methods within an experiment using this technology as the lack of chromatography can
170:
as in liquid chromatography and it significantly reduces the analysis time. It also uses low volumes of samples, which is an asset in applications where the available sample volume is limited or difficult to acquire. In addition, it is deemed to be an environmentally friendly alternative to LC-MS/MS.
169:
and a strong resistance to ionic suppression. This and the fact that no needle touches the samples adds the benefit of eliminating carry over between the different wells of the plate. The technology is also a good alternative for the traditional LC-MS users since the results give a similar peak shape
87:
An aliquot of the sample preparation between 1 and 10 ÎŒL is deposited with a pipette into the well of a metal sample holder and dried with a temperature between room temperature and 40 degrees Celsius. After the sample is completely dried, the sample holder is inserted into the ion source. Compared
156:
The sample holders that can be inserted in LDTD ion sources are named LazWell and are specially designed 96, 384 or 1536-well plates. Different coatings can be applied depending on the molecules being analyzed. The hexagonal well shape is designed to concentrate the sample in the path of the laser
104:
region to undergo an atmospheric pressure ionization. The ions enter the mass spectrometer through the inlet to be measured by the detector. This whole process takes between 0.7 and 10 seconds depending on the laser pattern and the method created by the user. The carrier gas used is compressed air
46:
that are deposited on a stainless steel sheet sample holder, called LazWell. The coupling of LDTD and APCI is considered to be a soft-ionization technique. With LDTD-APCI, it is possible to analyze samples in forensics, pharmaceuticals, environment, food and clinical studies. LDTD is suitable for
80: 642: 141:
Since LDTD is always coupled to APCI, the same ionization mechanism happens. The main difference is that no solvent or mobile phase is available and the protons come from the water content of the carrier gas. A water concentration between 3 and 1800 ppm is recommended.
108:
Adding to the mass spectrometer's software-controlled parameters, three other parameters can be varied to achieve a higher sensibility or reproducibility: the carrier gas flow, the laser power and the laser gradient. An important part of the analysis is also the
425:"Carbamazepine in municipal wastewater and wastewater sludge: Ultrafast quantification by laser diode thermal desorption-atmospheric pressure chemical ionization coupled with tandem mass spectrometry" 592:"Ultra-fast cyclosporin A quantitation in whole blood by Laser Diode Thermal Desorption – Tandem Mass Spectrometry; comparison with High Performance Liquid Chromatography–Tandem Mass Spectrometry" 640:, Picard, Pierre; Lessard, Denis & L'Heureux, AndrĂ© et al., "Ionization source for mass spectrometer", published 2008-01-22, assigned to Phytronix Technologies Inc. 740:"High-Throughput Quantitation of Seven Sulfonamide Residues in Dairy Milk using Laser Diode Thermal Desorption-Negative Mode Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry" 378:"Laser diode thermal desorption–positive mode atmospheric pressure chemical ionization tandem mass spectrometry for the ultra-fast quantification of a pharmaceutical compound in human plasma" 690:"Laser Diode Thermal Desorption/Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry Analysis of Selected Steroid Hormones in Wastewater: Method Optimization and Application" 217:
Wu, Jin; Hughes, Christopher S.; Picard, Pierre; Letarte, Sylvain; Gaudreault, Mireille; Lévesque, Jean-François; Nicoll-Griffith, Deborah A.; Bateman, Kevin P. (June 2007).
532:"Laser diode thermal desorption atmospheric pressure chemical ionization tandem mass spectrometry applied for the ultra-fast quantitative analysis of BKM120 in human plasma" 173:
The ion sources, LDTD and Luxon Ion Source, can be attached to different mass spectrometers with its adapted source housing, available for multiple manufacturers, such as
189: 1209: 188:
On the downside, since no chromatographic separation is done, interferences coming from isobaric compounds may occur in heavily charged matrices. Differential
656: 97: 219:"High-Throughput Cytochrome P450 Inhibition Assays Using Laser Diode Thermal Desorption-Atmospheric Pressure Chemical Ionization-Tandem Mass Spectrometry" 148:
In some applications, such as the analysis of tacrolimus in whole blood, ammonium hydroxide is added to the carrier gas to modify the ionization process.
470:
Andersen, Wendy C.; VanSickle, Michael; Storey, Joseph; Sheldon, Virginia; Lohne, Jack; Turnipseed, Sherri B.; Thomas, Terri; Madson, Mark (2019-11-02).
1235:"Determination of citalopram in fish brain tissue: benefits of coupling laser diode thermal desorption with low- and high-resolution mass spectrometry" 110: 1289:"The Evaluation of Laser Diode Thermal Desorption ((LDTD) for High Throughput Analysis of Controlled Substances and Toxicology in Forensic Sciences" 36: 1380:"The Evaluation of Laser Diode Thermal Desorption (LDTD) for High Throughput Analysis of Controlled Substances and Toxicology in Forensic Sciences" 1146:
Dion‐Fortier, Annick; Gravel, Alexia; GuĂ©rette, Cassandra; Chevillot, Fanny; Blais, Sonia; Auger, Serge; Picard, Pierre; Segura, Pedro A. (2019).
1312:
Hecht, Elizabeth S.; Scigelova, Michaela; Eliuk, Shannon; Makarov, Alexander (2019), "Fundamentals and Advances of Orbitrap Mass Spectrometry",
983:"A 6 Second Analytical Method for Quantitation of Tacrolimus in Whole Blood by Use of Laser Diode Thermal Desorption Tandem Mass Spectrometry" 1357: 1331: 795: 530:
Lanshoeft, Christian; Heudi, Olivier; Leuthold, Luc Alexis; Schlotterbeck, Götz; Elbast, Walid; Picard, Franck; Kretz, Olivier (2014-09-01).
174: 89: 1148:"Signal enhancement in laser diode thermal desorption-triple quadrupole mass spectrometry analysis using microwell surface coatings" 813:"Coupling Laser Diode Thermal Desorption with Acoustic Sample Deposition to Improve Throughput of Mass Spectrometry-Based Screening" 1347: 785: 178: 1423: 870:"Laser diode thermal desorption mass spectrometry for the analysis of quinolone antibiotic residues in aquacultured seafood" 266:"Ultrafast laser diode thermal desorption method for analysis of representative pharmaceuticals in soil leachate samples" 114: 93: 192:(DMS-MS) or high-resolution mass spectrometry (HRMS) can be used in tandem with LDTD to eliminate these interferences. 1412: 1233:
Borik, Adam; Staƈová, Andrea Vojs; Brooks, Bryan W.; Grabicová, Kateƙina; Randák, Tomáơ; Grabic, Roman (2020-07-01).
811:
Haarhoff, Zuzana; Wagner, Andrew; Picard, Pierre; Drexler, Dieter M.; Zvyaga, Tatyana; Shou, Wilson (February 2016).
105:
which contains a concentration of water between 3 and 1800 ppm to be able to efficiently protonate the molecules.
1076:"Determination of paracetamol in mouse, rat and dog plasma samples by laser diode thermal desorption--APCI-MS/MS" 376:
Heudi, Olivier; Barteau, Samuel; Picard, Pierre; Tremblay, Patrice; Picard, Franck; Kretz, Olivier (2011-04-05).
1121: 657:"Phytronix Technologies Launches the Fastest Process in Mass Spectrometry with the Luxon Ion Source at ASMS2016" 590:
Jourdil, Jean-François; Picard, Pierre; Meunier, Cécile; Auger, Serge; Stanke-Labesque, Françoise (2013-12-17).
264:
Borik, A.; Vojs Stanova, A.; Kodesova, R.; Brooks, B. W.; Grabicova, K.; Novakova, P.; Grabic, R. (2020-02-01).
925:"Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry" 472:"Fast analysis of caffeinated beverages using laser diode thermal desorption mass spectrometry (LDTD-MS/MS)" 326:"Evaluation of Laser Diode Thermal Desorption–Tandem Mass Spectrometry (LDTD–MS-MS) in Forensic Toxicology" 165:
Since no solvent or mobile phase carries the sample, this technique is characterized by a highly efficient
71:
for mass spectrometry. In 2016, the Luxon Ion Source, based on the same technology, was put on the market.
122: 118: 738:
Segura, Pedro A.; Tremblay, Patrice; Picard, Pierre; Gagnon, Christian; Sauvé, Sébastien (2010-02-10).
637: 1159: 936: 881: 591: 424: 377: 265: 868:
Lohne, Jack J.; Andersen, Wendy C.; Clark, Susan B.; Turnipseed, Sherri B.; Madson, Mark R. (2012).
1452: 1270: 1191: 850: 567: 507: 301: 1353: 1327: 1262: 1254: 1183: 1175: 1103: 1095: 1051: 1012: 1004: 960: 952: 905: 897: 842: 834: 791: 767: 759: 717: 709: 619: 611: 559: 551: 499: 491: 452: 444: 405: 397: 355: 347: 293: 285: 246: 238: 67:
In 2005, a patent was filed by Phytronix Technologies Inc., from Quebec, Canada, for the LDTD
32: 1031: 1317: 1246: 1167: 1087: 1043: 994: 944: 889: 824: 751: 701: 603: 543: 483: 436: 389: 337: 277: 230: 101: 1147: 924: 869: 1030:
Daldoul, Insaf; Auger, Serge; Picard, Pierre; Nohair, Bendaoud; Kaliaguine, Serge (2016).
423:
Mohapatra, D. P.; Brar, S. K.; Tyagi, R. D.; Picard, P.; Surampalli, R. Y. (2012-09-15).
1163: 940: 885: 325: 48: 1379: 1446: 1322: 1288: 1274: 511: 305: 1195: 854: 1032:"Effect of temperature Ramp on hydrocarbon desorption profiles from zeolite ZSM-12" 571: 1346:
Flanagan, Robert J.; Cuypers, Eva; Maurer, Hans H.; Whelpton, Robin (2020-05-21).
487: 440: 281: 218: 471: 166: 56: 1250: 393: 16: 607: 547: 68: 40: 1258: 1234: 1179: 1099: 1055: 1008: 999: 982: 956: 901: 838: 829: 812: 763: 713: 615: 555: 495: 448: 401: 351: 289: 242: 1075: 531: 1401: 1266: 1187: 1107: 1074:
Swales, John G.; Temesi, David G.; Denn, Mark; Murphy, Keeley (June 2012).
1016: 964: 909: 846: 771: 721: 623: 563: 503: 456: 409: 359: 297: 250: 128: 342: 182: 1378:
Bynum, Nichole D.; Grabenauer, Megan; Moore, Katherine N. (April 2014).
324:
Bynum, Nichole D.; Moore, Katherine N.; Grabenauer, Megan (2014-10-01).
1047: 52: 43: 1091: 755: 705: 234: 1171: 948: 893: 739: 689: 923:
Berkel, Gary J. Van; Pasilis, Sofie P.; Ovchinnikova, Olga (2008).
127: 15: 688:
Fayad, Paul B.; Prévost, MichÚle; Sauvé, Sébastien (2010-01-15).
113:. The most common sample preparation methods used with LDTD are 79: 1395: 981:
Merrigan, Stephen D.; Johnson-Davis, Kamisha L. (2019-05-01).
1349:
Fundamentals of Analytical Toxicology: Clinical and Forensic
20:
Luxon Ion Source installed on a Shimadzu mass spectrometer
145:
The ionization can be done in negative or positive mode.
1419: 1122:"News | Changing the Game in High-Throughput Screening" 787:
Advanced Mass Spectrometry for Food Safety and Quality
1426:
to it so that it can be listed with similar articles.
98:
matrix-assisted laser desorption/ionization (MALDI)
382:Journal of Pharmaceutical and Biomedical Analysis 31:) is an ionization technique that is coupled to 1210:"Growing Pains in LC-MS/MS Testing | AACC.org" 8: 1036:The Canadian Journal of Chemical Engineering 190:ion mobility spectrometry-mass spectrometry 1316:, American Cancer Society, pp. 1–40, 987:The Journal of Applied Laboratory Medicine 744:Journal of Agricultural and Food Chemistry 1321: 998: 874:Rapid Communications in Mass Spectrometry 828: 476:Food Additives & Contaminants: Part A 341: 201:cause the inability to analyze isomers. 90:desorption electrospray ionization (DESI) 78: 37:atmospheric pressure chemical ionization 209: 1239:Analytical and Bioanalytical Chemistry 536:Analytical and Bioanalytical Chemistry 1373: 1371: 1369: 1069: 1067: 1065: 976: 974: 733: 731: 683: 681: 679: 677: 39:(APCI). It uses a laser to thermally 7: 1314:Encyclopedia of Analytical Chemistry 585: 583: 581: 525: 523: 521: 371: 369: 319: 317: 315: 132:Typical laser pattern used with LDTD 94:direct analysis in real time (DART) 1411:needs additional or more specific 14: 817:Journal of Biomolecular Screening 1400: 1323:10.1002/9780470027318.a9309.pub2 330:Journal of Analytical Toxicology 83:Schematic of the LDTD technology 51:between 0 and 1200 Da and some 25:Laser diode thermal desorption 1: 1293:National Institute of Justice 488:10.1080/19440049.2019.1658904 441:10.1016/j.talanta.2012.05.047 282:10.1016/j.talanta.2019.120382 1152:Journal of Mass Spectrometry 929:Journal of Mass Spectrometry 157:for an optimal desorption. 1469: 1387:Office of Justice Programs 1251:10.1007/s00216-020-02672-y 394:10.1016/j.jpba.2010.11.025 1352:. John Wiley & Sons. 608:10.1016/j.aca.2013.10.051 548:10.1007/s00216-014-7966-6 1000:10.1373/jalm.2018.027243 830:10.1177/1087057115607184 790:. Elsevier. 2015-05-08. 115:liquid-liquid extraction 35:to analyze samples with 596:Analytica Chimica Acta 133: 123:solid phase extraction 84: 75:Principle of operation 21: 131: 125:(SPE) or a dilution. 119:protein precipitation 82: 19: 694:Analytical Chemistry 661:www.businesswire.com 223:Analytical Chemistry 185:mass spectrometers. 137:Ionization mechanism 1164:2019JMSp...54..167D 941:2008JMSp...43.1161V 886:2012RCMS...26.2854L 1048:10.1002/cjce.22467 343:10.1093/jat/bku084 134: 111:sample preparation 85: 22: 1441: 1440: 1424:adding categories 1359:978-1-119-12236-4 1333:978-0-470-02731-8 1245:(18): 4353–4361. 1092:10.4155/bio.12.68 1086:(11): 1327–1335. 880:(24): 2854–2864. 797:978-0-444-63392-7 756:10.1021/jf903362v 706:10.1021/ac902074x 542:(22): 5413–5423. 482:(11): 1616–1625. 235:10.1021/ac070221o 229:(12): 4657–4665. 175:triple quadrupole 33:mass spectrometry 1460: 1436: 1433: 1427: 1404: 1396: 1391: 1390: 1384: 1375: 1364: 1363: 1343: 1337: 1336: 1325: 1309: 1303: 1302: 1300: 1299: 1285: 1279: 1278: 1230: 1224: 1223: 1221: 1220: 1206: 1200: 1199: 1172:10.1002/jms.4328 1143: 1137: 1136: 1134: 1133: 1118: 1112: 1111: 1071: 1060: 1059: 1027: 1021: 1020: 1002: 978: 969: 968: 949:10.1002/jms.1440 935:(9): 1161–1180. 920: 914: 913: 894:10.1002/rcm.6414 865: 859: 858: 832: 808: 802: 801: 782: 776: 775: 750:(3): 1442–1446. 735: 726: 725: 685: 672: 671: 669: 668: 653: 647: 646: 645: 641: 634: 628: 627: 587: 576: 575: 527: 516: 515: 467: 461: 460: 420: 414: 413: 388:(5): 1088–1095. 373: 364: 363: 345: 321: 310: 309: 261: 255: 254: 214: 102:corona discharge 1468: 1467: 1463: 1462: 1461: 1459: 1458: 1457: 1443: 1442: 1437: 1431: 1428: 1417: 1405: 1394: 1382: 1377: 1376: 1367: 1360: 1345: 1344: 1340: 1334: 1311: 1310: 1306: 1297: 1295: 1287: 1286: 1282: 1232: 1231: 1227: 1218: 1216: 1208: 1207: 1203: 1145: 1144: 1140: 1131: 1129: 1120: 1119: 1115: 1073: 1072: 1063: 1029: 1028: 1024: 980: 979: 972: 922: 921: 917: 867: 866: 862: 810: 809: 805: 798: 784: 783: 779: 737: 736: 729: 687: 686: 675: 666: 664: 655: 654: 650: 643: 636: 635: 631: 589: 588: 579: 529: 528: 519: 469: 468: 464: 422: 421: 417: 375: 374: 367: 323: 322: 313: 263: 262: 258: 216: 215: 211: 207: 198: 163: 154: 139: 77: 65: 49:small molecules 12: 11: 5: 1466: 1464: 1456: 1455: 1445: 1444: 1439: 1438: 1408: 1406: 1399: 1393: 1392: 1365: 1358: 1338: 1332: 1304: 1280: 1225: 1201: 1158:(2): 167–177. 1138: 1113: 1061: 1042:(5): 931–937. 1022: 993:(6): 965–973. 970: 915: 860: 823:(2): 165–175. 803: 796: 777: 727: 700:(2): 639–645. 673: 648: 629: 577: 517: 462: 415: 365: 336:(8): 528–535. 311: 256: 208: 206: 203: 197: 194: 179:time-of-flight 162: 159: 153: 150: 138: 135: 76: 73: 64: 61: 13: 10: 9: 6: 4: 3: 2: 1465: 1454: 1451: 1450: 1448: 1435: 1425: 1421: 1415: 1414: 1409:This article 1407: 1403: 1398: 1397: 1388: 1381: 1374: 1372: 1370: 1366: 1361: 1355: 1351: 1350: 1342: 1339: 1335: 1329: 1324: 1319: 1315: 1308: 1305: 1294: 1290: 1284: 1281: 1276: 1272: 1268: 1264: 1260: 1256: 1252: 1248: 1244: 1240: 1236: 1229: 1226: 1215: 1211: 1205: 1202: 1197: 1193: 1189: 1185: 1181: 1177: 1173: 1169: 1165: 1161: 1157: 1153: 1149: 1142: 1139: 1127: 1123: 1117: 1114: 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1070: 1068: 1066: 1062: 1057: 1053: 1049: 1045: 1041: 1037: 1033: 1026: 1023: 1018: 1014: 1010: 1006: 1001: 996: 992: 988: 984: 977: 975: 971: 966: 962: 958: 954: 950: 946: 942: 938: 934: 930: 926: 919: 916: 911: 907: 903: 899: 895: 891: 887: 883: 879: 875: 871: 864: 861: 856: 852: 848: 844: 840: 836: 831: 826: 822: 818: 814: 807: 804: 799: 793: 789: 788: 781: 778: 773: 769: 765: 761: 757: 753: 749: 745: 741: 734: 732: 728: 723: 719: 715: 711: 707: 703: 699: 695: 691: 684: 682: 680: 678: 674: 662: 658: 652: 649: 639: 633: 630: 625: 621: 617: 613: 609: 605: 601: 597: 593: 586: 584: 582: 578: 573: 569: 565: 561: 557: 553: 549: 545: 541: 537: 533: 526: 524: 522: 518: 513: 509: 505: 501: 497: 493: 489: 485: 481: 477: 473: 466: 463: 458: 454: 450: 446: 442: 438: 434: 430: 426: 419: 416: 411: 407: 403: 399: 395: 391: 387: 383: 379: 372: 370: 366: 361: 357: 353: 349: 344: 339: 335: 331: 327: 320: 318: 316: 312: 307: 303: 299: 295: 291: 287: 283: 279: 275: 271: 267: 260: 257: 252: 248: 244: 240: 236: 232: 228: 224: 220: 213: 210: 204: 202: 196:Disadvantages 195: 193: 191: 186: 184: 180: 176: 171: 168: 160: 158: 152:Sample holder 151: 149: 146: 143: 136: 130: 126: 124: 120: 116: 112: 106: 103: 99: 95: 91: 81: 74: 72: 70: 62: 60: 58: 54: 50: 45: 42: 38: 34: 30: 26: 18: 1429: 1410: 1386: 1348: 1341: 1313: 1307: 1296:. Retrieved 1292: 1283: 1242: 1238: 1228: 1217:. Retrieved 1214:www.aacc.org 1213: 1204: 1155: 1151: 1141: 1130:. Retrieved 1128:. 2018-08-01 1125: 1116: 1083: 1079: 1039: 1035: 1025: 990: 986: 932: 928: 918: 877: 873: 863: 820: 816: 806: 786: 780: 747: 743: 697: 693: 665:. Retrieved 663:. 2016-06-06 660: 651: 632: 599: 595: 539: 535: 479: 475: 465: 432: 428: 418: 385: 381: 333: 329: 273: 269: 259: 226: 222: 212: 199: 187: 172: 164: 155: 147: 144: 140: 107: 86: 66: 57:cyclosporine 28: 24: 23: 1080:Bioanalysis 435:: 247–255. 167:protonation 1453:Ion source 1413:categories 1298:2020-07-30 1219:2020-07-28 1132:2020-07-30 667:2020-07-28 638:US 7321116 276:: 120382. 205:References 161:Advantages 69:ion source 1432:July 2021 1275:218512949 1259:1618-2650 1180:1096-9888 1126:Phytronix 1100:1757-6199 1056:1939-019X 1009:2576-9456 957:1096-9888 902:1097-0231 839:1552-454X 764:0021-8561 714:0003-2700 616:0003-2670 602:: 80–86. 556:1618-2650 512:201829502 496:1944-0049 449:0039-9140 402:0731-7085 352:0146-4760 306:203936286 290:0039-9140 243:0003-2700 1447:Category 1420:help out 1267:32372276 1196:58666707 1188:30600862 1108:22720651 1017:31639688 965:18671242 910:23136016 855:45076552 847:26420787 772:20078066 722:20000768 624:24296146 564:24958346 504:31479386 457:22967548 410:21156343 360:25217542 298:31816693 251:17497828 183:orbitrap 55:such as 53:peptides 44:analytes 1418:Please 1160:Bibcode 937:Bibcode 882:Bibcode 572:2923544 429:Talanta 270:Talanta 117:(LLE), 63:History 1356:  1330:  1273:  1265:  1257:  1194:  1186:  1178:  1106:  1098:  1054:  1015:  1007:  963:  955:  908:  900:  853:  845:  837:  794:  770:  762:  720:  712:  644:  622:  614:  570:  562:  554:  510:  502:  494:  455:  447:  408:  400:  358:  350:  304:  296:  288:  249:  241:  181:, and 41:desorb 1383:(PDF) 1271:S2CID 1192:S2CID 851:S2CID 568:S2CID 508:S2CID 302:S2CID 88:with 1354:ISBN 1328:ISBN 1263:PMID 1255:ISSN 1184:PMID 1176:ISSN 1104:PMID 1096:ISSN 1052:ISSN 1013:PMID 1005:ISSN 961:PMID 953:ISSN 906:PMID 898:ISSN 843:PMID 835:ISSN 792:ISBN 768:PMID 760:ISSN 718:PMID 710:ISSN 620:PMID 612:ISSN 560:PMID 552:ISSN 500:PMID 492:ISSN 453:PMID 445:ISSN 406:PMID 398:ISSN 356:PMID 348:ISSN 294:PMID 286:ISSN 247:PMID 239:ISSN 96:and 29:LDTD 1422:by 1318:doi 1247:doi 1243:412 1168:doi 1088:doi 1044:doi 995:doi 945:doi 890:doi 825:doi 752:doi 702:doi 604:doi 600:805 544:doi 540:406 484:doi 437:doi 390:doi 338:doi 278:doi 274:208 231:doi 1449:: 1385:. 1368:^ 1326:, 1291:. 1269:. 1261:. 1253:. 1241:. 1237:. 1212:. 1190:. 1182:. 1174:. 1166:. 1156:54 1154:. 1150:. 1124:. 1102:. 1094:. 1082:. 1078:. 1064:^ 1050:. 1040:94 1038:. 1034:. 1011:. 1003:. 989:. 985:. 973:^ 959:. 951:. 943:. 933:43 931:. 927:. 904:. 896:. 888:. 878:26 876:. 872:. 849:. 841:. 833:. 821:21 819:. 815:. 766:. 758:. 748:58 746:. 742:. 730:^ 716:. 708:. 698:82 696:. 692:. 676:^ 659:. 618:. 610:. 598:. 594:. 580:^ 566:. 558:. 550:. 538:. 534:. 520:^ 506:. 498:. 490:. 480:36 478:. 474:. 451:. 443:. 433:99 431:. 427:. 404:. 396:. 386:54 384:. 380:. 368:^ 354:. 346:. 334:38 332:. 328:. 314:^ 300:. 292:. 284:. 272:. 268:. 245:. 237:. 227:79 225:. 221:. 177:, 121:, 92:, 59:. 1434:) 1430:( 1416:. 1389:. 1362:. 1320:: 1301:. 1277:. 1249:: 1222:. 1198:. 1170:: 1162:: 1135:. 1110:. 1090:: 1084:4 1058:. 1046:: 1019:. 997:: 991:3 967:. 947:: 939:: 912:. 892:: 884:: 857:. 827:: 800:. 774:. 754:: 724:. 704:: 670:. 626:. 606:: 574:. 546:: 514:. 486:: 459:. 439:: 412:. 392:: 362:. 340:: 308:. 280:: 253:. 233:: 27:(

Index


mass spectrometry
atmospheric pressure chemical ionization
desorb
analytes
small molecules
peptides
cyclosporine
ion source

desorption electrospray ionization (DESI)
direct analysis in real time (DART)
matrix-assisted laser desorption/ionization (MALDI)
corona discharge
sample preparation
liquid-liquid extraction
protein precipitation
solid phase extraction

protonation
triple quadrupole
time-of-flight
orbitrap
ion mobility spectrometry-mass spectrometry
"High-Throughput Cytochrome P450 Inhibition Assays Using Laser Diode Thermal Desorption-Atmospheric Pressure Chemical Ionization-Tandem Mass Spectrometry"
doi
10.1021/ac070221o
ISSN
0003-2700
PMID

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑